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ABSTRACT

For a unique factorization of a matrix B, the effect of sparsity or other
structure on measuring the sensitivity of the factors of B to some change G in
B is considered. In particular, norm-based analyses of the QR and Cholesky
factorizations are examined. If B is structured but G is not, it is shown that
the expressions for the condition numbers are identical to those when B is not
structured, but because of the structure the condition numbers may be easier to
estimate. If GG is structured, whether B is or not, then the expressions for the
condition numbers can change, and it is shown how to derive the new expressions.
Cases where B and G have the same sparsity structure occur often: here, for
the QR factorization an example shows the value of the new expression can be
arbitrarily smaller, but for the Cholesky factorization of a tridiagonal matrix and
perturbation the value of the new expression cannot be significantly different
from the value of the old one. Thus taking account of sparsity can show the
condition is much better than would be suggested by ignoring it, but only for
some classes of problems, and perhaps only for some types of factorization. The
generalization of these ideas to other factorizations is discussed.
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1. INTRODUCTION

For any unique factorization of a matrix B, for example the QR factor-
ization of full column rank B when R is chosen to have positive diagonal
elements, we will be interested in how sensitive the factors are to changes
in B. Recent work by Chang [1], see also [2, 3, 4, 5, 6, 7], gave an approach
to finding and analyzing exact expressions for the condition numbers of
such factorizations.

This approach is ideal for taking account of sparsity and other structure
in the original matrix B and the change to B represented by GG. This paper
will attempt to clarify the basic ideas and produce initial meaningful results
in this area.

Before proceeding it is important to be clear about the terminology
we use. Here a ‘condition number’ of some factor of B (with respect to
the factorization) will always come from an inequality for which equality
can be attained for any given matrix B having a unique factorization,
see for example (6) and its following sentence. So at no time will we
use the term ‘condition number’ loosely. Throughout the text the term
‘structure’ will refer to any known structure in a matrix, including any
form of sparsity known a priori. If the sparsity of a matrix has some very
regular structure, for example band form, we will either use the standard
name, or refer to it as structured sparsity. Thus structure is the most
general term, sparsity more specific, and structured sparsity more specific
still. 'We will show how to handle element structure (by which we mean
that some equality relationships involving elements hold, as for example in
Toeplitz matrices), general sparsity, and structured sparsity in finding, and
sometimes analyzing, condition numbers.

The simplest approach to the sensitivity analysis of a unique factoriza-
tion of B appears to be to consider the factorization of B(t) = B+1tG, and
to take the derivative with respect to ¢ of some matrix equation at ¢ = 0 in
order to relate the derivatives of the factors to the derivative B = G, see
for example the paragraph containing (4). We will use this approach.

There are then two main objects whose structures are important in this
analysis, B, and B = G. Keep in mind these have different possible effects:

Structure in B — structure in the factors of B,

Structure in B = G — structure in the derivatives of the factors.

The case of structured B but unstructured G is straightforward: B+tG
has no element or sparsity structure for ¢ > 0, so its factors, and their
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derivatives even at ¢ = 0, have no more structure than those in the un-
structured case, so we suspect in general the expressions for the condition
numbers will be identical to those for unstructured B. We will see for the
QR and Cholesky factorizations that the expressions for the condition num-
bers of the upper triangular factor R do not change, but the values of these
expressions may be easier to estimate compared with the unstructured case.
The same observations apply to other factorizations in [1]—[7].

When G has structure we will see the expressions for the condition
numbers will usually change. This again applies to other factorizations in
[1]—[7]. We will show how to take account of element structure or general
sparsity in deriving the new condition numbers.

One of the most common cases of structured G is where B and G have
related structure. This can arise when we consider meaningful physical
changes, for example a Toeplitz change in Toeplitz B. It can also arise when
G corresponds to the equivalent backward rounding error term resulting
from a numerically stable finite precision computation for a sparse B, see
for example [8]. Cases like this where B and G have related sparsity lead
to considerable changes in the expression for the condition number, and by
using simple examples, we show how to take account of such cases to derive
the new condition numbers. Two questions then arise: Can these new
condition numbers have significantly different values from the condition
numbers for unstructured perturbations? Is it worthwhile going to the
extra effort of taking account of sparsity?

To reach meaningful conclusions here, among all the available sparsity
patterns, we examine very simple problems having as much sparsity and
structure as possible while remaining nontrivial. For if we obtain no sig-
nificant advantage in a very sparse and structured case, we cannot expect
advantages in more complex cases (that is, cases closer to the general un-
structured case). In the QR factorization B = QR where B exhibits an
important practical sparsity pattern leading to upper bidiagonal R, and G
has the same sparsity pattern as B, we show the condition number for R
which takes account of this structure can be arbitrarily smaller than that
which does not. For the Cholesky factorization A = RT R of tridiagonal A
(again leading to upper bidiagonal R) with a tridiagonal perturbation M,
we prove the improvement in value of the new condition number for R can
never be great. This suggests for less sparse A and M, such as band A
and M, and perhaps even for generally sparse A with M having the same
envelope, for the Cholesky factorization the value of the condition number
for R will not be improved much by taking account of the sparsity in M.

In Section 2 we will give a short motivation for examining the sensi-
tivity of factorizations, introduce a practical structured sparse problem of
the type we will use later as an example, and present some notation. In
Section 3 we examine the QR factorization of full column rank B, treating
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a practical form of sparse B with a sparse perturbation in Section 3.1. Sec-
tion 3.2 uses the QR factorization to illustrate how in general we can handle
some other perturbation structures. In Section 4 we examine the Cholesky
factorization of symmetric positive definite A, treating structured A in Sec-
tion 4.1, structured A with a structured perturbation in Section 4.2, and
commenting on our findings in Section 4.3. We give some overall thoughts
in Section 5. The Appendix contains a somewhat long proof of (20) and
(21) which are required in Section 4.2.

2. A PRACTICAL EXAMPLE OF STRUCTURE

Sensitivity analysis of factorizations is important for at least two reasons.
It is important when the factors have some meaning in their own right, and
also where the analysis is useful as part of a larger analysis, for example
in explaining the high accuracy of some computations. We give a simple
example of the former that will also show why we might want to examine
the sensitivity of factorizations of sparse and structured matrices. Consider
the estimation problem in which we know y and full column rank B so that

y = Bx + v, E(v) =0, S(UUT):(TZI,

where v is an unknown noise vector and £(-) denotes the expected value.
If we obtain the QR factorization of B

B =@Q:1R, QT Q, R upper triangular,

then solving Rz = @7y gives the best linear unbiased estimate (BLUE) z
of z, and

RE{(z — z)(¢ — 2)T}RT = oI,

so 0”1 R is the factor of [£{(2 — z)(# — )T }]~!, which has sometimes been
called the “information matrix”. This is important in its own right, and
we are interested in how changes in B affect R.

There 1s a large class of problems of this form that have strong struc-
ture, see for example [9, 11]. Suppose we have a discrete Kalman filtering
problem (because of the form of the noise vectors uy and vy, this is a
restricted formulation designed to keep the illustration simple)

ye = Crrp+ ug, E(ug) =0, E(Ukug) = 2],
Tp41 = Apzi + vg, E(vg) =0, S(vkvg) = 2], (1)
for £ = 1,2, ..., with uncorrelated noise vectors. The y; are known, and

we want to estimate the xg. This becomes a linear least squares problem



SENSITIVITY OF FACTORS OF STRUCTURED MATRICES 5

y = Br +v with y© = (y7,07, 42 07, .. ), 27 = (2T ,27,.. ), and T =
(uf' vT wl vT | .), which we can solve via the QR factorization B = Q1 R,
where B, and the resulting factor R of the ‘information matrix’ have the
block structure:

Ch
Ay -1
Cs Ryt Ry
Ay =T Ros  Ros
B= 2 S R= 2
Cy Ras Raa
Az -1 .

2)
Note how the column structure of R comes from the column structure of B.
For us, a crucial point in such problems is that perturbations only occur in
the nonzero blocks of B, and so can only alter the nonzero blocks of R.
We finish this section with an indication of the notation we will use.
For any matrix C' = (¢;;) = [e1, ..., ¢n] € R"*"?, denote by c;»Z) the vector
of the first ¢ elements of ¢;. With these, we define (“u” denotes “upper”)

(&3] S
(2)

vec(C') = 6.2 , uvec(C) = 62.
Cn Cgln)

The second one is the vector formed by stacking the columns of the upper
triangular part of C' into one long vector. The norms we will use are || X||2

the largest singular value omax(X), and || X||p = /trace(XTX).

3. THE QR FACTORIZATION

Let B € R™*™ have full column rank. Then B has a unique QR fac-
torization B = @1 R, where @; € R™*"™ has orthonormal columns and
R € R™*" is upper triangular with positive diagonal entries. Suppose G is
a real m x n matrix such that [|Q7 G||2 < omin(B). Then B +tG still has
full column rank for |¢| < 1 and has a unique QR factorization

B(t) = B+tG=Qi()R(t), QTH)Q:(t)=1 (3)

Here B(0) = B, Q1(0) = Q1 and R(0) = R. If we differentiate R(t)T R(t) =
B(t)T B(t) with respect to ¢ and set ¢+ = 0, and use B = @1 R, we obtain
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with obvious notation the n x n symmetric matrix equation
RTR+R"R=R"QTG+G"Q:R. (4)

Tt was shown in [7], and it is easy to see that elements (1,1); (1, 2), (2, 2);
...;(1,n),(2,n),...,(n,n) give, in that order, the n(n + 1)/2 equations

o
T T
ra T
T
T3
: T _
Zr -vec(R) = Zg - vec(Q7 G), Zp = = —1 ,
rn rl
T T
n T2
T
L rn .

with r; being the jth column of R. But R must be upper triangular, so
removing the strictly lower triangular elements of R and the corresponding
elements of Zg on the left gives

Wr -uvec(R) = Zp - vec(QTG),
11 1
12 | Tl
T2 T22
Wr = . . S . (5
n Tin 11 ( )
Tin T2n 12 Ta22
L Tin Ton © Tan
This has a unique solution, and since ||uvec(R)||2 = ||R||F ete.
1Rl 1 1QT G|r
<IWg Zrll2—zm—- (6)
I RI|2 f I B]]2

For general G, QT GG and therefore vec(QT G) may be chosen arbitrarily in
uvec(R) = nglZRvec(QfG). So for any B, the upper bound is attainable,
and ||W§1ZR||2 is the condition number (using this choice of norms) for
the R factor with respect to ||Q¥ G|/, which measures that part of the
perturbation lying in R(B), the range of B. For general B, as far as we
know, it is expensive to estimate ||W§1ZR||2 directly. So the following
upper bound on ||Wy'Zg||2 was obtained in [7]:

Wi Zgl2 < jnf 1+ Cra(D'R),
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where D = diag(d;) and {, = maxi<i<j<nd;/d;. Notice \/5/@2(3), the best
of the earlier known upper bounds on the condition number of R in the QR
factorization (see [10] and [12]), is an upper bound on this (corresponding to
D = I in the above). In practice we do not seek the infimum, but choose
D to equilibrate the rows of R as far as possible while keeping ¢, < 1,
then use standard condition estimators to estimate KQ(D_lR). This can
be done cheaply. For such a choice of D, experiments in [7] suggest that
V14 (2ka(D71R) is a good approximation to ||W§1ZR||2.

When G has some structure, we usually cannot choose a GG such that the
upper bound in (6) is attained. Unfortunately the above approach (from
[7]) does not generalize successfully to such structured problems. So now
we replace 1R in (4) by B, and obtain

RTR+RTR= BTG+ G"B, (7)
and then .
W -uvec(R) = Z - vec(G), (8)
where with the same Wg as in (5)
b7 i
by b1
by
W = Wk, 7 =Zpg= i
by by
by by
b
Again this has a unique solution and
|1Bllr —1 . IGHE
<[W™ 2l
Il 1Bl

Once again for any structure or sparsity in B, we can choose unstructured
G such that the upper bound is attained. Thus |[|[W~=1Z||, can be regarded
as the condition number for the R factor (but now with respect to the full
perturbation ||G||r) for unstructured perturbations in B, no matter what
sparsity or structure B has.

When structure in B leads to structure in R (for example band R), then
both the condition numbers ||W§1ZR||2 and [|[W~1Z||2 may be estimated
more cheaply than when R has no sparsity.

The applications of this approach to [1]—[7] also lead to well-determined
equations similar to the form of (8). Whenever we meet this form it is clear
that whatever structure B has, if GG is unstructured so the vector on the
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right hand side can be chosen arbitrarily, then the above remarks on the
condition number will also hold.

But in general if the perturbation G is sparse or otherwise structured,
then we cannot usually choose G to achieve the upper bound, and the con-
dition number in a case of unstructured GG becomes an upper bound on the
condition number for the case of structured G. However the new approach
(8) to the QR factorization does generalize to the case of structured G. We
first illustrate this with an interesting and practical example where B and
G have the same sparsity. The ideas are simple, and should be easy to
apply to any similar analysis dealing with sparse or otherwise structured
perturbations, whether B is structured or not.

3.1. The QR factorization for B and G with the same structured sparsity
Suppose (2n — 2)xn B has the structure (illustrated here for n = 4)

bll
b21 b22
b32
B= , 9
bis bas )
b53
b63 b64

and that G has the same structure. Such structures arise naturally in
Kalman filtering problems, as can be seen by taking the vectors zy, yg, ug
and v to be scalars in (1), see (2). Because of the structure, R(t) in (3)
and so R(t) will be upper bidiagonal, and (7) will be tridiagonal, so we
need only include the (1, 1) element, and for j = 2,...n elements (j — 1, §)
and (7, j), in deriving the new version of (8). That is in (8) we can drop all
but row 1, and for j = 2,...n rows j(j +1)/2—1 and j(j+ 1)/2. We also
drop each column of W corresponding to elements of uvec(R) which are
necessarily zero (so we drop the same columns as rows above), and drop
each column of 7 corresponding to elements of vec(G) which are necessarily
zero.

Thus we obtain the reduced system, (“ub” denotes “upper bidiagonal”),

g11

711 921

12 922

. 799 932

Ws -ubvec(R) = Ws | 723 | = Zs | ga2 |, (10)

T33 943

734 953

T44 963
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(for the n = 4 case of course) where

11
12 711
12 Ta2
Ws = T23 T2 )
23 T33
T34 T33
T34 Ta4
b1 boy
bas  boy
bao b3z bas
Zs = bsz  bay
byz b5z bes
bss be3
bes
It follows that ”” Gl
R F —1 G F
||R||2 S ||WS ZS||2 HB||2’

(11)

and it 1s clear that the allowably nonzero elements of G may be chosen to
achieve the upper bound, so this is a condition number for this structured

problem. Here we can estimate ||W5_1Z5||2 in O(n) flops.

It can be shown via (A.3) in the Appendix that Ws_lZS is a subma-
trix of a row and column permutation of W=1Z (the proof is not trivial,
but noting Wr and Wg in (A.3) are just W = Wg and Wy here helps),
so ||W5_1Z5||2 < ||[W=1Z|]2. This suggests the new condition number
||W5_1Z5||2 is an improvement on |[W~1Z7||;. We can give simple examples

to show this improvement can be significant, for example

10-8
1 1
10-*
B= 104 10-* ’
10-*
11
W35t Zs]ls 2 1.0000,  [[W1Z||s ~ 1.4142 x 10%,

|Wr'Zrlls ~ 14142 x 10%,  V/2ks(B) ~ 2.8284 x 10*.

3.2.  Other forms of structure

We briefly indicate how to handle other structure in the perturbation G.



10 X.-W. CHANG AND C. C. PAIGE

Suppose in Section 3.1 we are interested in how changes in just one
element of B, for example b1 — boy + tv, affect R. From (10) we see
ubvec(R) = WS_1Z5627, and we not only have the easy to compute condi-
tion number ||WS_1Z5 ez||2, but we also have the rates of change for individ-
ual elements. We can handle this case for unstructured B in (5) similarly.
Such results may not be new, but it is nice to see how easily they fit into
the approach here, and take account of any structure in B too.

It is obvious how this extends to handling possible changes in any num-
ber of selected elements of B. In the structured case (10) we just eliminate
those columns of Zgs which correspond to zero elements in the g vector,
that is corresponding to unchanging (nonzero) elements of B, giving Z3,
and the new condition number is ||WS_1Zg||2.

This approach also allows us to handle element structure in GG easily.
Here is a simple illustrative example. In what is called the constant co-
efficient case in (1), Ay = Ay = .., and C; = C3 = ..., and in our
n = 4 example (9) we would have bas = byg = bgs = —1 with no error,
bi11 = bzz = bs3 = ¢ say, and by = byy = bgs = a say. If we are then only
considering changes in the coefficients @ and ¢, a meaningful G would then
have g2 = g43 = g4 = 0, g11 = g3z = gs53, and g1 = g42 = ge3. The
condition number is then ||W5_1Z5 [e1 + eq + €7,€2 + €5 + eg]||2, which is
easy to compute, even in the case of general n.

4. THE CHOLESKY FACTORIZATION

Let A € R™ " be a symmetric positive definite matrix. Then A has a
unique Cholesky factorization A = RT R, where R is an upper triangular
matrix with positive diagonal entries. If A = BT B in Sections 2 or 3, the
R here is identical to the R there.

Suppose M is symmetric and [|M ||z < omin(A), the minimum singular
value (here eigenvalue) of A. Then A 4+ tM is still symmetric positive
definite for [¢t| < 1 and has a unique Cholesky factorization

Aty = A+tM = R(t)T R(t). (12)

Here A(0) = A and R(0) = R. Write A= {%A(t)}tzo = M and R =
{£R(t)}+=0 = R(0). Differentiating (12) with respect to t at ¢ = 0 gives

A=RTR+R"R=M. (13)

It was shown in [6] (and it is straightforward to see via the argument
following (4)) that the upper triangle of (13) can be written as a linear
equation whose solution is the vector of upper triangular elements of R

Wg -uvec(R) = D -uvec(M), (14)
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where Wgr has the same form as that in (5), and

n(nt1)  n(nt1)
Rz * =z .

l\DI»—k

For a norm-based analysis, we can multiply by

D _ dlag(Q’ \/57 2’ \/— \/— 2) n(n+1) n(n2+1)
N——r a/_/

2 n

on both sides of (14), and define /WR = DWg and D = DD, to obtain

~

/WR ~uvec(R) = D -uvec(M), (15)

where ||uvec( )||2 = ||R||F and ||D uvec(M)||2 = |[|M||r. Then since
uvec(R) = WR [D uvec(M)] and [|A||]z = ||RT R||2 = || R||2, we obtain

M-
R[>~ 1Al

(16)

where .
ko(A) = [[Wg 12| Rl|2.
Since it is clear that for any symmetric positive definite A, symmetric
M # 0 can be chosen to give equality in (16), xc(A) is the condition
number (for the choice of norms in (16)) for the Cholesky factorization. In
[6] the following bounds on k¢ (A) were derived:

1 1/2 1
gl () < re(4) < —5re(4), (17)
ke(A) < inf ko(D7'R)k2(R). (18)

D>0

In proving the lower bound in (17), [|[R7!|]2 < ||W§1||2 was used, since R
is at the bottom right-hand corner of lower triangular Wgr. The expression
k2(A)/v/2 in (17) was derived in [12, 10], and was then the best of the
known estimates for the condition of the problem. It can be seen from (18)
that if the ill conditioning of R is mostly due to the bad scaling of the rows,
then correct choice of D can give k3(D~!R) very near one, and k. (A) will

be close to the lower bound %a‘;ﬂ(/l) since ka(R) = Iﬁé/?(A).

4.1.  Cholesky factorization with structured A but unstructured M

Note from the previous paragraph that for unstructured symmetric pertur-
bations M, k.(A) = ||WR [|2||R]|2 is still the condition number even if
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A 1s structured. For general A, it is unreasonably expensive to estimate
kc(A) directly, so we estimate the upper bound in (18) instead. This can
be done cheaply, and usually gives a reasonable approximation to ks (A).
But if A is structured so R is too, then the estimation of £s(A) might not
be difficult, and approximation techniques may not be necessary. We can
see this from examining the case of sparse A. It is known that R has the
same lower envelope as A, that is, if in the following diagram the lower
triangle of A has nonzero elements denoted by %, then RT can only have
nonzeros in the indicated region (envelope)

__ If A has small envelope, for example band, then R will have many zeros,
Wgr will have many more zero elements, and k¢ (A) = ||W§1||2||R||2 will be
easier to estimate.

4.2.  Cholesky factorization with structured M

If the perturbation M has a fixed structure, then uvec(M) will not be fully
general in (14), and kc(A) may no longer represent the condition number
for the factor R. A common example is where A is sparse and M has
the same envelope as A. This is true for instance if M is the equivalent
backward rounding error term resulting from finite precision computation
of the Cholesky factor, for in this case the computed factor R satisfies [8,
Thm. 10.3, p. 206]

A+ M = RTR, M| < ¢|RT||R|, e=(n+1)u/[l—(n+1)u],

where u is the unit roundoff. Since R has the same lower envelope as A,
M here has the same envelope as A.

We will show here how to derive new condition numbers in such cases.
In fact, now some elements of uvec(R) and uvec(M) in (15) are necessarily
zero, so we can drop the corresponding columns in the related matrices
n (15). Also we drop the equations that come from elements outside the

(upper) envelope in (13), to give (“E” and “env” denote “envelope”)
/WE ~uenV.Vec(R) = ﬁE -uenv.vec(M),
where we give an example to illustrate this shortly. Again, diagonal scaling
has been chosen to ensure ||Dg - uenv.vec(M)||2 = ||M||F, so that
IRl M|
IRl [1All2

< KCE(A)



SENSITIVITY OF FACTORS OF STRUCTURED MATRICES 13

Obviously the allowably nonzero elements of M may be chosen to achieve
the upper bound, so (for this choice of norms)

KCE(A) = ”I/VEl”?HRH2

is the condition number for this structured perturbation problem.
When A is tridiagonal, r;; = 0 for j > i+ 2, i.e., Wg in (14) becomes

11 1

12 | T11

12 Ta2

1
a3 | T12 Ta22
23 T33

Wr

11
12 T22
23 T33

L rnn -

If the perturbation M is also tridiagonal, then in (13), uvec(R) and uvec(M),
we see for e = 1,...,n — 2 that #;; = m;; = 0 for j > ¢ 4+ 2. Therefore in
(14),fori =3,...,nand j = 1,...,i— 2, we can discard rows %(i—l)i—}—j
of uvec(R) and uvec(M), also rows and columns %(z —1)i+ j of Wg and
D. The perturbation equation (14) then becomes (“ub” denotes “upper
bidiagonal”)

Wg - ubvec(R) = Dg - ubvec(M),
where Wg € R(27=1)x(2n=1) K55 the form

11
12 T
12 T22
T23 T22

W . ;

T23

I
—_

=

©
=

n—1n Tn-1n-1

L Tn—1,n Tnn |

Dp = diag(1/2,1,1/2,1,1/2,...,1,1/2) € R(Zr=1)x(2n=1),

and

_ T 2n—1
ubVeC(C) - [Clla 6121 6221 ctty ci—l,ia Ciia ctty Cn—l,na Cnn] E R
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for any C = (ci;) € R"*". Because of this structure in Wg, the condi-
tion number kcp(A) = ||/VI7§1||2||R||2 = ||(l~)EWE)_1||2||R||2 with Dg =
diag(2,v/2,2,v2,...,1/2,2) can be estimated in O(n) flops, and no further
approximation techniques are required.

We want to know if structure can significantly improve our measure of
sensitivity. That is, can we have kcp(A) € kc(A), meaning ||WE |2 <
||/VI7§1||2‘? We examine the tridiagonal case closely here, for if we ob-
tain no significant improvement for this very sparse and structured case,
we cannot reasonably expect significant improvement for less sparse or
structured cases. Since Wg (or Wg) is obtained by deleting the columns
and rows of Wg (or /WR) which have the same indices, we certainly have
Wzt < (IWg'2 (or ||/Wb?1||2 < ||/VI7§1||2), which suggests an improve-
ment. Also we knew ||[R7}Y|2 < ||VV1§1||27 and used this in proving the lower
bound in (17). But now we cannot say [[R7![|z < ||WL?1||2, so we might
have an even lower bound on k¢ (A) than in (17). Unfortunately, neither
improvement is significant. Let ||X||ar = max;; |2;;], then we can show
(see Appendix)

IWg = IWglw, (20)
IR lar < W5 lar, (21)
so we cannot get a much better condition number or lower bound.
In fact from (20), with WR — DWg and WE — DgpWg, we have
O )y, - n0 D)
—||W

%HWE I

INA

W5 Iz Wallz < W5 las

1
7|

(n+ 1)

22
which with |[W5|ls < [|[W5!|l2 gives

V2
n(n+1)

Wil <

KC(A) < KCE(A) < HC(A):

showing K¢z (A) cannot be very much smaller than k- (A). From (20) and
(21) we have

~ _ 1 _ _
kos(4) = (DeWe) " LlIR]l> 2 SI1Wg lwlRll: > SR sl Rl

N | —

1., T 40
SRl Rll2 = 5omy"(4),

showing that kcg(A) cannot be very much smaller than the lower bound

n (17).
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4.3. Comments on the sensitivity of the Cholesky factorization

So far our thorough analysis for the Cholesky factorization with sparse A
and M has only been for symmetric tridiagonal A and M. Since this is
among the most sparse of (irreducible positive definite) matrix forms, and
does not lead to K¢ (A) being significantly smaller than k. (A), we suspect
the same result will hold for all other band or block structures. We have not
examined this further, however the following fact would appear to be useful
in studying this, and is of practical use. When A and M are banded with
width 2p + 1, lower triangular Wg is block banded, with block bandwidth
p+ 1. Then ||W§1|| can be estimated in O(np?) flops, and so can kcz(A),
and for small enough p no further approximation will be needed.

5. CONCLUSIONS

We saw the approach used by Chang [1] for deriving exact expressions for
condition numbers of matrix factorizations can also be used to examine the
effects of structure in the matrices on these condition numbers. Broadly
we saw that there were two main effects in QR, Cholesky, and related
factorizations, see for example [1]—[7].

The first effect occurs whenever the original matrix B has some struc-
ture, for then the factors may have more than the usual structure, and
this can lead to the condition numbers being easier to estimate than for
the unstructured case. This happens because the condition numbers are
expressed in terms of the elements of the factors, and possibly of the ele-
ments of B. But if the perturbation has no structure, then the expressions
for the condition numbers do not change. In particular we looked at the
Cholesky and QR factorizations, and showed if the matrix is structured but
the perturbation is not, then the expressions for the condition numbers (see
[1, 6, 7]) are unchanged, but in the sparse case the condition numbers may
be far easier to estimate than in the full case.

The second effect occurs if the perturbation has some structure. In this
case the expressions for the condition numbers derived for unstructured
perturbations may no longer give the condition numbers of the structured
problem. We showed how to take account of element or sparsity structure,
or both, in deriving the new expressions for the condition numbers. If
the present approach is used, the comments here and the techniques we
exhibited appear to be generally applicable to the factorizations in [1]—[7]
and elsewhere.

Two important cases are where the perturbation has the same sparsity
structure as B, which can occur in examining the effects of perturbations
in the physical coefficients of some problem, or where the perturbation
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matrix has the same envelope as B, which can occur if we are examining
the effect of rounding errors in the computation of the factorization on
the factors. We showed how the new condition numbers could be derived
for such problems. In these cases the new expressions for the condition
numbers can often be estimated directly and efficiently, often obviating the
need for the approximation techniques that appear to be needed in the
full case. Then we examined the question: Could the new expressions give
greatly improved condition numbers?

For the QR factorization we gave a practical example of structure in
both the original and perturbation matrices where the value of the new
expression for the condition number was never greater than that of the old
expression, and showed with particular numbers that it could be very much
less. Thisis a very encouraging result, showing that factors of certain sparse
matrices have even better condition than we previously thought. This
pleasing result might for example extend to the accuracy of the information
matrix factor R in (2) for more general Kalman filtering problems. We
conclude that structure must be taken into account when assessing the
condition of the QR factorization.

For the Cholesky factorization we closely examined the case where both
the original and perturbation matrices were symmetric tridiagonal, and
showed that while the value of the new expression for the condition number
was always bounded above by that for the old one, the difference could
never be significant. Since this is the most sparse of (irreducible positive
definite) matrix forms, we suspect similar results will hold for the Cholesky
factorizations of all other band or block structures. Of course structure
should still be taken into account to facilitate estimating the condition.

A. Appendix

Proof of (20) and (21) in Section 4.2.
First we prove the easier (21), then use it to prove (20). The proofs use
the simple fact that for k£ > i > j > 1 the (4, j)th block of the inverse of

M,y
Ny My

Ny My
with M; nonsingular, is

(_1)i_jMz‘_1NiMi_—11Ni—1 o 'M]'_+11N7'+1Mj_1~ (A~1)
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Since R is upper bidiagonal, for i > j the (i, j)th element of R=7 is

o bis P Fare N o
(_1)2—] (ZSZ]’ ¢“ = J,i+1 i+t 42 0 Ti-l P> ¢j7 = 1’ (AQ)
T4 ' Tij  Ti+1,5+1 Ti-1,i-1 '
i JH+1Li+ :

while from (19) for n > i > j > 1 the (2i — 1,25 — 1) element of W, is
quZQ]/r“ In particular the (2i — 1,2i — 1) element of Wb?l is 1/74, so

v 2
|[R_T]zj| — |¢l]| S max{¢l]a }
Tis

= maX{HWb:l]zz—mj—l |a |[W§1]2z—1,2z—1 |}a

T

and (21) holds.

To prove (20), let R; denote the leading principal ¢ x i submatrix of
R. If we permute to the top left the rows and columns of Wg that we
previously discarded to get Wg, we can obtain

RY

T | Dr| O _ . 0

Fi - Fuo | Wg

where F; = 62i+2riyi+1eiT is (2n — 1) x i. PTWxP then has inverse

Dy' 0
_WE_IFDél | WE—l ’
so every element of Wb?l is also an element of ng, giving
W5 llar < [IWglar- (A.4)

Since each R; is a leading principal submatrix of upper triangular R, we
also have with (21) that

IDR I < IR Hlar < (W5 lar- (A.5)
Finally we examine the ith block of Wb?lFDl_%l, which is (2n — 1) x i,
WolFiRTT = Wgleaiyariiiel R7T.

Now W is lower bidiagonal, so Wb?lezi_n has elements 1,2, ...,2i+1 zero,
element 2¢ 4+ 2 is 1/rj41 i41, and for k > i+ 2

(Wi )k nign = Titli42 (Ti42,i43  Th—1k 1o Thh41 1
E 2042 =
Tit1i41  Ti42i42 Te—1k-1 Tkk Tk k

)
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where for k = 7 + 2 the squared term 1s replaced by unity. Combining this
last expression with (A.2) shows for k—2>i>j> 1

(=1 (W5 esigariipre] Ry )onj =

Tig+l  Tiklit2 (Ti42i43  Th—1k o Thkt1 1
Tjj Tit1,i41  Tid2,i42 Tk—1k-1 Tkk rk,k.
But — (Wg')ak 2i4s =
Tit2i43  Th—1k 12 Thky1 L
Tit2,i42 Th—1k-1 Tkk Tk k ’
while  — (W5 "ok 2j-1 =
[T’j,j+1 C Tiglit2o (Ti42,i43  Th—1k o Tk 1
Tii Tit1,i+1 Ti42,i+2 Th—1k—1 Thk Tk

sofork—2>i1>j5>1
-1 T p—T -1 -1
|(Wg eaitoriivie; By " ok j| < max{|(Wg )ak 2ital, [(Wg )2k,25-1]}
For the k = ¢ + 1 case we can show that for 7 > j > 1
|(Wi ' eaiporiipred Ri T )zita,l
< max{|(Wg ai+1,2j-1], [(Wg )zita,2i42l}.
Similarly we can show for £ >i>j > 1
(Wi tezitariivie] Ry )akr]
< max{|(Wg ) ars1,2i43], (W5 ) akg1,2i-11},

and so ||W§1FZ-RZ-_T||M < ||W§1||M But this result holds for all i =
1,2,...,n — 2, so ||W§1FD§1||M < ||W§1||M, which with (A.5) shows
||W§1||M < ||Wb?1||M Combining this with (A.4) proves (20).
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