
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

OPTIMIZING TIME WARP SIMULATION WITH REINFORCEMENT LEARNING TECHNIQUES

Jun Wang
Carl Tropper

School of Computer Science
3480 University Street, Room 318

McGill University
Montreal, QC H3A 2A7, CANADA

ABSTRACT

Adaptive Time Warp protocols in the literature are usually
based on a pre-defined analytic model of the system, ex-
pressed as a closed form function that maps system state to
control parameter. The underlying assumption is that this
model itself is optimal. In this paper we present a new ap-
proach that utilizes Reinforcement Learning techniques, also
known as simulation-based dynamic programming. Instead
of assuming an optimal control strategy, the very goal of Re-
inforcement Learning is to find the optimal strategy through
simulation. A value function that captures the history of
system feedbacks is used, and no prior knowledge of the
system is required. Our reinforcement learning techniques
were implemented in a distributed VLSI simulator with the
objective of finding the optimal size of a bounded time
window. Our experiments using two benchmark circuits
indicated that it was successful in doing so.

1 INTRODUCTION

Two major classes of synchronization protocols have been
developed for distributed simulation. In a conservative
protocol, a logical process (LP) executes the next scheduled
event only when it is safe to do so. Waiting for an assurance
of safety means that the LPs have to either block for some
period of time or send synchronization information to each
other, thereby incurring extra overhead. The most well-
known optimistic protocol, Time Warp, does the opposite.
In Time Warp, an LP always assumes it is safe to execute
the next scheduled event. If the assumption turns out to be
incorrect, the LP must undo all computations subsequent to
the mistake and roll back to a previous state. While Time
Warp has the potential of making better use of the system’s
parallelism, it is well known that over-optimism can lead
to instability. In the worst case, the LPs spend most of
their time rolling one another back, making it impossible

for the simulation to progress (Lubachevsky, Shwartz, and
Weiss 1991). Another major problem with Time Warp is
its memory consumption due to the need to save the states
of LPs as well as the events.

From the efforts to address the above problems a class
of hybrid protocols have emerged, which either impart op-
timism to conservative protocols or limit the optimism of
optimistic protocols (Das 2000). In this paper we are only
concerned with adaptive Time Warp. As defined in Reynolds
(1988), an adaptive protocol modifies its behavior dynam-
ically in response to changes in the simulation process.
In other words, an adaptive protocol dynamically adjusts
certain control parameter(s) of the simulation in order to
achieve the best performance possible. In adaptive Time
Warp the control parameter is usually based on an analytic
model and is expressed as a closed-form function of system
state measurements. The goal of the adaptive protocol is
usually to reduce excessive rollbacks. The underlying as-
sumption is that this mapping from system state to control
parameter is optimal.

In this paper, we present an approach to determining
the optimal control parameter(s) for a Time Warp simulator
that is based on techniques of Reinforcement Learning (RL),
an area of Machine Learning. The most important factor
that makes Reinforcement Learning an attractive method
to optimizing Time Warp is that it requires no analytic
model of the system. The control parameter is not a pre-
defined function of simulation state. Rather, it is determined
from simulation experience. In other words, instead of
assuming an optimal control strategy, we attempt to acquire
one through learning. Another important factor is that
these techniques have very low implementation and run-time
overhead. Although Reinforcement Learning techniques
have been used in parallel computation, most notably in
solving load balancing problems (Parent, Verbeeck, and
Lemeire 2002, Schaerf, Shoham, and Tennenholtz 1995),
to our knowledge, it has not been used in Time Warp.

5771-4244-1306-0/07/$25.00 ©2007 IEEE

Wang and Tropper

The rest of the paper is organized as follows. Section 2
provides background information on adaptive Time Warp.
Section 3 gives an overview of Reinforcement Learning.
In section 4 we discuss how Reinforcement Learning tech-
niques are used in our adaptive Time Warp protocol. In
section 5 we present test results for our distributed VLSI
simulator on some benchmark circuits and our analysis of
the results. Finally, section 6 contains our conclusions.

2 ADAPTIVE TIME WARP

It is well known that Time Warp is prone to an excessive
usage of memory and an explosive growth in the number of
rollbacks. Excessive memory usage can cause performance
degradation in virtual memory systems, and uncontrolled
rollbacks can become dominant in the simulation process
and even cause system deadlock in the most extreme cases.

An obvious solution to this problem is to limit opti-
mism. For example, an early protocol called Moving Time
Window (MTW) (Sokol, Briscoe, and Wieland 1988) con-
trols optimism by only allowing events whose timestamps
are within a certain window to be executed optimistically.
The window size, however, is determined in advance and
remains constant throughout the simulation. Obviously, the
difficulty is to statically determine an appropriate window
size before the simulation.

Adaptive Time Warp protocols go one step further.
Instead of using a pre-determined constant value for the
control parameter(s), they adjust the control parameters dy-
namically based on ”knowledge of selected aspects of the
state of the simulation” (Reynolds 1988). Not surprisingly,
most adaptive protocols choose to control memory usage
or use a time window which blocks overly optimistic ex-
ecutions. For example, in Panesar and Fujimoto (1997)
optimism is controlled by adjusting the size of a window
that defines an upper bound on the number of uncommitted
events an LP can schedule; in Palaniswamy and Wilsey
(1993) a moving bounded time window is defined such that
only events scheduled within the window can be optimisti-
cally executed. Das (2000) provides a survey of the adaptive
Time Warp protocols.

While the adaptive protocols have all been shown to
outperform pure Time Warp in some applications, we feel
that there are some drawback to their use.

The first problem is the use of analytic models for
the control parameters. The value of a control parameter
c is expressed as a closed form function of a vector ~S of
some system state variables using a pre-determined model:
c = f (~S). For example, the window in Panesar and Fujimoto
(1997) is based on a queuing model; the checkpoint interval
in Lin et al. (1993) is defined as a function of parameters such
as state-saving time and event execution time. Obviously,
the quality of the protocols is heavily dependent on the
quality of the model. Because of the simplifications which

are necessary to make in the course of developing such a
model, the control strategy is not certain to be optimal. (A
notable exception to using an analytic model is the adaptive
protocol proposed by Ferscha (1995), where the control
element of the system tries to build a statistical model of
the system from simulation experience.)

Another drawback, and probably the most common
one, is the lack of evaluation of the effectiveness of the
control mechanism. The control function is assumed to be
optimal. In RL parlance, a policy is determined in advance,
but its effectiveness is not evaluated. A typical example
is an adaptive protocol that tries to control rollbacks by
forcing an LP to block for a short period of time based on
its current local time and the global virtual time (GVT).
The protocol calculates an amount of blocking time at an
LP using a pre-defined function and blocks the LP in hope
of controlling rollbacks. It never measures whether the
blocking is effective. Worse yet, there is the danger of
pursuing subgoals such as reducing the number of rollbacks
while ignoring the real goal, which is to minimize simulation
time.

The RL techniques we present in this paper do not
require a pre-determined model. In fact, RL is known as
a model-free approach. We do not assume any knowledge
of what value the control parameter should assume in a
system state, because that is exactly the knowledge we try
to acquire. In other words, we try to optimize the system
performance p as a function of the control parameter c and
system state ~S without the closed form of a function.

3 REINFORCEMENT LEARNING

This section gives an overview of reinforcement learning
(RL). For a more in-depth introduction, the reader is re-
ferred to Gosavi (2003), Sutton and Barto (1998), Kaelbling,
Littman, and Moore (1996).

3.1 Definitions

Artificial Intelligence studies the interactions between a
rational agent and its environment. An environment is
represented by a set of states which an agent can perceive
and take actions to change. Learning, ”allows the agent to
operate in initially unknown environments and to become
more competent than its initial knowledge alone might allow”
(Russell and Norvig 2003).

Reinforcement Learning, as defined in Sutton and Barto
(1998), is ”learning what to do–how to map situations to
actions–so as to maximize a numerical reward signal”. This
definition describes three aspects of RL: what the agent tries
to learn is what action to take in each state, the means of
learning is through the reward signal, and the objective of
learning is to maximize the rewards received.

578

Wang and Tropper

More formally, we define an RL system as a five-
tuple: {S,A,π,RF,V F}, where S is a set of states of the
environment, A is a set of actions the agent can take, and
the other three elements are policy, reward function, and
value function, respectively.

A policy is a mapping from a state of the environment
to an action to be taken by the agent. In other words, the
policy dictates the behavior of the agent. The purpose of
learning is to find an optimal policy. In general, a policy
is stochastic.

A reward function is a mapping from the state or state-
action pair of the environment to a numerical value called a
reward signal, which is an indication of the desirability of the
state or state-action pair. Given the central role of reward in
an RL system, care must be taken to ensure that the reward
function reflects what the system is designed to achieve as
opposed to achieving a subgoal. For example, in a Time
Warp simulator if we give a reward for reducing the number
of rollbacks instead of for decreasing the execution time, the
simulation could end up behaving in a conservative manner
with very few rollbacks at the expense of a big simulation
time.

A closely related concept is that of a return. If the se-
quence of rewards received after step t is rt+1,rt+2,rt+3, . . . ,
then the return from step t onward is:

Rt = rt+1 + γrt+2 + γ
2rt+3 + . . .

where γ is a number, 0 ≤ γ ≤ 1, called the discount rate.
The purpose of the discount rate is twofold. First, it gives
more weight to recent rewards than to future rewards in
the determination of the current return. Second, it makes it
possible to have a single definition of return for both episodic
tasks, where the task breaks naturally into subsequences with
a final state (such as playing chess), and continuing tasks
with a long life span. The goal of an RL agent is to take
actions to maximize expected return.

A value function of a given policy defines the expected
return an RL agent can receive. There are two value functions
of particular interest. The state-value function of a state s
under a policy π is defined as

V π(s) = Eπ{Rt |st = s}= Eπ

{ ∞

∑
k=0

γ
krt+k+1|st = s}.

This is the expected return under the policy π starting
from state s.

The action-value function of taking an action a in a
state s is defined as

Qπ(s,a) = Eπ{Rt |st = s,at = a}
= Eπ

{
∑

∞
k=0 γkrt+k+1|st = s,at = a}.

This is the expected return under policy π , starting
from taking action a in state s.

3.2 Solution Methods

We now turn to the methods used in solving an RL problem.
RL has its roots in dynamic programming (DP). If the
probability of reward and state transition is known, then
the optimal policy can be uniquely determined with DP
methods. RL is model-free, meaning we do not have any
initial knowledge of the system, and we essentially try to
find the optimal policy through statistical sampling. That is
why RL is also referred to as simulation-based DP (Gosavi
2003). Here we shall only discuss two RL methods.

3.2.1 N-armed Bandit Method for Non-associated
Problems

The simplest Reinforcement Learning problem is the non-
associated problem, also referred to as single-state problem
(Kaelbling, Littman, and Moore 1996), in which the en-
vironment has only one state. A classic example is the
n-armed bandit problem in which the agent is repeatedly
faced with the problem of choosing one of the n levers of a
slot machine. Pulling each lever results in different payoffs
(rewards) and the rewards are stochastic. The agent’s goal
is to acquire the maximum long term reward.

In the n-armed bandit problem, each lever (action) has
an expected reward, i.e., the value of the action. Since the
agent doesn’t know the value of the actions in advance, a
straightforward solution is to use the running average of
the rewards for each action as an estimate of the action’s
value. Using the action-value function, when a state-action
pair is selected for the (k +1)st time, the value is updated
as:

Qk+1 =
1

k +1

k+1

∑
i=1

ri = Qk +
1

k +1
(rk+1−Qk), (1)

where rk+1 is the reward after the (k+1)st selection of the
action.

This is one form of the so-called updating rule exten-
sively used in RL. The general form is as follows:

NewEstimate = OldEstimate+
StepSize(Target−OldEstimate).

Hereinafter we shall refer to the RL method that uses (1)
as the updating rule as the Bandit Method.

An important issue here is the tradeoff between ex-
ploitation and exploration. At any point in the process,
there is at least one action whose estimated value is the
best. This action is called the greedy action. Exploitation

579

Wang and Tropper

means taking the greedy action. A greedy method is one
that always exploits. Exploration means taking an action
other than the greedy action. The purpose of exploration
is to discover other actions that might be better than the
greedy action.

The ε-greedy method is one that performs both ex-
ploitation and exploration. With probability 1− ε , where
ε is a small positive number, it takes the greedy action,
i.e., it exploits, and with probability ε it selects an action
randomly. Experiments have shown that in general the
ε-greedy method outperforms the greedy method for the
n-armed bandit problem (Sutton and Barto 1998).

3.2.2 Q-learning

For problems with more than one state, we need to find out
which action is the best for each state in order to maximize
expected return. The solution method is referred to as policy
iteration, which conceptually consists of repeated execution
of two tasks: policy evaluation and policy improvement, as
follows:

π0
E→V π0 I→ π1

E→V π1 I→ π2
E→ . . .

where E→ represents policy evaluation and I→ policy im-
provement. Policy evaluation computes the value functions
V πi under the policy πi. If the model of the environment
is not available, then the evaluation is based on estimates.
Policy improvement then refines the policy based on the
value functions. This is usually done in a greedy way, i.e.,
the policy is modified such that the action taken in a state
is the one with the greatest value at the moment.

Strictly separating policy evaluation and policy improve-
ment can lead to very extensive computations. Therefore,
Reinforcement Learning methods usually combine the two
tasks for faster convergence.

Q-learning is one of the Time Difference (TD) methods,
so named because the reward and the value of the current
state are used to improve the estimate for the previous state.
Q-learning can be expressed as follows:

Q(st ,at)← (1−α)Q(st ,at)
+α[rt+1 + γ max

a
Q(st+1,a)], (2)

where α is a small number (usually 0.1 or smaller) called
the learning step, and γ is the discount rate. Essentially,
the estimate for Q(st ,at), the value of the state-action pair
at time t is updated using the best estimated value of the
next state. In Figure 1 we show the Q-learning algorithm
adopted from Sutton and Barto (1998). It should be noted
that for the values to converge it is essential to ensure
each state-action pair is visited enough times. This means
some sort of exploration, for instance, using the ε-greedy

method, has to be performed. Also, Q-learning can be
applied even if there is only one state. For example, the
learning method in Parent, Verbeeck, and Lemeire (2002)
is one-state Q-learning.

Initialize Q(s,a) arbitrarily
Repeat for each episode

Initialize s
Repeat for each step

Choose a from s using policy derived
from Q (e.g., ε-greedy)

Take action a, observe r, s′

Q(st ,at)← (1−α)Q(st ,at)+
α[rt+1 + γ maxa Q(st+1,a)]

s← s′

Figure 1: The Q-learning algorithm.

4 REINFORCEMENT LEARNING IN
OPTIMIZING TIME WARP

Adaptive Time Warp is essentially a problem of optimal
control of a stochastic process. As discussed above, the
environment in an RL problem is usually stochastic and
finding an optimal policy in such an environment can be
regarded as an optimal control problem. This is basically
the motivation for us to apply RL techniques to adaptive
Time Warp.

It should be clear from the above discussion, that from
the Machine Learning point of view, previous adaptive Time
Warp protocols essentially adopt a pre-defined fixed policy,
this is the key difference from the RL approach.

In summary, the RL approach has the following features:

• RL doesn’t require an analytic or statistic model
for the control parameters. In fact, RL requires
no knowledge of the environment at all. The very
point is to find the optimal policy.

• From control-theoretical viewpoint, RL control is
closed-loop. By definition, RL is based on feedback
from the environment. In fact, it does not just use
the most recent feed-back; it essentially uses the
whole history of feedbacks.

• The implementation and run-time overhead is low.
The computation involved in updating the value
functions or selecting the greedy action is minimal.

4.1 The Algorithms

To formulate optimizing Time Warp as an RL problem, we
must answer the following questions.

• How many agents should there be?
• What is the control parameter?

580

Wang and Tropper

• How do we define the reward function?
• Which RL algorithm do we use?

4.1.1 Single-agent vs. Multi-agent

Depending on the choice of control parameter, optimizing
Time Warp can be formulated as a single-agent or multi-
agent RL problem. If all of the nodes (a node is a group
of one or more LPs running on a single CPU) always share
the parameter, then there should only be one agent. On the
other hand, if all of the nodes can have different values of
the parameter at the same time, then multiple agents can
be used.

Obviously, the multi-agent setting is much more com-
plex than that of the single-agent, because each agent’s
learning process is affected by other agents, and usually
some sort of coordination among the agents is required for
the learning to be effective (Panait and Luke 2005).

So far in our research we have only implemented the
simplest case in which there is only one agent and the
system has only one state. We leave other more complex
cases for future work.

4.1.2 Control Parameter

The control parameter we choose for our optimizing
Time Warp is a bounded time window, similar to that in
Palaniswamy and Wilsey (1993). The window size, W , to-
gether with the last GVT defines a limit for event execution.
No events scheduled beyond GV T +W are allowed to be
executed. If the next scheduled event of an LP is beyond
the window, then the LP must block. When blocked, an LP
can still receive messages, but it cannot send any messages
except for messages involved in GVT computation. When
the GVT is updated, the window is moved forward, allowing
blocked LPs to unblock if their next scheduled event falls
inside of the updated window.

The purpose of the window is to control the optimism
of the LPs. It prevents an LP from going too far ahead in
virtual time, thereby reducing the risk of long rollbacks.

After deciding what parameter to control, we need to
connect the parameter to the agent’s actions. A straightfor-
ward design is for each action to represent a certain size
of the window. We define an incremental unit, U , for the
window, such that the window size is always a multiple of
U . Then, each action a, 1≤ a≤N, corresponds to adopting
a window size of a∗U .

The window size is updated right after each GVT
computation. When the new GVT is obtained, all nodes
send their state measurements to a single pre-designated
node, which also hosts the RL agent. Based on the combined
data, a new window size is determined by the agent and
broadcast to all nodes.

4.1.3 Reward

The reward is the most important element in an RL system.
As mentioned above, the reward should directly reflect the
goal of the system. For optimizing Time Warp, since the
ultimate goal is to reduce the elapsed wall-clock time of
the simulation, the reward should be directly related to the
speed of the simulation.

Let GV Ti denote the i-th GVT, ti denote the wall-clock
time when GV Ti is computed, and ECi denote the number
of events committed at GV Ti, We define the event commit
rate (ECR) for the i-th GVT interval (the interval from
GV Ti−1 to GV Ti) as

ECRi = ECi/(ti− ti−1).

We use ECRi as the measurement of the simulation speed
during the i-th GVT interval.

To define reward, we define a reference event commit
rate, ECRre f , which is the average event committing rate
of a period in the very beginning of the simulation with the
window size set to its maximal value:

ECRre f = (
D

∑
i=1

ECi)/(tD− t0),

where D is a small number(a value of 10 has shown to be
good enough). In words, ECRre f is the average number of
committed events in the D GVT intervals at the beginning
of the simulation.

The reward for the i-th GVT period is then defined as

ri = ECRi−ECRre f .

Therefore, a positive reward is given if the simulation is
progressing faster than the reference rate in the most recent
GVT period, otherwise, a negative reward (or punishment)
is given. This way, the speed of the simulation is directly
reflected in the reward signal.

4.1.4 The Bandit Method

It is easy to see that in the single-agent setting the adaptive
Time Warp control problem as described is quite similar
to the n-armed bandit problem. The system has only one
state, and each of the N values for the control parameter
corresponds to an action the learning agent can take.

As in the n-armed bandit problem, we keep a running
average of the rewards received for each action. After the
initial period in which ECRre f is established, the reward is
calculated after each GVT computation, and the reward is
used to update the running average for the action that was
taken. Two arrays are used, V [1..N] that records the current
value of each action, that is, the average reward for each

581

Wang and Tropper

action, and K[1..N] records how many times each action
has been taken. When an action a is taken and the reward
obtained is r, the value V [a] is updated using (1) as follows:

V [a] = (V [a]∗K[a]+ r)/(K[a]+1)
= V [a]+ 1

K[a]+1 (r−V [a])

After each GVT computation, we pick a new value
for the window size. Most of the time, we pick the one
with the largest average reward, but with probability ε , we
randomly pick a value from the N possible choices.

4.1.5 Q-learning

Currently in our implementation of Q-learning we only
define one state for the system. One possible extension to
multi-state is to define the states based on the difference
between ECRi and ECRre f .

Using the formula in (2), after each GVT computation
we compute the reward and update the value for the current
state-action pair, Q(s,a), using the best value of the new
state st+1 (since there is only one state, the new state is the
same as old state). To ensure a good estimate for all of the
state-action pairs, we need to allow each state-action pair
to be selected enough times, and therefore again use the
ε-greedy approach when selecting an action.

5 EXPERIMENTAL RESULTS

In this section we present test results of a distributed VLSI
simulator on two benchmark circuits. The simulator is a
Time Warp simulator with no optimizations. Aggressive
cancellation is used for rollbacks.

For the bounded time window, we use the clock period
as the incremental unit. The agent’s action a can have a
value between 1 and 8, corresponding to setting the window
size to a times the clock period.

We have implemented both the Bandit method and Q-
learning. The value of ε used for both cases was 0.1, and
for Q-learning, γ was set to 0.9. The test circuits used were
the two largest sequential circuits from the ISCAS-89 suite,
with about 23,000 gates apiece. In the simulator each gate
is represented by an LP.

We conducted all of the experiments on a network with
4 AMD Athlon 64 computers running the Linux operating
system. The computers were connected by a fast Ethernet
switch. MPICH was the underlying message system. Each
circuit was given enough random test vectors for them to
run for about 15 minutes.

Table 1 shows the simulation time of the two algorithms,
and the speedup compared to the simulation time of pure
Time Warp. Each of the simulation times was the average of
5 simulation runs. For both circuits, by using RL techniques
to control the size of the bounded window we reduced the

Table 1: Running time in seconds.
Circuits s38417 s38584

TW 959.17 1144.68
Bandit 808.07 15.8% 950.92 16.9%

Q-learning 823.73 14.1% 987.17 13.8%

Table 2: Action selection with Bandit method.
Action s38417 s38584

1 5068 82.89% 3983 78.46%
2 369 6.03% 686 13.52%
3 230 3.76% 73 1.44%
4 129 2.11% 86 1.68%
5 66 1.08% 58 1.13%
6 86 1.41% 66 1.30%
7 88 1.43% 62 1.22%
8 79 1.29% 63 1.24%

Table 3: State-action selection with Q-learning.
S-A s38417 s38584
0-1 4244 77.18% 2798 66.49%
0-2 404 7.35% 721 17.13%
0-3 238 4.32% 178 4.24%
0-4 174 3.16% 129 3.07%
0-5 111 2.02% 83 1.97%
0-6 117 2.12% 99 2.36%
0-7 115 2.09% 101 2.40%
0-8 96 1.75% 98 2.33%

simulation time by about 15%, when compared with Time
Warp.

Table 2 displays the number of times each action was
selected using the single-state Bandit method, and the cor-
responding percentage. For s38417, action 1 was selected
almost 83% of the time. From our results, this was the
optimal action. The other actions were selected due to ex-
ploration with the ε-greedy method. For s38584, it seems
that action 1 was optimal as well.

In Table 3 we show the number of times each state-
action(S-A) pair was selected when Q-learning was used.
Compared with the data in Table 2, it appears that Q-learning
does slightly more exploration.

As action 1 was optimal for both circuits, we carried
out experiments to find out the average ECR for action 1 by
forcing the agent to always choose action 1. The results are
0.06527 and 0.06547 for s38417 and s38584 respectively.
Figures 2 and 3 show the running average of ECR for
both circuits. The average ECR converges to about 0.0625.
This means that if we gradually reduce exploration, we can
expect a further improvement of about 3% to 5%.

582

Wang and Tropper

0 1000 2000 3000 4000
0.048

0.05

0.052

0.054

0.056

0.058

0.06

0.062

0.064

Number of GVTs

R
un

ni
ng

 a
ve

ra
ge

 o
f E

C
R

Bandit

Q−learning

Figure 2: Average ECR with s38417.

0 500 1000 1500 2000 2500 3000
0.046

0.048

0.05

0.052

0.054

0.056

0.058

0.06

0.062

0.064

Number of GVTs

R
un

ni
ng

 a
ve

ra
ge

 o
f E

C
R

Q−learning

Bandit

Figure 3: Average ECR with s38584.

6 CONCLUSIONS

Control techniques for adaptive Time Warp are often based
on an analytic model and express the control parameter
as a function of some system parameters, making their
effectiveness highly dependent on the quality of the model.
It is assumed that this pre-defined function provides optimal
mapping from system state to the value of control parameter.

In this paper we have presented an alternative approach
based on Reinforcement Learning techniques. Compared
with other techniques, the RL methods require no model of
the system at all. Instead of assuming an optimal control
function, the very point of RL methods is to acquire one
through learning. The agent has no knowledge of the system
or of the control parameter it is supposed to tune. With
the help of the reward signal, it learns how to behave in an
optimal manner while the simulation executes. Feedback
from the system is used not only as input to the mapping
to the control parameter, but also in determining an opti-
mal mapping. Furthermore, each action is taken based on
the value function which encapsulates the whole history of
feedbacks. Making use of Bounded Time Warp, we es-

tablished that the agent could find the optimal window for
simulations of two large logic circuits from the ISCAS89
benchmark suite.

For our future work, we intend to apply the RL tech-
niques to other optimization problems for Time Warp. We
also intend to explore ways in which to reduce the learning
overhead. Yet another challenge is to solve the problem in
a multi-agent setting.

REFERENCES

Das, S. 2000, April. Adaptive protocols for parallel discrete
event simulation. Journal of the operational research
society (JORS) 51 (4): 385–394.

Ferscha, A. 1995, July. Probabilistic adaptive direct opti-
mism control in time warp. Proceedings of the ninth
workshop on Parallel and distributed simulation:120–
129.

Gosavi, A. 2003. Simulation-based optimization: paramet-
ric optimization techniques and reinforcement learning.
Kluwer Academic Publishers.

Kaelbling, L., M. Littman, and A. Moore. 1996. Reinforce-
ment learning: a survey. Journal of artificial intelligence
research 4:237–285.

Lin, Y., B. Preiss, W. Loucks, and E. Lazowska. 1993,
May. Selecting the checkpoint interval in time warp
simulation. Proceedings of the seventh workshop on
Parallel and distributed simulation:3–10.

Lubachevsky, B., A. Shwartz, and A. Weiss. 1991, April. An
analysis of rollback-based simulation. ACM transaction
on modeling and computer simulation 1 (2): 154–193.

Palaniswamy, A., and P. Wilsey. 1993, March. Adaptive
bounded time windows in an optimistically synchro-
nized simulator. Great lakes VLSI conference:114–118.

Panait, L., and S. Luke. 2005, November. Cooperative multi-
agent learning: the state of the art. Autonomous Agents
and Multi-agent Systems 11 (3): 387–434.

Panesar, K., and R. Fujimoto. 1997. Adaptive flow control
in time warp. Proceedings of the 11th workshop on
parallel and distributed simulation:108–115.

Parent, J., K. Verbeeck, and J. Lemeire. 2002. Adaptive load
balancing of parallel applications with reinforcement
learning on heterogeneous networks. Proceedings of
international symposium DCABES.

Reynolds, P. 1988. A spectrum of options for paralle simu-
lation. Proceedings of the 1988 winter simulation con-
ference:325–332.

Russell, S., and P. Norvig. 2003. Artificial intelligence: a
modern approach. Prentice Hall.

Schaerf, A., Y. Shoham, and M. Tennenholtz. 1995. Adaptive
load balancing: a study in multi-agent learning. Journal
of artificial intelligence research 2:475–500.

Sokol, L., D. Briscoe, and A. Wieland. 1988, July. Mtw:
a strategy fo scheduling discrete simulation events for

583

Wang and Tropper

concurrent execution. Proceedings of the SCS multi-
conference on distributed simulation 19 (3): 34–42.

Sutton, R., and A. G. Barto. 1998. Reinforcement learning:
an introduction. The MIT Press.

AUTHOR BIOGRAPHIES

JUN WANG is currently a PHD candidate in the School
of Computer Science at McGill University, where he has
been working in the area of distributed simulation of VLSI
systems for the past few years. His other research interests
include artificial intelligence and optimizing compilers.

CARL TROPPER is a Professor in the School of Computer
Science at McGill University. His major research interest
is in parallel and distributed computing. He has worked in
the area of distributed discrete event simulation since the
inception of the field. His focus over the past several years
has been parallel VLSI simulation. His group has developed
a distributed VLSI simulation environment which is being
used for research in both the synchronization and perfor-
mance issues associated with VLSI simulation. Another
research direction is the integration of parallel continuous
and discrete event simulation models.

584

