
Proceedings of the 2009 Winter Simulation Conference
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, eds.

USING GENETIC ALGORITHMS TO LIMIT THE OPTIMISM IN TIME WARP

Jun Wang
Carl Tropper

School of Computer Science
McGill University

Montreal, Quebec, Canada H3A 2A7

ABSTRACT

It is well known that controlling the optimism in Time Warp is central to its success. To date, this problem has been
approached by constructing a heuristic model of Time Warp’s behavior and optimizing the models’ performance. The extent
to which the model actually reflects reality is therefore central to its ability to control Time Warp’s behavior. In contrast to
those approaches, using genetic algorithms avoids the need to construct models of Time Warp’s behavior. We demonstrate,
in this paper, how the choice of a time window for Time Warp can be transformed into a search problem, and how a genetic
algorithm can be utilized to search for the optimal value of the window. An important quality of genetic algorithms is that
they can start a search with a random choice for the values of the parameter(s) which they are trying to optimize and produce
high quality solutions.

1 INTRODUCTION

In parallel discrete event simulation (PDES), the simulation task is divided and assigned to logical processes (LPs) running on
multiple CPUs (nodes). To ensure simulation correctness, synchronization algorithms have been developed (Fujimoto 2000).
Time Warp (Jefferson 1985) is an optimistic algorithm, in which an LP proceeds under the assumption that it is safe to
execute the next scheduled event. If an event arrives in the past of an LP’s local simulation time the LP must roll back to
a previous state and send out anti-messages to eliminate messages which might have been sent in error so that the causal
relations between events are not violated. While Time Warp has the potential of making better use of the systems’ parallelism,
it is well known that over-optimism can lead to instability. In the worst case, the LPs spend most of their time rolling back,
making it impossible for the simulation to progress (Lubachevsky, Shwartz, and Weiss 1991).

To address this over-optimism Time Warp protocol has been modified in order to regulate the LPs optimism (Das 2000).
Adaptive protocols (Reynolds 1988) modify an LPs behavior dynamically during the course of a simulation in response to
changes in the behavior of the simulation.

An adaptive protocol (Panesar and Fujimoto 1997, Lin et al. 1993, Ferscha 1995) relies upon a model of the system. The
model typically employs several control parameter(s). There are two commonly used types of models, analytic and statistical.
In an analytic model (Panesar and Fujimoto 1997, Lin et al. 1993), a control parameter is expressed as a closed-form function
of the state of the system. As the state changes, the parameter is changed accordingly. A statistical model is based on
knowledge of the distribution of the random variables in the model. When this knowledge is not available beforehand, the
statistical model is built during the runtime of the simulation (Ferscha 1995).

Recently, machine learning techniques such as reinforcement learning (Sutton and Barto 1998, Gosavi 2003), have been
applied to the optimization of Time Warp (Wang and Tropper 2007). In reinforcement learning there is no model of the
system. The optimization problem is essentially treated as a search problem in which the goal is to find an optimal action
to take in each system state. Each such action corresponds to a value of the control parameter.

Because the number of actions has a direct impact on the performance of the algorithm, the number of actions is
necessarily kept small, thereby limiting the size of the search space.

A genetic algorithm (GA) (Goldberg 1989, Coley 1999) is a type of evolutionary algorithm (Eiben and Smith 2003)
that is inspired by the evolutionary process and by genetics. Over the past few decades, GAs have been successfully used

1180978-1-4244-5771-7/09/$26.00 ©2009 IEEE



Wang and Tropper

to solve a wide variety of problems in science and engineering. A GA starts from a set of arbitrary candidate solutions and
successively generates better solutions by mimicking the evolutionary process. Like reinforcement learning, GA is also a
trial-and-error type of search algorithm. Its advantage is that it can potentially search through the entire search space, while
reinforcement learning is limited to a set of candidate solutions.

The algorithm requires no knowledge of the simulation application, nor does it need to know anything about Time
Warp itself. In fact, the whole simulation system is treated as a black box and all the algorithm relies upon is performance
feedback from the system as it searches for the optimal solution. Although genetic algorithms have been widely used, to
our knowledge they have not been used for the optimization of Time Warp.

The rest of the paper is organized as follows. Section 2 describes some adaptive methods which have been used in
Time Warp. Section 3 gives an overview of genetic algorithms. In section 4 we discuss how a genetic algorithm is used
in selecting a window in Time Warp. In section 5 we present experimental results for a parallel VLSI simulator on some
benchmark circuits and our analysis of the results. Finally, section 6 contains our conclusions.

2 ADAPTIVE METHODS IN TIME WARP

It is well known that with uncontrolled optimism, Time Warp is prone to an excessive usage of memory and an explosive
growth in the number of rollbacks. Excessive memory usage causes performance degradation, and uncontrolled rollbacks
can become dominant in the simulation process and even cause system deadlock in the most extreme cases.

An obvious solution to this problem is to limit the optimism of Time Warp. An early protocol called Moving Time
Window (MTW) (Sokol, Briscoe, and Wieland 1988) controlled optimism by only allowing events whose timestamps were
within a certain time window to be executed optimistically. This is an example of static control , because the size of the
window is determined in advance and remains fixed throughout the simulation. Obviously, the difficulty is to determine an
appropriate window size before the simulation starts.

Adaptive Time Warp protocols go one step further. Instead of using a pre-determined constant value for the control
parameter, they adjust a control parameter dynamically based on ”knowledge of selected aspects of the state of the simulation”
(Reynolds 1988). For example, in (Panesar and Fujimoto 1997) optimism is controlled by adjusting the size of a window that
defines an upper bound on the number of uncommitted events which an LP can schedule; in (Palaniswamy and Wilsey 1993)
a moving bounded time window is defined such that only events scheduled within the window can be optimistically executed.
A survey of adaptive Time Warp protocols can be found in (Das 2000).

The operation of an adaptive protocol is usually based on a model of the simulation system that describes the relation
between system state and the optimal control parameter value. In general, two types of models have been used: analytic
and statistical. In an analytic model, the control parameter c is expressed as a closed-form function of a vector �S of some
system state variables: c = f (�S). For example, the window in (Panesar and Fujimoto 1997) is based on a queuing model;
the checkpoint interval in (Lin et al. 1993) is defined as a function of state variables including state-saving time and event
execution time. The model is obtained through careful analysis of system behavior. At runtime, the system state is measured,
and the result is used to determine the value of the control parameter. As the system state changes, the control parameter is
adjusted automatically. The protocol is adaptive in the sense that the control parameter is a function of system state instead
being a fixed constant.

Analytical models are usually established before the simulation starts. Statistical models can also be built in advance if
the distributions of the controlling random variables of the system are known or can be approximated or, as in (Ferscha 1995),
the model can be built at run-time.

While adaptive protocols have all been shown to improve Time Warp’s performance in some applications, this improvement
is dependent on the quality of the model. Because of the simplifications which are necessary to make in the course of
developing such a model, the control strategy is not certain to be optimal. In other words, it leaves open the question whether
there exists another function c = g(�S) that could perform better than the model f (�S).

Recently it has been shown that methods from machine learning, in particular, reinforcement learning (RL), can be
applied to Time Warp (Wang and Tropper 2007). RL is essentially a trial-and-error search algorithm. The system under
control is known as the environment. The controlling entity is called an agent, which performs actions on the environment
and receives feedback, or reinforcement signal, from the environment. No knowledge of the environment is required. The
agent operates solely on the basis of the reinforcement signals. A set of actions is defined for the agent, which tries to find
the best policy, i.e. the optimal mapping from system states to one of the actions. When applied to Time Warp, each of the
action is statically mapped to a specific value of the control parameter. RL has been used to determine both the choice of a
window size (Wang and Tropper 2007) and the choice of an interval between GVT executions (Wang and Tropper 2009).
It was shown that RL could successfully identify the better ones among the given set of values. However, for RL to perform

1181



Wang and Tropper

Initialize population with a random set of candidate solutions;
Evaluate each candidate in the population;
REPEAT UNTIL termination condition is satisfied DO

Step 1: Select parents and put in mating pool;
Step 2: Recombine pairs of parents to produce children;
Step 3: Mutate the children;
Step 4: Evaluate children;
Step 5: Select individuals to form next generation of population;

END DO

Figure 1: Genetic algorithm

well, it is necessary to limit the number of actions. Furthermore, this small set of actions is static and remains unchanged at
run-time. Therefore, search is carried out in a small sub-set of the search space. For the search to be carried out in the entire
search space, either the set of actions have to be enlarged, or multiple agents have to be implemented (Panait and Luke 2005).
Neither is an attractive option.

In this paper we present a genetic algorithm for choosing the window size in Time Warp. Like RL, it is also a
trial-and-error search algorithm and requires no knowledge of the system under control, only feedback about its actions.
Unlike the RL algorithm, the set of candidate solutions can change dynamically, enabling the GA to search a realistic space.

3 GENETIC ALGORITHMS

This section gives an overview of genetic algorithms (GA). For an in-depth introduction to genetic algorithms the reader is
referred to (Eiben and Smith 2003, Goldberg 1989, Coley 1999).

A GA starts with a set of candidate solutions known as the population, which can be randomly generated from the
solution space. The fitness of each candidate in the population is evaluated. Based on the fitness, a number of candidates are
selected and put in the mating pool. Pairs of candidates are then selected from the mating pool and carry out a recombination
operation, which mimics the reproduction process in a biological population, to produce offsprings. Occasionally the newly
generated children are subject to a mutation operation. Next, after the children have been evaluated, the survivor selection
process is carried out and the next generation of the population is created. The process then repeats itself. Figure 1 outlines
the major steps in a generic GA.

To create a GA, the following components must be taken into account.

3.1 Candidate Representation

How to represent a candidate programmatically is a very basic problem. In GA, the candidates are represented by chromosomes
consisting of genes. Two of the most common choices are binary representation and integer representation.

In a binary representation, a candidate solution is represented by a bit-string. Each bit or segment of bits is considered
to be a gene. Obviously the length of the string n is determined by the number of possible solutions S. It is important to
ensure that all possible bit strings represent valid solutions to the specific problem, and all solutions can be represented.

If each component of a candidate solution can take an integer value from a set of possible values, then integer representation
may be a good choice. Each integer is considered a gene. As with the binary representation, it is important to ensure that
there is a one to one mapping between representations and solutions.

3.2 Evaluation Function

As the concept of fitness is central to the operation of GA, any GA must have a well-defined mechanism to evaluate the
fitness of a candidate. This mechanism is known as the evaluation function, the fitness function or the objective function.

1182



Wang and Tropper

 

0 0 0 1 0 1

1 00 111 0 1 0 11 0

0 0 0111

crossover 

crossover point 

parents children 

Figure 2: One-point crossover in genetic algorithm

3.3 Parent Selection

After all the members of the current population have been evaluated, the next step is to select, according to certain criteria,
a number of candidates to serve as parents and pair them up in order to produce children solutions. We briefly describe just
one of the many such selection methods.

Fitness proportional selection (FPS) is a selection mechanism based on the fitness level of the candidates. Specifically,
if fi is the fitness level of candidate i, then the probability of selecting i as a parent is pi = fi/c

j=1 f j, where c is the number
of candidates in the population. Since the process is stochastic and is based on the fitness level, a candidate can be selected
multiple times.

3.4 Recombination

After they have been selected, the parents are paired to produce children through a recombination operation, also known as
crossover. One of the simplest recombination operations is the one-point crossover. A crossover point is randomly selected
and the two children inherit all of the genes of one of the parents up to the crossover point and the genes of the other parent
after the crossover point. This operation is demonstrated in Figure 2.

One-point crossover can be easily extended to n-point crossover, in which a child takes segments of the genes alternately
from the two parents. The crossover operation is not limited to binary representation-integer representation can also use this
operation for recombination.

3.5 Mutation

The purpose of mutation is to increase the diversity of the children. Mutation effectively introduces noise into the algorithm
and helps the search to get out of local optima.

In a binary representation, the simplest mutation mechanism is bit-flipping. Based on a pre-defined probability threshold,
a bit is randomly chosen to change from 0 to 1, or 1 to 0. This type of mutation can also be extended to integer representation
using an operation called random resetting, in which the gene to be mutated is reset with a new value that is randomly
selected from the set of permissible values.

3.6 Survivor Selection

The purpose of this step is to determine which candidates should survive. The most commonly used methods are either
age-based or fitness-based or a combination of the two. In an age-based method each individual solution can exist in the
population for a fixed number of iterations. In the most extreme case, the current population is entirely replaced by the
children. In a fitness-based selection method, part or all of the current population is replaced by the children based on the
fitness level of the individuals.

1183



Wang and Tropper

4 GENETIC ALGORITHMS IN TIME WARP

In this section we describe a genetic algorithm for selecting the time window size in Time Warp.

4.1 Control Parameter

The window size, w, together with the last GVT defines a limit for event execution. No events scheduled beyond GVT +w are
allowed to be executed. If the next scheduled event of an LP is beyond the window, then the LP must block. When blocked
an LP can still receive messages but it cannot send any messages except for messages involved in a GVT computation.
When the GVT is updated, the window is moved forward, allowing blocked LPs to unblock if their next scheduled event
falls inside the updated window. The window prevents an LP from going far ahead in virtual time, thereby reducing the risk
of long rollbacks.

Denote by W the set of all possible values for the window size. If there are n nodes in the Time Warp system, then
the window sizes used by all the nodes at any particular moment can be represented by the n-tuple (w1,w2, ...,wn), where
wi ∈W,1 ≤ i ≤ n. We shall refer to this as a vector window. The problem of finding the optimal vector window can thus be
formulated as a search problem within the n-space consisting of all |W |n vectors.

4.2 The Algorithm

Having decided which parameter to control, we need to establish a mapping between genes and window sizes. We select a
maximum value, gmax, for the gene so that the value of a gene is limited to the set X = {1,2, ...,gmax}. We then establish a
mapping function y = f (x) to map each gene value x to a window size value y.

This is known as the mapping between the genotype and phenotype (Eiben and Smith 2003). In the mappings we adopt,
we discretize the window size by defining an incremental unit,  , for the windows such that the actual window size adopted
by an LP is always a multiple of  . The mapping function is defined as f (x) ≡ x. In other words, a gene value x,x ∈ X ,
is mapped to the window size x.

In our implementation, all LPs on the same node (CPU) use the same window size, but different nodes can have different
windows. The size of the search space is thus |X |n, where n is the number of nodes.

4.2.1 Solution Representation

For the optimization problem we chose, it is natural to use an integer representation. A candidate solution is thus represented
as an integer string x1x2...xn. With the mapping function f (x), node i uses window size f (xi). For example, if the number
of nodes is four, then 1115 is a possible candidate solution, assuming gmax ≥ 5.

If the number of possible values for each gene, i.e. gmax, is a power of 2, then a binary representation can also be used.

4.2.2 Evaluation Function

In the absence of a formula for determining the fitness of a vector window, it must be determined empirically. To evaluate
a vector window, we instantiate the window at the end of a GVT computation and measure the simulation progress at the
end of the subsequent GVT interval. The progress is defined as

PI =
n


i=1

ei/t,

where n is the number of nodes, ei is the number of committed events (the events that will not be rolled back since their
timestamps are smaller than the current GVT) in node i in the given GVT interval, and t is the elapsed real time in the
GVT interval.

In order to obtain a good approximation for the fitness value of each vector window, the window is evaluated in 10
consecutive GVT intervals and the fitness is the average of the 10 evaluations.

1184



Wang and Tropper

4.2.3 Parent Selection

For parent selection we wish to ensure that the fitter candidates have a better chance to reproduce. The probability pi of
selecting the i-th candidate as a parent is proportional to its fitness and is given in Section 3. We use an array a such that
the i-th element of the array is a[i] = i

j=1 pi,1 ≤ i ≤ c, where c is the total number of candidates.
Two methods of selection can be defined (Eiben and Smith 2003). In the roulette method, c random numbers in the

range [0,1] are generated. For each random number r, if r ≤ a[i], and r > a[i− 1], then candidate i is selected. In the
stochastic universal sampling (SUS) method, a single random number, r, in the range [0,1/c] is generated. If r ≤ a[i], and
r > a[i−1], then candidate i is selected. Then r is incremented by 1/c, until all parents have been selected.

4.2.4 Recombination

For recombination, we use the one-point crossover operation shown in Figure 2, except that it is not limited to binary
representation. The crossover point is determined by generating a random number in the range [0,d− 2], where d is the
length of the representation. For a string of length d, there are d−1 crossover points between two elements of the string. For
example, if the string length is 4 and the crossover point is 0, then the two candidates x1x2x3x4 and x′1x

′
2x

′
3x

′
4 will produce

x1x′2x
′
3x

′
4 and x′1x2x3x4.

4.2.5 Mutation

The probability of mutation is set to a small value pm. For each gene, a random number r is produced, and if r ≤ pm,
then that gene is mutated. Since we use integer representation, a random setting is used for mutation. A random number
determines the new value for the mutated gene.

4.2.6 Survivor Selection

The survivor selection method we adopt is fitness-based. All of the individuals in the current population P and the |P|
children are put together and sorted by the order of their fitness level, and the best |P| solutions form the population for the
next iteration.

4.3 The GA Agent

A designated node that we shall refer to as the GA agent runs the genetic algorithm. It is responsible for disseminating the
current solution, i.e., the vector window, to the other nodes. All of the other nodes are oblivious to the fact that a GA is
being used.

As mentioned above, each candidate solution is used for 10 GVT intervals. At the end of a GVT computation, all of
the nodes send their measurement of progress to the GA agent, which collects the information and updates the fitness of the
current solution.

5 EXPERIMENTS

In this section we present experimental results making use of several sequential VLSI circuits.
We implemented a genetic algorithm to search for the optimal vector window. We used the clock period of the circuit

as the incremental unit  . The value of gmax was chosen to be 8, so a gene could have a value between 1 and 8.
The population size was 12 and the initial population consisted of 12 random vector windows. The algorithm stopped

when the population converges, i.e., when all of the candidates in the population are the same. The vector window found
by the GA was then used in further simulation runs. We summarize the most important elements of the implementation in
Table 1.

The test circuits we used include the two largest circuits from the ISCAS-89 suite, s38417 and s38584, and also, s417x5
and s584x5, which consist of five copies of s38417 and s38584, respectively. Table 2 shows the size of the circuits in terms
of the number of primitive gates and D-type flip-flops. Each gate or flip-flop is represented by an LP, and all of the LPs on
the same node share an event queue and the time window.

1185



Wang and Tropper

Table 1: Summary of GA implementation

Representation Integer
Population size 12
Initial population Random
Parent selection FPS
Recombination One-point crossover
Number of children Same as population size
Mutation Random resetting
Mutation probability 0.05
Survivor selection Fitness-based
Termination condition Population convergence

Table 2: Circuit size

Circuit Gates DFFs Total
s38417 22179 1636 23815
s38584 19253 1426 20679
s417x5 110895 8180 119075
s584x5 96265 7130 103395

Table 3: Performance of GA

Circuits Generations Converg. Time
s38417 14.2 45.8
s38584 13.4 64.1
s417x5 15.0 162.1
s584x5 14.7 235.3

We conducted all our experiments on a LAN with 4 AMD Athlon 64 computers running the Linux operating system.
The computers were connected by a fast Ethernet switch, and for the underlying messaging we used MPICH. Each circuit
was given enough random test vectors for them to run for about 40 minutes.

In our experiments we are interested in examining both the performance of the GA and the effect which the vector
windows computed by the GA has on the execution time and the stability of the simulation.

In Table 3 we show the average number of generations before the GA converges, and the average wall-clock time in
seconds it takes for the GA to converge. We can see that the algorithm converges fairly quickly. Figure 3 shows the evolution
of the average fitness of the population. These charts are typical of the results obtained by genetic algorithms. At the
beginning, since we start with a random population the average fitness is rather low. However, in the first few generations,
the average fitness grows quickly and then stabilizes.

We now turn to the performance of the vector windows computed by our algorithm. In Table 4 we list the wall clock
running time of the simulations with two different algorithms. In Table 4 GA means that the vector window is set to the
values found by the GA. NW stands for No Window, represents Time Warp with no time window. Also shown is the
reduction in simulation time when using the vector time window found by the GA. For each circuit we ran the GA 10 times
and obtained 10 (not necessarily distinct) vector windows. The results displayed in Table 4 are the average of using the 10
vector windows.

For comparison purposes, we also implemented and tested an algorithm which used random values for the size of the
time window. The range for the random values is the same as the range used in GA. The running time of the algorithm is

1186



Wang and Tropper

0 5 10 15
0.15

0.2

0.25

0.3

0.35

0.4

Generation

A
ve

ra
ge

 fi
tn

es
s

s38417

0 5 10 15
0.15

0.2

0.25

0.3

0.35

0.4

Generation

A
ve

ra
ge

 fi
tn

es
s

s38584

0 5 10 15
0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generation

A
ve

ra
ge

 fi
tn

es
s

s417x5

0 5 10 15
0.15

0.2

0.25

0.3

0.35

0.4

Generation

A
ve

ra
ge

 fi
tn

es
s

s584x5

Figure 3: Average fitness of population

Table 4: Running time in seconds

Circuits GA NW Reduction
s38417 1418.79 2204.24 35.6%
s38584 1589.11 2209.43 28.1%
s417x5 1950.87 2204.84 11.5%
s584x5 2075.86 2303.14 9.9%

Table 5: Running time: random window

Circuits Random Reduction
s38417 3104.02 54.3%
s38584 2521.61 37.0%
s417x5 4070.85 52.1%
s584x5 3653.08 43.2%

shown in Table 5 together with the reduction when GA is used. Each data item for the random window algorithm is the
average of 12 simulation runs.

The data in Tables 4 and 5 demonstrate two important points. First, using good time windows does speed up the
simulation, and GA does a good job in selecting appropriate vector windows. Using the GA to select the window size, we
reduced the simulation time by 9.9% to 35.6% for the tested circuits.

Secondly, we can see that a bad vector window can have a significantly negative impact on simulation performance. In
all the cases, choosing vector windows randomly performs much worse than using no window at all. The simulation time
was 14% to 85% longer than using no window. Compared to random windows, using the windows found by GA reduces
the simulation time a great deal.

6 CONCLUSIONS

In this paper we have demonstrated how the choice of the window size in Time Warp can be formulated as a search problem,
and how a genetic algorithm can be applied to find the size of the window. Most approaches to Time Warp optimization
problems are model-based, thereby making the quality of the approach highly dependent on the quality of the model. A

1187



Wang and Tropper

GA treats the underlying Time Warp simulation as a black box. All it requires from the system is the feedback on the
performance of the simulation.

Used in our distributed circuit simulator, our GA implementation produced excellent results. The vector time window
found with GA improved the simulation speed by 9.9% to 35.6% on the test circuits. It should be emphasized that the real
power of genetic algorithms is that they can start with an arbitrary set of solutions and achieve good results. Applied to the
problem of finding the optimal vector window in our Time Warp system, the use of a GA has proven successful. Encouraged
by this success, we intend to apply GA to other optimization problems of Time Warp.

REFERENCES

Coley, D. 1999. An introduction to genetic algorithms for scientists and engineers. World Scientific.
Das, S. 2000, April. Adaptive protocols for parallel discrete event simulation. Journal of the operational research society

(JORS) 51 (4): 385–394.
Eiben, A., and J. Smith. 2003. Introduction to evolutionary computing. Springer.
Ferscha, A. 1995, July. Probabilistic adaptive direct optimism control in time warp. Proceedings of the ninth workshop on

Parallel and distributed simulation:120–129.
Fujimoto, R. 2000. Parallel and distributed simulation systems. Wiley-Interscience.
Goldberg, D. 1989. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley.
Gosavi, A. 2003. Simulation-based optimization: Parametric optimization techniques and reinforcement learning. Kluwer

Academic Publishers.
Jefferson, D. 1985, July. Virtual time. ACM Transactions on Programming Languages and Systems 7 (3): 404–425.
Lin, Y., B. Preiss, W. Loucks, and E. Lazowska. 1993, May. Selecting the checkpoint interval in time warp simulation.

Proceedings of the seventh workshop on parallel and distributed simulation:3–10.
Lubachevsky, B., A. Shwartz, and A. Weiss. 1991, April. An analysis of rollback-based simulation. ACM transaction on

modeling and computer simulation 1 (2): 154–193.
Palaniswamy, A., and P. Wilsey. 1993, March. Adaptive bounded time windows in an optimistically synchronized simulator.

Great lakes VLSI conference:114–118.
Panait, L., and S. Luke. 2005, November. Cooperative multi-agent learning: the state of the art. Autonomous Agents and

Multi-agent Systems 11 (3): 387–434.
Panesar, K., and R. Fujimoto. 1997. Adaptive flow control in time warp. Proceedings of the 11th workshop on parallel and

distributed simulation:108–115.
Reynolds, P. 1988. A spectrum of options for paralle simulation. In Proceedings of the 1988 Winter Simulation Conference,

ed. M. Abrams, P. Haigh, and J. Comfort, 325–332. San Diego, CA, USA.
Sokol, L., D. Briscoe, and A. Wieland. 1988, July. Mtw: a strategy for scheduling discrete simulation events for concurrent

execution. Proceedings of the SCS multiconference on distributed simulation 19 (3): 34–42.
Sutton, R., and A. G. Barto. 1998. Reinforcement learning: an introduction. The MIT Press.
Wang, J., and C. Tropper. 2007. Optimizing time warp simulation with reinforcement learning techniques. In Proceedings

of the 2007 Winter Simulation Conference, ed. S. G. Henderson, B. Biller, M.-H. Hsieh, J. D. Tew, and R. R. Barton,
577–584. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Wang, J., and C. Tropper. 2009. Selecting gvt interval for time-warp-based distributed simulation using reinforcement learning
technique. Proceedings of the 42nd Annual Simulation Symposium.

AUTHOR BIOGRAPHIES

JUN WANG is currently a PHD candidate in the School of Computer Science at McGill University, where he has been
working in the area of distributed simulation of VLSI systems for the past few years. His other research interests include
artificial intelligence and optimizing compilers. Jun Wang can be reached at jwang90@cs.mcgill.ca.

CARL TROPPER is a Professor in the School of Computer Science at McGill University. His major research interest is
in parallel and distributed computing. He has worked in the area of distributed discrete event simulation since the inception
of the field. His focus over the past several years has been parallel VLSI simulation. His group has developed a distributed
VLSI simulation environment which is being used for research in both the synchronization and performance issues associated
with VLSI simulation. Another research direction is the integration of parallel continuous and discrete event simulation
models. Carl Tropper can be reached at carl@cs.mcgill.ca.

1188


