
Noname manuscript No.
(will be inserted by the editor)

A Novel Approach for Ellipsoidal Outer-
Approximation of the Intersection Region of Ellipses
in the Plane

Siamak Yousefi · Xiao-Wen Chang ·
Henk Wymeersch · Benoit Champagne ·
Godfried Toussaint

Received: date / Accepted: date

Abstract In this paper, a novel technique for tight outer-approximation of
the intersection region of a finite number of ellipses in 2-dimensional (2D)
space is proposed. First, the vertices of a tight polygon that contains the
convex intersection of the ellipses are found in an efficient manner. To do
so, the intersection points of the ellipses that fall on the boundary of the
intersection region are determined, and a set of points is generated on the
elliptic arcs connecting every two neighbouring intersection points. By finding
the tangent lines to the ellipses at the extended set of points, a set of half-
planes is obtained, whose intersection forms a polygon. To find the polygon
more efficiently, the points are given an order and the intersection of the half-
planes corresponding to every two neighbouring points is calculated. If the

Funding for this work was provided in parts by research grants from the Natural Sciences
and Engineering Research Council of Canada

S. Yousefi
Department of Electrical and Computer Engineering, McGill University, Montreal, QC,
Canada
E-mail: siamak.yousefi@mail.mcgill.ca

X.-W. Chang
School of Computer Science, McGill University, Montreal, QC, Canada
E-mail: chang@cs.mcgill.ca

H. Wymeersch
Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Swe-
den
E-mail: henkw@chalmers.se

B. Champagne
Department of Electrical and Computer Engineering, McGill University, Montreal, QC,
Canada
E-mail: benoit.champagne@mcgill.ca

G. Toussaint
Computer Science Program, New York University Abu Dhabi, United Arab Emirates
E-mail: gt42@nyu.edu

2 Siamak Yousefi et al.

polygon is convex and bounded, these calculated points together with the
initially obtained intersection points will form its vertices. If the polygon is
non-convex or unbounded, we can detect this situation and then generate
additional discrete points only on the elliptical arc segment causing the issue,
and restart the algorithm to obtain a bounded and convex polygon. Finally,
the smallest area ellipse that contains the vertices of the polygon is obtained by
solving a convex optimization problem. Through numerical experiments, it is
illustrated that the proposed technique returns a tighter outer-approximation
of the intersection of multiple ellipses, compared to conventional techniques,
with only slightly higher computational cost.

Keywords Computational geometry · convex optimization · ellipsoidal outer
approximation · intersection of ellipses · intersection of half-planes · minimum
volume enclosing ellipsoid

1 Introduction

In many areas of science and engineering, such as computational geometry,
image processing, control systems, parameter estimation, and wireless com-
munications, a complex convex set needs to be represented by a simpler geo-
metric shape containing it, e.g., see in [3, 4, 8, 14–16, 19, 21, 28] and the refer-
ences therein. Among possible different shapes, ellipsoids are often considered
since they can be easily described in terms of vectors and matrices. Ellipsoids
often provide tight outer-approximations of the underlying convex sets, and
are invariant under affine transformations [15]. Therefore, ellipsoidal calculus
has gained significant attention in many different fields due to its importance
and usefulness. For instance, in control theory, ellipsoidal bounds are used to
describe the uncertainty of sets associated with state space models [17]. In
sensor network localization, ellipsoids are employed to provide constraints on
the unknown positions of sensors [9], [31].

According to [3, p.44], verifying that an ellipsoid covers the intersection
of a given number of ellipsoids is NP-complete in the space dimension, so the
problem cannot be expressed as a linear matrix inequality (LMI). As a re-
sult, finding the minimum volume ellipsoid which contains the intersection of
multiple ellipsoids may not be recast as a convex optimization problem in gen-
eral. To the authors’ knowledge, in general, there exists no practically efficient
computer code to find the optimal solution to this problem, and all the tested
proposed techniques offer sub-optimal solutions. However, it is possible that
the framework of LP-type problems might be suitable to solve this problem
optimally in theory [18]. Earlier work on this topic focused on the special case
of two ellipsoids due to its simplicity. For instance in [5], one of the ellipsoids
is approximated by a half-space, and then the problem of finding the tight-
est ellipsoid containing the intersection of a half-space and an ellipsoid can
be solved optimally. It is mentioned in [13] that the optimal ellipsoid can be
expressed as a linear convex combination of the two ellipsoids when the two

Title Suppressed Due to Excessive Length 3

have the same center. The optimization problem for searching within the con-
vex combinations of two ellipsoids is investigated in [17] and further analysis
and theoretical results are derived in [23]. For a larger number of ellipsoids,
standard convex optimization techniques can be used in order to efficiently find
an outer-approximation, as summarized in [3]. For instance, one well known
technique is to first obtain the largest ellipsoid enclosed in the intersection of
the given ellipsoids, which can be done optimally by solving a convex opti-
mization problem [2]. Then, as shown by John and Lowner (see [11] and the
references therein), upon scaling the calculated ellipsoid by the dimension of
the space, the resulting ellipsoid is guaranteed to contain the intersection re-
gion. These techniques are approximate and suboptimal, although bounding
ellipses can be obtained in polynomial time using these convex optimization
techniques. We will show this fact through simulations.

It is clear that the problem is quite challenging for arbitrary dimensions,
but for 2-dimensional (2-D) space, low-cost geometrical techniques can be de-
veloped. Recently, in the context of sensor network localization under non-line-
of-sight (NLOS) propagation, the authors in [30] proposed a 2-stage method
for tight outer-approximation of the intersection of multiple ellipses in 2-D
space, and then plugged-in their technique to the distributed bounding algo-
rithm developed in [9]. In this method, first a polygon is obtained by generating
discrete points on the boundary of each ellipse, rejecting those that fall outside
the feasible region, and then intersecting the half planes tangent to the ellipses
at those remaining points. Subsequently, the tightest ellipse that contains the
vertices of the resulting polygon is obtained by solving a convex optimization
problem [24]. This method can generally outperform existing approaches in
the literature (see [3]) in 2-D, if enough discrete points are generated on each
ellipse; however, it is always possible that the polygon becomes unbounded or
non-convex. Although this problem can be avoided by generating a large num-
ber of discrete points on each ellipse, this will render the method inefficient
when the number of ellipses is large.

In this work, we extend the work of [30] for outer-approximation of the
intersection of several ellipses in 2-D space in the following ways, such that a
tight bounded and convex polygon can be formed, and the drawbacks men-
tioned above can be avoided:

– For every elliptic arc forming the boundary of the intersection of ellipses,
we find the two end points, which are the intersection points of two or more
ellipses, and generate a desired number of points on that arc. Compared
to [30], in this way, we avoid generating unnecessary discrete points, and
thus improve the efficiency.

– The tangent lines corresponding to every two neighbouring points intersect,
leading to a new set of points. These points along with the intersection
points of the ellipses obtained earlier are used as the vertices of the possibly
bounded and convex polygon.

– The boundedness and convexity of the polygon are verified and if it is
unbounded or non-convex, the number of discrete points on the elliptic

4 Siamak Yousefi et al.

arc which causes the problem is increased. Therefore, the new method will
eventually find a bounded convex polygon containing the intersection of
ellipses.

Finally, the tightest ellipse containing the vertices of the generated polygon
is obtained by solving a convex optimization problem. Through numerical
evaluations we observe that the proposed method performs better than other
techniques in the literature, such as the ones summarized in [3], albeit with
slightly higher computational cost. Furthermore, the proposed method can
yield a tighter polygon than the method considered in [30] with similar com-
putational cost, and can avoid a non-convex or unbounded polygon.

The organization of the paper is as follows: In Section 2, background and
definitions are given, the problem is stated, and a brief summary of existing
techniques is provided. The proposed method is described in more detail in
Section 3. The performance analysis of each method in different scenarios is
evaluated numerically in Section 4. Finally, Section 5 concludes the paper.

2 Background and Problem Statement

2.1 Notation

Small and capital bold letters represent vectors and matrices, respectively.
The vector 2-norm operation is denoted by ‖ · ‖, and the matrix transpose and
inverse operations are denoted by (·)T and (·)−1, respectively. The determinant
of a matrix A is denoted by det(A). The symbol I denotes an identity matrix
of appropriate dimension. The notation A � 0 (A ≺ 0) means that A is a
positive definite (negative definite) matrix and A � 0 (A � 0) means that
the matrix is symmetric positive semi-definite (negative semi-definite) [12].
By x ∈ RM and X ∈ RM×N we mean that the vector x and matrix X are of
size M and M ×N , respectively.

2.2 Various Forms of Representing an Ellipsoid

An ellipsoid in Rν can be defined by different but equivalent forms:

– Image of the unit ball: An ellipsoid can be obtained by mapping a unit ball
as

ξ =
{
x ∈ Rν : x = Py + xc, ‖y‖ ≤ 1,y ∈ Rν

}
(1)

where without loss of generality we can assume P ∈ Rν×ν is symmetric
positive definite, see, e.g., [1]. The volume of the ellipsoid is Vνdet(P),
where Vν is the volume of the unit ball in Rν .

– Quadratic form I:

ξ =
{
x ∈ Rν : ‖Bx + d‖ ≤ 1

}
(2)

Title Suppressed Due to Excessive Length 5

where B ∈ Rν×ν and d ∈ Rν . The two sets in (1) and (2) are identical when
B = P−1 and d = −P−1xc. Herein we also assume that B is symmetric
positive definite. The volume of the ellipsoid is then Vνdet(B

−1).
– Quadratic form II:

ξ =
{
x ∈ Rν : xTAx + 2xT b + c ≤ 0

}
(3)

where A ∈ Rν×ν is symmetric positive definite, b ∈ Rν , and c ∈ R. The
sets in (2) and (3) are identical when A = BTB, b = BTd, c = dTd − 1
(so c = bTA−1b−1). When A, b and c satisfy c = bTA−1b−1, the volume

of the ellipsoid is equal to Vνdet(A
−1/2).

In this paper, by referring to an ellipsoid we mean the closed convex body
in ν-dimensions rather than just its boundary. In 2-D, i.e, when ν = 2, the
ellipsoid is referred to as an ellipse. In this work, we will be using the above
different forms of description for the same ellipse.

2.3 Problem Statement and Existing Techniques

2.3.1 Problem Statement

We denote the intersection region of the ellipses ξi = {x ∈ R2 : ‖Bix + di‖ ≤
1}, for i = {1, . . . ,M}, by

E =

M⋂
i=1

ξi, (4)

where without loss of generality we assume these ellipses are distinct. Through-
out this work, we refer to E as the feasible region, and assume that it is a
non-empty region. The problem is to find the smallest area ellipse ξ0 = {x ∈
R2 : ‖B0x + d0‖ ≤ 1} such that it contains the feasible region, i.e.,

ξ0 ⊇ E . (5)

Given ξ0, verifying that (5) holds is NP-complete, and thus finding the smallest
ellipse ξ0 such that (5) holds is not tractable [3, p.44]. However, there are some
sub-optimal solutions to find less tight ellipsoids in arbitrary dimensions, which
will be described below.

2.3.2 Popular Existing Techniques

Different techniques have been proposed for finding a sub-optimal solution
to the aforementioned problem. Below, we describe two of the most popu-
lar techniques, each of which formulates the problem as a standard convex
optimization one, which is solvable in polynomial time.

6 Siamak Yousefi et al.

i) Approximation Using the Sufficient Condition: It is shown in [3, p.44]
that by using the so called S-procedure, the sufficient condition for (5) to hold
can be expressed as a linear matrix inequality (LMI):A0 b0 0

bT0 −1 bT0
0 b0 −A0

− M∑
i=1

τi

Ai bi 0

bTi ci 0
0 0 0

 � 0, (6)

where τi for i = {1, . . . ,M} are positive unknowns to be estimated, and Ai, bi,
and ci are related to Bi and di based on the definitions given earlier in Section
2.2. Note that A0, b0, and c0 are normalized such that c0 = bT0 A

−1
0 b0−1. This

LMI is not a necessary condition for (5) to hold, and thus with (6) we cannot
characterize all the ellipses that cover the intersection of multiple ellipses.
However, among all the ellipses ξ0 with variables A0, b0 satisfying (6), one can
find the best outer approximation of the intersection region of ξ1, . . . , ξM by
solving the following semi-definite programming (SDP) problem:

min
A0,b0,τ1,...,τM

log detA−10

subject to A0 � 0, τ1, . . . , τM ≥ 0, (6)
(7)

ii) Ellipse Obtained by Expansion of the Largest Inscribed Ellipse:

Another approach [2, p.414] is to first find the maximum area ellipse ξmax =
{x : x = P 0y + xc0 , ‖y‖ ≤ 1} inscribed by the intersection of several ellipses
by solving

max
P 0,xc0

,τ1,...,τM
log detP 0

subject to

−τi − ci + bTi A
−1
i bi 0 (xc0 + A−1i bi)

T

0 τiIν P 0

xc0 + A−1i bi P 0 A−1i

 � 0,

P 0 � 0, τi ≥ 0, i = 1, . . . ,M (8)

which is a convex SDP optimization problem whose solution can be obtained
efficiently. Then as shown by John and Lowner, e.g., see [11] and the references
therein, by scaling this ellipse by a factor of ν = 2 (since we are currently
considering a 2-D space), an ellipse covering the intersection of multiple ellipses
can be obtained, see [2, p.414].

Either of the above methods can be applied to find the ellipsoidal outer
approximation of the intersection of ellipsoids with arbitrary dimensions. How-
ever, due to the approximations made, the obtained ellipses might not always
be tight (which will be shown through simulations), limiting their applicabil-
ity. In the following section, we develop a geometrical bounding method in 2-D
space, which through numerical evaluation, is shown to offer a tighter outer
approximation of the intersection of multiple ellipses.

Title Suppressed Due to Excessive Length 7

3 Proposed Bounding Ellipse Method

Our solution to the problem consist of two stages: (i) finding a tight poly-
gon, which contains E , and (ii) finding the tightest ellipse, which contains the
vertices of the obtained polygon. The second stage involves a well-known op-
timization problem, which can be solved by iterative optimization techniques,
as done in [21, 24, 25, 29]. It can also be formulated as a standard convex op-
timization problem and solved by standard optimization packages on a com-
puter [2, p. 411]. The main aim of this paper is to find a tight polygon, with a
small number of vertices, to cover E such that the smallest area ellipse which
contains the vertices of the polygon is a tighter outer-approximation of E com-
pared to the ellipses obtained by other approximation techniques mentioned in
Section 2.3.2. In the following, we describe the two main stages of our proposed
technique in more detail.

3.1 Finding a Tight Polygon Containing the Intersection of Ellipses

We divide the task of finding a polygon containing E into several steps as
follows:

Step 1 (Finding the intersection points of ellipses on the boundary of E):
First, the intersection points of the boundaries of every pair of ellipses are
found and the ones not lying in E are rejected. Finding the intersection points
of two ellipses can be done by computing the roots of a polynomial of degree 4,
as discussed in [6]. The possible number of intersection points can vary from
0 to 4, and in the special case that the two ellipses are disks, this number
could be 0, 1, or 2. If the number of intersection points is 0 or 1, then either
the two ellipses have no intersection region, or one of them is contained in the
other one. Since we assume that E is a non-empty region, one of the ellipses
has to contain the other. In this case we should remove the larger ellipse in
the process of finding a tight polygon. To this end, we generate one point on
the boundary of each ellipse randomly, and if one of these points does not
satisfy the defining inequality of the other ellipse, then the former ellipse is
the larger one. In the worst case there are 4 intersection points for every pair
of ellipses and since there are M(M − 1)/2 different pairs of ellipses, there
will be at most 2M(M − 1) intersection points to be verified. Since checking if
an intersection point satisfies the inequalities of the remaining M − 2 ellipses
takesO(M) operations,O(M3) operations are sufficient to find the intersection
points on the boundary of E . The O(M3) algorithm implemented herein is
straightforward and can easily be implemented. It is also very efficient when
the value of M is small. Theoretically faster algorithms exist that run closer
to O(M2) if the arrangement of the ellipses is computed [31]. For very large
values of M such algorithms may turn out to be useful. However, they are also
computationally involved, and it is not clear if they are useful in practice.

There is a possibility that some of the intersection points are non-distinct,
e.g., more than two ellipses intersect at exactly the same point. Note that

8 Siamak Yousefi et al.

Fig. 1: The intersection of the half-planes tangent at the intersection points of
the boundary of the ellipses forms a closed polygon.

due to rounding errors, two nearby points might also be regarded as the same
points. This does not result in error, however, the obtained polygon might be
slightly less tight if one of these points are used in the algorithm. In these
cases, we only use one of these points in our algorithm but keep the indices of
the ellipses corresponding to these intersection points. For later use, the total
number of intersection points remaining on the boundary of E is denoted by
mc.

Step 2 (Generating extra points on E): After rejecting the intersection
points not on the boundary of E , we let z(l) for l = 1, . . . ,mc be the re-
maining intersection points. We find the mean of the these intersection points
as

zmean =
1

mc

∑
l∈mc

z(l) (9)

The vectors connecting zmean to the intersection points are

v(l) = z(l) − zmean, l = 1, . . . ,mc (10)

and the angles they make with the x-axis in the Cartesian coordinates are de-
noted by α(l) ∈ [0, 2π). The vectors v(l) are then sorted according to increasing
angles. The intersection points may be used to generate a polygon covering E
as shown in Fig. 1. However, as observed, the generated polygon may not be
tight enough if only the intersection points are used. Furthermore, we might
face degeneracy problems (to be illustrated with examples) where the inter-
section of half-planes forms an unbounded polygon which can not be used as a

Title Suppressed Due to Excessive Length 9

Fig. 2: Detecting the curve connecting z(1) to z(2) in a counter-clockwise man-
ner.

finite outer-approximation of the feasible region. To overcome these problems,
we generate a number of additional points on the elliptic arc segments of E
between two neighbouring intersection points.

(a) (b)

Fig. 3: The detected arc segments and the corresponding ellipses forming E .
(a) The segment (shown with red) is detected to be from ξ1, connecting z(1)

and z(2). (b) The segment (shown with red) is from ξ2, connecting z(2) and
z(1).

10 Siamak Yousefi et al.

To do this, we need to know the ellipse corresponding to each elliptic
arc segment forming the boundary of E . Note however that as mentioned
earlier, an intersection point z(l) could be related to more than two ellipses.
Thus, in general, the two neighbouring points correspond to several different
ellipses (minimum of two different ones), among which some are common.
Obviously, the elliptic arc segment on the boundary of E that connects the
two intersection points corresponds to an ellipse, the boundary of which passes
through both neighbouring points. Thus the index of this ellipse is common
to both intersection points.

Hence we remove the indices of the ellipses that are not common to both
neighbouring intersection points, and assume that the remaining indices form
a set, temporarily denoted as P. With two or more indices left, there are
multiple elliptic arc segments that connect the two intersection points, among
which only one of them is part of the boundary of E ; thus there is an ambigu-
ity in knowing the ellipse corresponding to that arc segment. To resolve this
ambiguity and detect the correct indices, we randomly generate one point on
the boundary of each ellipse, with index k ∈ P, between the two intersection
points (in a counter-clockwise manner) and see which point satisfies all the
inequalities of the remaining ellipses, i.e., it falls inside or on the boundary
of all the ellipses, whose indices are in P. Specifically, to generate a point
randomly on each ellipse, the two neighbouring intersection points, z(lc) and
z(lc+1) where lc ∈ {1, . . . ,mc−1}, are mapped onto the boundary of unit disks
based on the equations of the corresponding ellipses, i.e., the inverse mapping
defined in (1), as

y
(1)
k = P−1k (z(lc) − xc,k) (11)

y
(2)
k = P−1k (z(lc+1) − xc,k) (12)

Assume that the two generated points on the k-th disk are denoted by y
(1)
k

and y
(2)
k and the angles corresponding to these points are denoted by θ

(1)
k and

θ
(2)
k , respectively. Now we generate one point on the arc corresponding to the

k-th disk connecting y
(1)
k and y

(2)
k and then transform this point y

(1,2)
k back

onto the k-th ellipse by means of:

z
(1,2)
k = P ky

(1,2)
k + xc,k, (13)

Then by verifying if z
(1,2)
k falls inside or on the boundary of all the remaining

ellipses with indices in P, we can determine the ellipse which is forming the
boundary of E . The actions done so far in Step 2 are summarized in Algorithm
I, lines 14-23.

The process of detecting the ellipses which form E is shown with a simple
example in Fig. 2. The two ellipses, labeled as ξ1 and ξ2, have two intersection
points z(1) and z(2), which are first ordered based on the angles the corre-
sponding vectors ν(l) (10) make with the x -axis. We start from the point with
the smallest angle, i.e., z(1) and try to find the curve connecting it to the

Title Suppressed Due to Excessive Length 11

neighbouring point with the next smallest angle, which is z(2), as shown in
Fig. 2. The two points are mapped onto the boundary of unit disks based on

the equations of each ellipse, yielding, y
(1)
1 and y

(2)
1 for the disk corresponding

to ξ1 and y
(1)
2 and y

(2)
2 for the disk corresponding to ξ2. Then a point is gen-

erated on the boundary of each disk on the arc connecting the two mapped

points in a counterclockwise manner, yielding y
(1,2)
1 and y

(1,2)
2 . The obtained

points, y
(1,2)
1 and y

(1,2)
2 are then mapped back onto the ellipse correspond-

ing to each disk, yielding z
(1,2)
1 and z

(1,2)
2 , respectively. Since z

(1,2)
1 on ξ1 is

the point which falls on E , the corresponding elliptic arc segment, shown in
red in Fig. 3-(a), is detected to be the one sought after, and ξ1 is the corre-
sponding ellipse. The same process is repeated for detecting the elliptic arc
connecting z(2) to z(1) in a counter clockwise manner, which becomes the one
corresponding to ξ2, as shown in red in Fig. 3-(b).

Suppose that the j-th ellipse remains after removing all the indices of
the irrelevant ellipses. Then the next task is to generate a number of points
on the elliptic arc segment of the j-th ellipse, between the two neighbouring
intersection points, e.g., z(lc) and z(lc+1), where lc ∈ {1, . . . ,mc−1}. To do so,
we first generate a certain number of points on the boundary of the unit disk

obtained by inverse mapping of the ellipse ξj , between the points y
(1)
j and y

(2)
j

in a counter-clockwise manner. The angles between a reference axis and the

vectors connecting these points y
(1)
j and y

(2)
j to the origin, are computed and

denoted as θ
(1)
j and θ

(2)
j , respectively. Depending on the difference between θ

(1)
j

and θ
(2)
j we can generate a number of points on the unit circle. For instance,

if in total it is desired to generate m points on each circle, the arc length
between every two points is 2π/m. Thus we may want to generate the points

y
(lj)
1,2 between y

(1)
j and y

(2)
j on the unit circle, for lj = 1, . . . , floor[(θ

(1)
j −

θ
(2)
j)m/(2π)], where floor[.] returns the largest integer not greater than

its argument. After generating the points y
(lj)
1,2 on the unit circle, they are

transformed back onto the j-th ellipse by means of

z
(lj)
j = P jy

(lj)
1,2 + xc,j , lj = 1, . . . , floor[(θ(1) − θ(2))m/(2π)] (14)

The half planes, tangent to the j-th ellipse at the corresponding generated
points are computed as follows

(Bjz
(lj)
j +dj)

T (Bjx+dj) ≤ 1, lj = 1, . . . , floor[(θ(1)−θ(2))m/(2π)] (15)

and the half planes, tangent to the j-th ellipse at the two ends of the arc
segment under consideration, i.e., z(lc) and z(lc+1) are calculated as

(Bjz
(l) + dj)

T (Bjx + dj) ≤ 1, l = lc, lc + 1 (16)

This process of generating point using mapping on to unit disk is summarized
in Algorithm I, lines 24-28.

In this way, for each arc of the feasible region connecting the two intersec-
tion points, a number of discrete points, denoted by md, are generated and

12 Siamak Yousefi et al.

the half-planes, tangent to the ellipse corresponding to that segment (e.g., j-
th ellipse) are computed. For the mc intersection points also 2mc half planes
are obtained. Therefore, in total there will be md + mc discrete points with
md + 2mc half planes corresponding to these points.

Step 3 (Intersecting the tangent lines to find the vertices of the polygon):
The intersection of the obtained md+2mc half planes usually forms a bounded
and convex polygon. One way to compute the vertices of the polygon is to use
the divide-and-conquer algorithm [22], or simplified versions thereof using the

techniques proposed in [20,27]; in which the cost isO
(

(md+mc) log(md+mc)
)

.

However, we will find the polygon more efficiently for the 2-D case as explained
below. Since E is convex and its boundary is piecewise smooth, it can be
observed that each vertex of the bounding polygon is the intersection of two
tangent lines corresponding to two neighbouring points. Thus to obtain these
vertices, we solve the linear system of equations corresponding to the two
tangent lines at two neighbouring points on each segment. Since we only need
to solve md +mc systems of linear equations (the intersection of tangent lines
at the intersection points of ellipses are already obtained), only O(md + mc)
flops are sufficient. This step is summarized in lines 24-29 of Algorithm I.

Step 4 (Detecting the degeneracy problem): Even after the above steps,
there is a possibility of degeneracy problems, i.e., the polygon formed is not
bounded or convex and does not cover E . These two situations, illustrated in
Fig. 4, are as follows:

– If the tangent lines corresponding to two neighbouring points do not inter-
sect, i.e., the two lines are parallel, the polygon will be unbounded. There-
fore, the number of points on the elliptic arc connecting two neighbouring
points needs to be increased.

– If the intersection exists but does not satisfy the remaining of the md+2mc

affine inequalities, this point can not be a vertex of the desired polygon.
Note that the desired polygon should be formed as a result of intersecting
half-planes, and if the intersection region is unbounded, a bounded convex
polygon which contains E can not be found by relying only on these half-
planes. Consequently, the tangent lines corresponding to two neighbouring
points cannot be the sides of the polygon, and thus there are no support
lines to E at these points.

Detecting the first case is simple as the intersection of two parallel lines
has no solution. To detect the second case, we find the intersection of the
tangent lines corresponding to every two neighbouring points and verify if it
satisfies all the affine inequalities corresponding to the half planes of the other
discrete points. This can be done with O(md + mc) flops as there are md +
2mc − 2 remaining affine inequalities to be verified for every obtained point.
Detecting the degeneracy can be done for each arc segment just after Step 3
is implemented for that segment. If degeneracy occurs, then we only increase
the number of points on the specific arc segment by generating floor[(θ(1) −
θ(2))(m+∆m)/(2π)] points on the unit circle and then mapping them onto the

Title Suppressed Due to Excessive Length 13

(a)

X-Axis

1
x

2
x

(b)

Fig. 4: The degenerate cases where a closed polygon can not be obtained: (a)
parallel tangent lines, (b) the intersection point does not satisfy the affine
inequalities corresponding to the other half-planes.

corresponding ellipse, where ∆m is a relatively small integer. One strategy is
to always double the value of m so it can guarantee quickly finding a number
that can avoid degeneracy.

At the end of these steps, the intersection of every pair of tangent lines
corresponding to two neighbouring points, as well as the previously obtained
intersection points of every pair of ellipses, represent the mp vertices of the
desired polygon.1

3.2 Finding the Tightest Ellipse Containing the Polygon

Assume that we have found a relatively tight polygon, represented by vertices
z̃(l) for l = 1, . . . ,mp, which covers E . Then one can find the smallest area
ellipse (minimum spanning ellipse) which contains the vertices of this polygon
(and hence contains E) as done in [21, 24, 25, 29]. This problem can also be
formulated as a standard convex optimization problem:

min
B0,d0

log detB−10

subject to ‖B0z̃
(l) + d0‖ ≤ 1, l = 1, . . . ,mp (17)

where log detB−10 is proportional to the area of the ellipse [2]. Since the in-
equalities can also be written as an LMI, this optimization problem can be

1 Note that the generated intersection points on the boundary of E, excluding the inter-
section points of ellipses, are not required to represent the polygon because they lie on its
sides.

14 Siamak Yousefi et al.

formulated as a standard SDP. If the feasible region is tightly outer-bounded
by the polygon, then it is very likely that it is tightly outer-approximated by
the bounding ellipse.

3.3 Algorithm Summary and Remarks

The proposed method is summarized in Algorithm 1. Sometimes, one is inter-
ested in obtaining a desired bounding ellipse with a certain level of tightness,
and may not know in advance how to chose an appropriate m. To make the
algorithm useful for such applications, after solving (17), we can increase the
number of points by generating one point between every two points that we
have already generated. Then we can compare the area of the updated bound-
ing ellipse with the one corresponding to the previous value of m. If their
difference is more than a predefined threshold then we continue this process.
If for the initial m, a bounded polygon cannot be formed, we increase m until a
bounded polygon is formed, and then proceed as described above. By iterating
this process, we can determine if the area of the bounding ellipse obtained by
the proposed technique has converged to some limit, and thus a possibly tight
ellipse is obtained.

4 Numerical Results

In this section, we compare the performance of different algorithms in obtain-
ing an ellipse to cover the intersection of several ellipses. To this end, we use
Matlab 2010b on a 64-bit computer with Intel i7-2600 3.4GHz processor and
12GB of RAM. The metric utilized for evaluation is the area of the bounding
ellipse aE , which based on the different formats given in Section 2.2, is equal
to aνdet(P), aνdet(B

−1), or aνdet(A
−1/2), where aν = π is the area of the

unit disk in 2D. We randomly generate M = 2, M = 3, M = 5, M = 10,
and M = 20 intersecting ellipses to see the performance of our technique in
different situations. For comparison, we solve the optimization problem in (7)
and denote this method as S-procedure. We also consider finding the ellipse
by solving (8) and then expanding it by a factor of ν = 2 to find an ellipse
covering the intersection region. This method is denoted as Expanded in the
rest of this paper. We also consider the technique proposed in [30] where a
bounding polygon is obtained in a different way than the method proposed
in this paper. However, the optimization problem in (17) is finally solved to
find the smallest area ellipse covering the polygon. This method is denoted
as YWCC16 throughout this section. For solving the optimization problems
we use Sedumi solver [26] and CVX optimization toolbox for Matlab [10]. We
compare the performance of our proposed method, denoted as Proposed, with
the aforementioned approaches.

The areas of the obtained bounding ellipses, as well as the computation
times for each method are given below for different scenarios. The Expanded

Title Suppressed Due to Excessive Length 15

Algorithm 1 Ellipse Outer-approximation

1: Set a predefined maximum iteration number kmax

2: for kIter = 1 to kmax do
3: for every pair of ellipses do
4: Find the intersection points of the ellipses.
5: if the number of intersection points is 0 or 1 then
6: Find the ellipse containing the other one and remove it from the set of inter-

secting ellipses.
7: end if
8: if the number of remaining ellipses is equal to 1 then
9: Use that ellipse as the tightest outer approximation of the feasible region.

10: End the algorithm.
11: end if
12: end for
13: Reject the intersection points not lying on the boundary of E and get z(l) for l =

1, . . . ,mc.
14: Find the mean of the intersection points and find the vector connecting the former

to the latter.
15: Find the angles between the x-axis and these vectors and sort them according to their

angles.
16: for every two neighbour points do
17: Remove the indices of the ellipses not common between two neighbouring inter-

section points.
18: if |P| ≥ 2 then
19: For each ellipse with index k ∈ P, map the points onto the corresponding unit

circle.
20: For y

(1)
k and y

(2)
k , find the angles between the reference axis and the vectors

connecting them to the centre of the unit circle, i.e., θ
(1)
k and θ

(2)
k , respectively.

21: For every pair of points, generate one point on the unit circle with angle between

θ
(1)
k and θ

(2)
k .

22: Map every point back onto the corresponding ellipse and verify if it lies on the
feasible region.

23: end if
24: Denote the remaining ellipse with index j.
25: Map the two neighbouring points z(lc) and z(lc+1) onto a unit circle through (11)

and (12).

26: Find the angles between the Cartesian axis and the vector connecting y
(1)
j and

y
(2)
j to the centre of the unit circle, i.e., θ

(1)
j and θ

(2)
j , respectively.

27: Generate floor[(θ
(1)
j − θ(2)j)m/(2π)] points on the curve between y

(1)
j and y

(2)
j .

28: Map the points back onto the ellipse and find the tangent lines to the curve at
those points.

29: Find the intersection of every two neighbouring points to obtain the vertices of the
polygon z̃(l).

30: Do the test in Step 4 to check if a degenerate case has happened.
31: if degeneracy occurs then
32: m← m+∆m and go to line (27).
33: end if
34: end for
35: end for

16 Siamak Yousefi et al.

and S-Procedure methods do not depend on m (i.e., the number of discrete
points generated on each ellipse in YWCC16 and Proposed), thus their per-
formances do not change. However, YWCC16 and Proposed depend on m and
in general the area of the obtained bounding ellipse decreases with m. We also
compare the computation time of each method for the corresponding values
of m and see which one generates a tighter ellipse with a lower computational
cost. Since evaluating the computational cost in terms of number of opera-
tions is exhaustive and difficult, we use CPU time as a metric for comparison
of computational cost.

Fig. 5-(a) illustrates the area of the obtained ellipse for the scenario of
M = 2 ellipses. As observed, the areas obtained by YWCC16 and Proposed
are slightly larger than the one obtained by S-Procedure, however by increasing
m, they can obtain a tighter ellipse compared to S-Procedure. The Expanded-
inner has the worst performance among all with area of 2.5 units. The com-
putation times of the different methods are given in Fig. 5-(b). As observed,
Proposed has similar computation time to S-Procedure and Expanded-inner,
while YWCC16 has slightly higher computational cost. Increasing the number
of initial discrete points m does not change the computation times of YWCC16
and Proposed noticeably.

In Fig. 6-(a), we compare the area obtained by different methods for the
scenario in which three ellipses intersect, i.e., M = 3. As observed, areas of
the ellipses obtained by Proposed and YWCC16 converge to the one obtained
by S-Procedure by increasing m, while Expanded has the worst performance.
The computation times of different techniques are also given in Fig. 6-(b). The
CPU time for Proposed, Expanded and S-Procedure are almost the same while
YWCC16 has higher run-time.

In Fig. 7-(a), we compare the area obtained by different methods for the
scenario in which five ellipses intersect, i.e., M = 5. Once again, Proposed
outperforms all the other techniques. YWCC16 faces degeneracy problems
with the choice of m = 4 and m = 6, however, for m ≥ 8 the area of the
obtained ellipse converges to the ones obtained by Proposed. The computation
times of different techniques are also in the same range except for YWCC16
which is higher, as shown in Fig. 7-(b). Note that Proposed obtains similar
result to YWCC16, with lower computational cost.

In Fig. 8-(a), the number of ellipses has increased to M = 10. Once again,
Proposed outperforms all the other techniques and S-Procedure has very simi-
lar performance. YWCC16 faces degeneracy problems with small m, however,
for the large values of m, i.e., m ≥ 10 it yields a bounding ellipse, which
has similar area compared to the one obtained by Proposed. The computation
times of different techniques are also in the same range, as shown in Fig. 8-
(b), while S-Procedure yields a slightly lower cost. The computational cost of
Proposed is lower than YWCC16 when similar bounding ellipses are obtained,
i.e., for m ≥ 10.

In Fig. 9-(a), the number of ellipses has increased to M = 20. Once again,
Proposed outperforms all the other techniques and YWCC16 has very similar
performance when m ≥ 10, while it faces degeneracy problems with some

Title Suppressed Due to Excessive Length 17

5 10 15 20
0

2

4

6

8

Number of generated points m

A
re

a
 o

f
e

lli
p

se

Expanded
S−Procedure
YWCC16
Proposed

(a)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of generated points m

C
P

U
 t

im
e

 [
s]

Expanded
S−Procedure
YWCC16
Proposed

(b)

Fig. 5: Numerical test for M=2: (a) Areas of bounding ellipses, (b) CPU times.

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Number of generated points m

A
re

a
 o

f
e

lli
p

se

Expanded
S−Procedure
YWCC16
Proposed

(a)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of generated points m

C
P

U
 t
im

e
 [
s]

Expanded
S−Procedure
YWCC16
Proposed

(b)

Fig. 6: Numerical test for M=3: (a) Areas of bounding ellipses, (b) CPU times.

values of m such as m = 4 and m = 8. The computation times of different
techniques are shown in Fig. 9-(b). The S-Procedure yields the lowest cost
compared to the others, while Proposed, YWCC16 and Expanded have higher
computation time. However, YWCC16 is not working properly for small value
of m. Only for larger values of m it starts yielding similar bounding ellipse.
When the number of ellipses grows, it takes O(M3) for Proposed to find the
intersection points of ellipses. Although this might seem a disadvantage of the
proposed method, the application where the intersection of very large number
of ellipses is required is very limited to the knowledge of the authors.

18 Siamak Yousefi et al.

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of generated points m

A
re

a
 o

f
e

lli
p

se

Expanded
S−Procedure
YWCC16
Proposed

(a)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of generated points m

C
P

U
 t

im
e

 [
s]

Expanded
S−Procedure
YWCC16
Proposed

(b)

Fig. 7: Numerical test for M=5: (a) Areas of bounding ellipses, (b) CPU times.

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of generated points m

A
re

a
 o

f
e

lli
p

se

Expanded
S−Procedure
YWCC16
Proposed

(a)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of generated points m

C
P

U
 t

im
e

 [
s]

Expanded
S−Procedure
YWCC16
Proposed

(b)

Fig. 8: Numerical test for M=10: (a) Areas of bounding ellipses, (b) CPU
times.

Remarks:

– From Fig. 5-(a), Fig. 6-(a), Fig. 7-(a), Fig. 8-(a), and Fig. 9-(a), we observe
that the area of the bounding ellipse obtained by YWCC16 does not always
decrease when m increases slightly. This is because some of the discrete
points that are generated on ellipse ξi that lie on the intersection region,
may not necessarily be on the intersection region when m is increased.
This situation happens mostly when m is increased by a small amount say
2 or 3. However, the area obtained by Proposed does not increase because
the number of discrete points on each arc segment of the feasible region
remains either the same or increases when m becomes larger.

– From Fig. 5-(b), Fig. 6-(b), Fig. 7-(b), Fig. 8-(b), and Fig. 9-(b), we observe
that the computation times of YWCC16 and Proposed do not necessarily
increase when m is increased slightly. The first reason is that sometimes

Title Suppressed Due to Excessive Length 19

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Number of generated points m

A
re

a
 o

f
e

lli
p

se

Expanded
S−Procedure
YWCC16
Proposed

(a)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of generated points m

C
P

U
 t
im

e
 [
s]

Expanded
S−Procedure
YWCC16
Proposed

(b)

Fig. 9: Numerical test for M=20: (a) Areas of bounding ellipses, (b) CPU
times.

when m is increased slightly, the number of remaining discrete points on
the intersection region does not necessarily increase and hence mp remains
the same; thus the optimization problem in (17) does not change. Since
the computation times of YWCC16 and Proposed are also related to the
number of constraints in (17) and this number might not change much by
a slight increase in m, it is unlikely that the computation times increase
noticeably. The second reason is that the CVX optimization packages does
not necessarily take the same amount of time to solve the same optimization
problem. This is because CVX uses an iterative interior point method that
is initialized randomly and its convergence speed might be different every
time it is utilized. The computation times of S-Procedure and Expanded
methods also show that although for different m the same optimization
problem is solved, the computation times are not exactly the same.

Although the computation cost of Proposed remained nearly constant for
a small increase in m, we will show that when m is increased by a larger
amount, the computation cost grows noticeably. The same behaviour is ob-
served for YWCC16. In Fig. 10, the computation times of the different algo-
rithms are plotted with respect to the logarithm of the number of discrete
points, i.e., log2(m). Since the other benchmark approaches do not depend
on m, their computational costs are almost fixed. As observed, for small m,
the computation times of YWCC16 and Proposed are in the same range as
those of Expanded-inner and S-Procedure. However, by increasing m further
beyond 64, YWCC16 and YWCC16 will become more computationally de-
manding due to their dependence on the number of discrete points, both in the
generation of the polygon, and in solving the optimization problem in (17).
While this increase may seem to be a weak point of the proposed method,
however, using large number of discrete points such as 1000 will be unnec-
essary for Proposed. This is because as the number of ellipses increases, the

20 Siamak Yousefi et al.

number of intersection points on E also increases and thus by only relying on
these intersection points in order to find a polygon, a tight bounding ellipse
may be obtained. Therefore, generating too many points on each arc segment
between two neighbouring intersection points might not necessarily improve
the tightness of the bounding ellipse noticeably.

2 4 6 8 10
0

1

2

3

4

log
2
(m)

C
P

U
 t
im

e
 [
s
]

Expanded
S−Procedure
YWCC16
Proposed

(a)

2 4 6 8 10
0

1

2

3

4

5

log
2
(m)

C
P

U
 t
im

e
 [
s
]

Expanded
S−Procedure
YWCC16
Proposed

(b)

2 4 6 8 10
0

1

2

3

4

5

6

7

log
2
(m)

C
P

U
 t
im

e
 [
s
]

Expanded
S−Procedure
YWCC16
Proposed

(c)

2 4 6 8 10
0

1

2

3

4

5

6

7

log
2
(m)

C
P

U
 t
im

e
 [
s
]

Expanded
S−Procedure
YWCC16
Proposed

(d)

Fig. 10: Comparison of CPU time for different algorithms as a function of
log2(m) for the three scenarios with M ellipses: (a) M = 3, (b) M = 5, (c)
M = 10, (d) M = 20.

5 Conclusion

In this paper, we developed and studied tight outer approximation of the in-
tersection region of a finite number of ellipses in 2-D space. The main idea
is to outer-approximate the feasible region by a tight polygon, and then find
the smallest area ellipse containing the vertices of the polygon. To find the
polygon, we proposed to first find a set of discrete points on the boundary of
the intersection region, and by linearizing the curves at those points find the
half planes which form the polygon. In order to generate the discrete points
on the boundary of the intersection region we first determined the intersection

Title Suppressed Due to Excessive Length 21

points, and then generated a required number of points on each segment of
the intersection region connecting the two neighbouring points. Through nu-
merical experiments, it was illustrated that the proposed method could offer
a tighter outer-approximation of the intersection of ellipses compared to the
conventional methods found in the literature with similar computational cost.
Therefore, the proposed method, i.e., Proposed, offers the best trade-off be-
tween accuracy of the outer-approximation and computational cost, and hence
will be preferred most of the time. In future work it may be worthwhile to pro-
gram the techniques developed in [18] and [7] and apply them to the problem
studied here to determine if they offer any practical advantages to the methods
empirically investigated here.

References

1. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. Society for
Industrial and Applied Mathematics (2001)

2. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New
York, NY, USA (2004)

3. Boyd, S.P., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in
system and control theory, vol. 15. SIAM (1994)

4. Chang, C.T., Gorissen, B., Melchior, S.: Fast oriented bounding box optimization on
the rotation group so(3;r). ACM Trans. Graph. 30(5), 122:1–122:16 (2011)

5. Chernousko, F.L.: Ellipsoidal bounds for sets of attainability and uncertainty in control
problems. Optimal Control Applications and Methods 3(2), 187–202 (1982)

6. Eberly, D.: Intersection of ellipses, vol. 200. Geometric Tools (2000). URL
https://www.geometrictools.com/Documentation/IntersectionOfEllipses.pdf

7. Edelsbrunner, H., Guibas, L., Pach, J., Pollack, R., Seidel, R., Sharir, M.: Arrangements
of curves in the planetopology, combinatorics, and algorithms. Theoretical Computer
Science 92(2), 319–336 (1992)

8. Freeman, H., Shapira, R.: Determining the minimum-area encasing rectangle for an
arbitrary closed curve. Commun. ACM 18(7), 409–413 (1975)

9. Gholami, M., Wymeersch, H., Gezici, S., Strom, E.: Distributed bounding of feasible sets
in cooperative wireless network positioning. IEEE Commun. Letters 17(8), 1596–1599
(2013)

10. Grant, M., Boyd, S., Ye, Y.: CVX: Matlab software for disciplined convex programming,
version 2.1 (2014)

11. Henk, M.: Löwner–John ellipsoids. Documenta Math. pp. 95–106 (2012)
12. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (1990)
13. Kahan, W.: Circumscribing an ellipsoid about the intersection of two ellipsoids. Can.

Math. Bull 11(3), 437–441 (1968)
14. Klee, V., Laskowski, M.C.: Finding the smallest triangles containing a given convex

polygon. Journal of Algorithms 6(3), 359 – 375 (1985)
15. Kurzhanski, A., Valyi, I.: Ellipsoidal Calculus for Estimation and Control. Springer

(1994)
16. Lahanas, M., Kemmerer, T., Milickovic, N., Karouzakis, K., Baltas, D., Zamboglou, N.:

Optimized bounding boxes for three-dimensional treatment planning in brachytherapy.
Medical Physics 27(10), 2333–2342 (2000)

17. Maksarov, D., Norton, J.: State bounding with ellipsoidal set description of the uncer-
tainty. International Journal of Control 65(5), 847–866 (1996)

18. Matousek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming.
Algorithmica 16(4-5), 498–516 (1996)

19. O’Rourke, J.: Finding minimal enclosing boxes. International Journal of Computer and
Information Sciences 14(3), 183–199 (1985)

22 Siamak Yousefi et al.

20. O’Rourke, J., Chien, C.B., Olson, T., Naddor, D.: A new linear algorithm for intersecting
convex polygons. Computer Graphics and Image Processing 19(4), 384 – 391 (1982)

21. Post, M.J.: A minimum spanning ellipse algorithm. In: 22nd Annual Symposium on
Foundations of Computer Science, pp. 115–122 (1981)

22. Preparata, F., Muller, D.: Finding the intersection of n half-spaces in time o(n log n).
Theoretical Computer Science 8(1), 45 – 55 (1979)

23. Ros, L., Sabater, A., Thomas, F.: An ellipsoidal calculus based on propagation and
fusion. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics 32(4),
430–442 (2002)

24. Shor, N.Z., Berezovski, O.: New algorithms for constructing optimal circumscribed and
inscribed ellipsoids. Optimization Methods and Software 1(4), 283–299 (1992)

25. Silverman, B.W., Titterington, D.M.: Minimum covering ellipses. SIAM Journal on
Scientific and Statistical Computing 1(4), 401–409 (1980)

26. Strum, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones
(1998)

27. Toussaint, G.: A simple linear algorithm for intersecting convex polygons. The Visual
Computer 1(2), 118–123 (1985)

28. Toussaint, G.: Applications of the rotating calipers to geometric problems in two and
three dimensions. International Journal of Digital Information and Wireless Communi-
cations (IJDIWC) 4(3), 372–386 (2014)

29. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Results and New Trends
in Computer Science, pp. 359–370. Springer-Verlag (1991)

30. Yousefi, S., Wymeersch, H., Chang, X., Champagne, B.: Tight 2-dimensional outer-
approximation of feasible sets in wireless sensor networks. IEEE Communication Letters
20(3), 570–573 (2016)

31. Zhang, J., Sastary, S.: Distributed position etimation for sensor networks. In: Proc.
15th Triennial World Congress, Barcelona, Spain (2002)

