
Event Reconstruction in Time Warp

Lijun Li and Carl Tropper
School of Computer Science

McGill University
Montreal, Canada

lli22, carl@cs.mcgill.ca

Abstract

In optimistic simulations, checkpointing techniques are
often used to reduce the overhead caused by state saving.
In this paper, we propose event reconstruction as a tech-
nique with which to reduce the overhead caused by event
saving, and compare its memory consumption and execu-
tion time to the results obtained by dynamic checkpointing.
As the name implies, event reconstruction reconstructs in-
put events and anti-events from the differences between ad-
jacent states, and does not save input events in the event
queue.

For simulations with fine event granularity and small
state size, such as the logic simulation of VLSI circuitry,
event reconstruction can yield an improvement in execution
time as well as a significant reduction in memory utilization
when compared to dynamic checkpointing. Moreover, this
technique facilitates load migration because only the state
queue needs to be moved from one processor to another.

1 Introduction

Modern VLSI systems are becoming increasingly com-
plicated, posing a never-ending challenge to sequential sim-
ulation. To accommodate the growing need for increased
memory as well as the need for decreased simulation time,
it is becoming increasingly necessary to make use of dis-
tributed simulation[12].

Time Warp[8] is an appealing technique for the dis-
tributed logic simulation of VLSI circuitry because it can
potentially uncover a high degrees of parallelism in the
VLSI system being simulated. However, this benefit is at
the expense of the processing time and memory required
for state saving, state restoration and event saving. Several
techniques[10, 3, 4, 5] have been proposed to reduce this
overhead, all of which focus on reducing the overhead for
state saving and state restoration.

Event saving is a significant cost in Time Warp. How-
ever, to the best of our knowledge, no research has been
directed at reducing its associated cost. In optimistic sim-
ulation, every event has to be saved in case of a rollback.
However, in optimistic logic simulation of VLSI circuits,
the event size is larger than the state size and, as a conse-
quence, event saving costs more in memory and process-
ing time than does state saving. It follows that if we try
to reduce the overhead of event saving, the resulting perfor-
mance may well be better than that obtained by reducing the
overhead associated with state saving alone. It is unclear if
this improvement can be achieved for coarse-grained mod-
els.

The rest of this paper is organized as follows. Section 2
is devoted to related work. In section 3, we introduce logic
simulation. Our distributed simulation environment DVS[9]
is briefly described in section 4. In section 5, we present the
details of our event reconstruction technique. A comparison
of the memory consumption and the execution time making
use of event reconstruction and dynamic checkpointing is
presented in section 6. The last section contains our conclu-
sions and thoughts about future work.

2 Related work

A number of algorithms have been proposed to re-
duce the memory overhead caused by state saving, includ-
ing incremental saving[3], checkpointing[10, 4], reverse
computation[5] and rollback relaxation[13].

[7] presents a comparative analysis of four approaches
to dynamically adjusting the checkpoint interval and pro-
poses an algorithm for dynamic checkpointing. The algo-
rithm tries to balance the time spent saving state versus the
time spent coasting forward. The goal of the algorithm is
to minimize the time for state saving and coasting forward
and to adjust the checkpoint interval accordingly. In our ex-
perimental section6, we compare the performance of event
reconstruction and this heuristic algorithm.

Checkpointing results in a lower memory consumption

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

value Purpose Value Encoding
0 Forcing zero 00
1 Forcing one 01
X Forcing unknown 10
Z High impedance 11

Table 1. Logic values and their purposes

and an improved execution time. However, it is difficult to
achieve the optimal frequency of checkpointing. Dynamic
checkpointing can be used to alleviate this problem. How-
ever, it faces the problems of choosing tuning parameters,
including the initial checkpointing frequency, the average
cost of event processing and the average cost of coasting
forward.

Reverse computation[5] computes state variables by re-
versing the operation sequence applied on the variables.
It uses compiler-based techniques to generate the reverse
computation code automatically. As a result, its implemen-
tation is more complex, although it is able to provide a sig-
nificant performance improvement over checkpointing.

In rollback relaxation[13] all LPs are classified into two
categories, memoryless and LPs and LPs with memory. A
memoryless LPs’ output is determined by the values of its
inputs. Therefore, no state is saved for memoryless LPs. In-
stead, the LP reconstructs any required input state from the
events of the input queue. The rollback relaxation mecha-
nism is able to reduce the state saving overhead by a consid-
erable amount in logic simulations because most LPs(AND,
OR, XOR gates) in such simulation are memoryless.

3 Logic simulation and its characteristics

3.1 The Simulation Model

In a logic simulation, the LPs represent logic gates
(AND,NAND,NOR,OR). The incoming channels to an LP
correspond to the fanin list of wires of a logic gate while the
outgoing channels correspond to its fanout list.

The circuit model uses a finite set of values to represent
the type of signal propagating throughout the circuit. The 4
values which a signal may have are portrayed in table 1.

A signal change is modeled as an update event which
contains a timestamp, source and destination gate identifi-
cations and a value which corresponds to the new value of
the wire. When an LP receives an update event, it sets its
local clock to the timestamp of the event, and then evalu-
ates its output and schedules the resulting output change as
update events to its fanout list.

A=0 B=1

C=0

D=1
E=1

F=1

a. Initial Values

A=0 B=0

C=0

D=1
E=1

F=1

b. Values at time 100

A=0 B=0

C=0

D=0
E=1

F=1

c. Values at time 101

A=0 B=0

C=0

D=0
E=1

F=0

d. Values time 102

g3

g1

g2

g1

g3

g2

g3

g1

g2

g1

g2

g3

Figure 1. Logic simulation of a digital circuit

3.2 Discrete Event Logic Simulation

Figure 1 represents a simple logic circuit consisting of
three gates. The circuit has three inputs(A, B and C), one
output(F) and two internal wires(D and E). Assume that
each gate has unit (processing) delay. At the initial point
of our example, the logic gates have the values shown in
Figure 1.a. An event occurs on wire B at time 100, chang-
ing it from 1 to 0 as shown in Figure 1.b. At time 100, gate
g1 is evaluated to see if there’s a change on its output D.
Since D will change from 1 to 0, this event is scheduled for
a unit delay in the future.

At time 101, gate g1s’ output D will be set to 0 as indi-
cated in Figure 1.c and this new value will be propagated
to the gates on g1s’ fanout, g3 in this circuit. Then g3 is
evaluated to see if there will be an output change on F. As
can be seen in Figure 1.d, F will change from 1 to 0.

3.3 Characteristics of logic simulation

In this section we discuss the characteristics of logic sim-
ulation which inspired our work on event reconstruction.

� Relatively small state size

In the implementation of a logic simulator, such as
DVS [9], the 4 signal values are encoded with two bits
as shown in table 1. Every gate has up to four inputs
and one output. Therefore, the state of a gate in Figure
2 includes ival and oval, each of which are one byte in

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

State
+ival: byte
+oval: byte
+history_LVT: unsigned

Event
+type: byte
+source: byte
+destination: byte
+sendTime: unsigned
+recvTime: unsigned
+sign: byte
+gateID: unsigned
+value: byte

oval

ival=

0-1 2-3 4-5 6-7

I0

I0 I1I2 I3

I1 I2 I3

Figure 2. The size of the state and the event

length. The bits 0-1 are used to store the value of I0,
bits 2 and 3 for I1, 4 and 5 for I2 and bits 6 and 7 for
I3, as shown in Figure 2. For example, if ival is equal
to 00001001, we know that I0 is equal to logical value
0, I1 logical value 0, I2 logical value ’x’ and I3 logical
value 1. This compact storage helps to save memory.
The size of the state is only 16 bytes in DVS[9]. How-
ever, checkpointing has its greatest value when the size
of the state is large.

� Large event size

Figure 2 shows the structure of an event. The size
of an event is 56 bytes, almost four times of the size
of a state. Therefore, event saving causes at least
3.5(56/16) times more memory to be used than state
saving if state saving is done for every event processed.
In order to underscore this point, the amount of mem-
ory consumed in the simulation of a 16 bit multiplier
is presented in our experimental section.

� Large event population

The event population is large because of the large
number of gates, each of which is mapped to an LP.
For example, the event population is 8,129,815 for
s38584(about 20K gates) when the clock is 500kHz
and the number of random input vectors is 100. If ev-
ery event has to be saved, the associated memory con-
sumption will be very large.

� Fine event granularity

Logic simulation is known for its fine event granular-
ity. Thus, the performance of distributed logic simu-
lation is especially sensitive to the overhead caused by
state saving and event saving. Reducing this overhead
would certainly be useful for performance improve-
ment.

With these characteristics of logic simulation in mind,
we decided to reduce the memory occupied by events in-
stead of reducing the memory consumed by states. The fol-
lowing section describes our approach to event reconstruc-
tion.

4 DVS[9]: A framework for distributed
Verilog[11] simulation

Before we present the implementation of event recon-
struction, we give a brief introduction to DVS, a framework
for distributed Verilog simulation. Event reconstruction and
dynamic checkpointing are implemented in this framework.

Figure 3 portrays the architecture of DVS. The 3 layers
of DVS are shown on the right side of figure 3. The bottom
layer is the communication layer, which provides a common
message passing interface to the upper layer. Inside this
layer, the software communication platform can be PVM
or MPI. Users can chose one of them without affecting the
code of upper layers.

The middle layer is a parallel discrete event simulation
kernel, OOCTW, which is an object-oriented version of
Clustered Time Warp (CTW)[1]. It provides services such
as rollback, state saving and restoration, GVT computation
and fossil collection to the top layer.

The top layer is the distributed simulation engine, which
includes an event process handler and an interpreter which
executes instructions in the code space of a virtual thread.

vvp Parser

Partitioner

vvp Assembly Code

Functor List
Vthread List

Simulation Results

Distributed
Simulation Engine

OOCTW

MPI / PVM

Figure 3. Architecture of DVS

A partitioner implements several partitioning algorithms
including RANDOM[2], BFS(Breath-First-Search)[2],
DFS(Depth-First-Search)[2] and CAKE[6]. More ad-
vanced partitioning algorithms are still under investigation
as part of our research. CAKE results in a minimal
inter-processor communication time and the best speed-up
of the above algorithms because it takes advantage of the
hierarchical design information in the Verilog source file.

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

5 Implementation of Event Reconstruction

In this section, we explain the implementation of event
reconstruction in detail. The data structures and algorithms
which comprise this approach are described below.

LP1

State List

LP2

State List

Cluster Input Queue

LP3

State List

Figure 4. Cluster structure

5.1 Data structure

The data structure for event reconstruction is shown in
figure 4. In DVS, the Cluster is the container and scheduler
of all of the LPs. An LP maintains a state list. In event
reconstruction it is necessary to store all of the states at an
LP. Since we build the input events and anti-events from the
state list in our approach, we don’t need the input event list
and output event list for every LP. The unprocessed events
for all of the LPs in the same cluster are stored in a single
priority queue data structure. The LP scheduling strategy is
smallest timestamp first. We note in passing that the GVT
computation also benefits from the single queue data struc-
ture.

5.2 Event annihilation

Time Warp uses a tuple (LPID, timestamp, eventID) to
match positive events and their corresponding anti-events.
The LPID is globally unique, indicating which LP will re-
ceive the event. The eventID is unique in the cluster, and
is increased by one automatically whenever a new event is
generated. The EventID is used, along with the timestamp
to distinguish between simultaneous events. Unfortunately,
the eventID is lost because we don’t save input events in
our approach. Instead, we use the signal value on the wire to
compensate for the lost eventID information. The new tuple
for event annihilation is (LPID, timestamp, signalValue). If
both the timestamp and the signalValue are the same for two
events, they are considered to be identical events. If there
exists more than one identical event in the event queue, the
anti-event will pick the first one in the queue to annihilate.
This approach introduces some indeterminism. However,
Verilog[11] is a concurrent language, in which there are

sources of non-deterministic behavior such as arbitrary ex-
ecution order in zero time and arbitrary interleaving of be-
havior statements. Therefore, the simulation results are not
guaranteed to be deterministic. In fact, simultaneous events
are executed in arbitrary order in the Verilog simulator.

5.3 Port flag

We use a different rollback strategy for LPs inside the
cluster and for LPs outside of the cluster. Inside the clus-
ter, we roll back those LPs which are descendants of the
LP which receives the straggler or anti-message. Anti-
messages are sent to LPs outside of the cluster.

In order to implement the two rollback algorithms, a port
flag is used for each LP port in order to indicate whether it
is an internal port or an external port. The port flag is set
at run time. Initially, every port flag is set to be an inter-
nal flag. When the LP receives an external message, it sets
the corresponding flag to external. The implementation of
the rollback algorithms making use of these flags will be
explained in the following section.

5.4 Event builder

Only those events which change the input signals at a
gate need to be reconstructed, as it is only these events
which cause a change in the state of a gate.

Let s’ be the state before the execution of event e and
let s be the state after the event is executed. If s is equal to
s’, event e is considered null and need not be reconstructed.
However, if s is different from s’, event e can be rebuilt
according to Formula 1. The signal value is the value on the
wire, as shown in Table 1.

� �

� � � � 	
 � � � � � � � � � � � 	
 � � � � � � (1)

For example, state s’ is shown in Figure 5.a and state s
in Figure 5.b. It is worthwhile noting that signal values on
all ports are packed into a one byte state. By comparing the
value on port I1 of states s and s’, the event which happened
at time 200 is reconstructed with the value on port I1 of state
s, which changed from ’00’ in state s’ to ’01’ in state s.

5.4.1 Input event builder

In Time Warp an LP saves events after processing them be-
cause if the LP rolls back, previously processed events will
have to be reprocessed. Through event reconstruction, these
previously processed events will no longer have to be saved.
Instead, they are reconstructed by the input event builder,
depicted in Figure 6.

The algorithm loops through the state queue until the
LVT of the state is less than the receive time of the event

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

state@100=00000101

a. Initial state

oval

I0 I1I2 I3

state@200=00010101

b. State at time 200

e@200=(I1:00->01)

oval

I0 I1I2 I3

g1 g1

Figure 5. Event reconstruction

which causes the rollback. It picks a state s1 and its prede-
cessor s2 from the state queue. If the input values of state
s1 and s2 are different, an event e is reconstructed accord-
ing to Formula 1. The input values are bound into one byte.
Therefore, the comparison is executed four times, once for
each input port of the LP, as shown in the Figure 6.

Moreover, due to the different rollback strategies for the
internal events and external messages, we set a port flag to
indicate the source of the events. For the external port, we
reconstruct every event. However, we only reconstruct the
events which have LVT equal to the LVT of the straggler
event for the internal port. The reason for this is that the in-
ternal events which have a larger LVT than the straggler will
be regenerated because of the cluster rollback strategy[1]
used in DVS[9], which will rollback all LPs in the clus-
ter. Therefore, the internal events will not be reconstructed
because they will be regenerated by their source LP in the
same cluster. The port flag is used to avoid unnecessary
reconstruction of internal events. In fact, the algorithm of
event reconstruction does not depend on the cluster rollback
strategy. We are continuing to improve the rollback strategy
and the event reconstruction algorithm. Further effort will
focus on tree rollback instead of the cluster rollback. The
tree rollback strategy only rolls back those LPs which reside
in a tree whose root is the LP which receives the straggler
event.

5.4.2 Anti-event builder

The anti-event builder works in the same way as the input
event builder, as shown in figure 7. The anti-event is re-
constructed by comparing the output values of two adjacent
states, s1 and s2. After reconstruction, the anti-event is sent
to those LPs which are in the fanout list of the current LP
but not in the same cluster. For a cluster rollback, we don’t
have to use anti-events to cause a rollback in the same clus-
ter.

5.5 Event processing loop

The basic algorithm for an optimistic LP is sketched in
Figure 8. The LP removes the head event from the event

input_event_builder(event* rb_event)
{
 reverse_iterator iter=state_list.rbegin();

 //main loop for the event reconstruction
 while((*iter)->LVT >= rb_event->recv_time)
 {
 state* s1 = (*iter);
 state* s2 = (*iter++);

 //only reconstruct the external event
 //ignore the reconstruction of internal events

 //Event reconstruction on port 0
 if (s1->ival&3 != s2->ival&3)
 if (s1->LVT == rb_event->recv_time ||
 external_port_flag[0])

 {
 //reconstruct the event
 e->recv_time = s1->LVT;
 e->ival = s1->ival&3;

 if e->is_anti_event(rb_event)
 annihilate(e, rb_event);
 else
 schedule(e);
 }

 //Event reconstruction on port 1
 if ((s1->ival>>2)&3 != (s2->ival>>2)&3)
 if (s1->LVT == rb_event->recv_time ||
 external_port_flag[1])
 {
 //reconstruct the event
 e->recv_time = s1->LVT;
 e->ival = (s1->ival>>2)&3;

 if e->is_anti_event(rb_event)
 annihilate(e, rb_event);
 else
 schedule(e);
 }

 //Event construction on port 2 & port 3
 //compare((s1->ival>>4)&3, (s2->ival>>4)&3)
 //compare((s1->ival>>6)&3, (s2->ival>>6)&3)
 }
}

Figure 6. Input event reconstruction algo-
rithm

queue and checks whether it is a normal event or a straggler
or an anti- event. If it is a normal event, the LP first logs
its state and processes the event. State is saved after every
event. However, processed events will not be saved.

When the LP receives an anti-event or a straggler, it rolls
back as in ”normal” Time Warp. However, the LP recon-
structs the input events and output events from the state
queue. This introduces a processing overhead which is sim-
ilar to the cost for coasting forward in dynamic checkpoint-
ing.

6 Experiments

All of our experiments were conducted on a network of
8 computers, each of which has dual PentiumIII processors
and 256M RAM. They are interconnected by a Myrinet,

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

anti_event_builder(event* rb_event)
{
 reverse_iterator iter=state_list.rbegin();

 while((*iter)->LVT >= rb_event->recv_time)
 {
 state* s1 = (*iter);
 state* s2 = (*iter++);

 if (s1->oval&3 != s2->oval&3)
 {
 //reconstruct the anti event
 e->recv_time = s1->LVT;
 e->ival = s1->oval&3;
 e->flag = ANTI;

 for each external LP in fanout list
 send e to LP
 }
 }
}

Figure 7. Anti event reconstruction algorithm

while(GVT < FINISH_TIME)
{
 receive external events;
 pop an event from event queue;
 update LVT;
 if (event is straggler or antimessage)
 {
 input_event_builder();
 anti_event_builder();
 send_anti_events();
 }
 else
 {
 log_state();
 event_processing();
 }
}

Figure 8. Optimistic LP simulation algorithm

a high speed network with link capacity of 1Gbit per sec-
ond. All machines run the FreeBSD operating system while
MPICH-GM is used for message passing between different
processors.

The Verilog source file used in the simulation describes
an ISCAS’89 benchmark circuit, S38584. It includes 19253
gates, 1426 D-type flip-flops and one virtual thread which
feed 20 random vectors to the circuit. The clock frequency
of S38584 is 1MHz. The other Verilog source file describes
a 16bit multiplier. It includes 2416 gates and one virtual
thread which feeds 200 random vectors into the circuit.

We assume a unit gate delay and zero transmission delay
on the wire. Each data point collected in the experiments
is an average of five simulation runs. The number of ma-
chines in the figure doesn’t include machine 0, which only
contains vthreads[9]. The vthreads generate the events for
the simulation. The simulation time for 1 machine is the

circuit 2 3 4 5 6
16 bits multiplier 4.49 4.50 4.78 4.68 4.73

S38584 3.60 3.68 3.54 3.53 3.55

Table 2. The memory usage ratio

running time of the DVS without partitioning.
In the experiments, we compare the performance of DVS

with dynamic checkpointing and with event reconstruction
to that of ”pure” Time Warp. The partitioning algorithm
which we use is CAKE[6]. The dynamic checkpointing al-
gorithm is initiated every 1000 events. Our event recon-
struction algorithm requires that the state is saved after each
event is processed.

6.1 Memory Usage

6.1.1 Memory consumption breakdown

The memory consumed by Time Warp is composed of the
memory consumed by state saving and by event saving.
Figure 9 presents the memory breakdown for the machine
which has the maximum memory consumption. The data is
collected for a 16 bit multiplier and for S38584 using Time
Warp. The top of Figure 9 is the memory breakdown for
the 16 bit multiplier with 200 random vectors while the bot-
tom is the memory breakdown for S38584 with 30 random
vectors.

We see from both of these that event saving consumes
more memory than state saving. We define the memory
usage ratio to be the ratio of the memory consumed by
event saving to the memory consumed by state saving and
list these ratios in table 2 for the 16 bit multiplier and for
S38584. We see that event saving consumes 4.73 times the
memory used by state saving when 6 machines are used.
On the average, event saving consumes almost four times
the memory consumed by state saving.

6.1.2 Peak memory consumption

We define the peak memory usage to be the maximum of all
of the machines’ maximal memory usages. Figure 10 shows
the peak memory vs. the number of machines for the 16 bit
multiplier. The memory used by one machine is only 0.45M
because memory overhead is unnecessary. When two ma-
chines are used, event reconstruction uses 1.79 times less
memory than dynamic checkpointing and 2.34 times less
than pure Time Warp. The ratio between event reconstruc-
tion and dynamic checkpointing decreases when more ma-
chines are used. The reason for this decrease is that the av-
erage number of events processed decreases when more ma-
chines are used, and consequently the memory occupied by
event saving decreases. When 6 machines are used, event

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

1 2 3 4 5 6
0

10

20

30

40

50

60

M
em

or
y

co
ns

um
pt

io
n(

M
)

Memory consumption breakdown for 16 bits Multiplier

state saving
event saving

1 2 3 4 5 6
0

20

40

60

80

100

Number of machines

M
em

or
y

co
ns

um
pt

io
n(

M
)

Memory consumption breakdown for S38584

state saving
event saving

Figure 9. Memory consumption breakdown

reconstruction uses 1.29 times less memory then is used by
dynamic checkpointing.

1 2 3 4 5 6
0

10

20

30

40

50

60

70

Number of machines

P
ea

k
M

em
or

y
U

sa
ge

(M
)

Memory consumption for 16 bits multiplier

Pure TW
TW with ER
TW with DC

Figure 10. Memory consumption for 16 bits
multiplier

Figure 11 presents the peak memory vs. the number of
machines for S38584. Time Warp uses 119.06M when 2
machines are used. This leads to memory swapping and bad
performance, as shown in Figure 13. Event reconstruction
uses 54.21M when two machines are used, versus 99.18M
by dynamic checkpointing.

1 2 3 4 5 6
0

20

40

60

80

100

120

Number of machines

P
ea

k
M

em
or

y
U

sa
ge

(M
)

TW with ER
TW with DC
pure TW

Figure 11. Memory consumption for S38584

6.2 Simulation Time

The simulation time vs. the number of machines for the
16 bit multiplier is presented in figure 12.

1 2 3 4 5 6
5

10

15

20

25

30

35

40

Number of machines

S
im

ul
at

io
n

T
im

e(
S

ec
on

ds
)

Simulation time for 16 bits multiplier

Pure TW
TW with ER
TW with DC

Figure 12. Simulation Time for 16 bits multi-
plier

We observe from figure 12 that event reconstruction re-
sults in a 10% execution time improvement over dynamic
checkpointing and a 40% improvement over Time Warp
when 2 machines are used. The speedup decreases when
more machines are used for the same reason that the im-
provement in memory consumption diminishes when more
machines are used. The speedup obtained using event re-
construction is 3% better then dynamic checkpointing and

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

35% better then Time Warp when 6 machines are used.
Figure 13 presents the simulation time vs. the number

of machines for S38584. The simulation time of pure Time
Warp is 25.55 because of memory swapping. Both dynamic
checkpointing and event reconstruction eliminate memory
swapping. However, event reconstruction is 11% faster than
dynamic checkpointing.

1 2 3 4 5 6
12

14

16

18

20

22

24

26

Number of machines

S
im

ul
at

io
n

tim
e(

se
co

nd
s)

TW with ER
TW with DC
pure TW

Figure 13. Simulation Time for S38584

7 Conclusions and work in progress

Time Warp is known to use a great deal of memory. In
this paper, we observe that event saving is a significant fac-
tor in memory consumption for optimistic VLSI simulation.
Our proposed technique of event reconstruction eliminates
event saving by reconstructing events from the state queue.
For simulations with fine event granularity and small state
size such as the VLSI logic simulation, event reconstruction
yields a significant reduction in memory utilization com-
pared to checkpointing. This reduction leads to a faster ex-
ecution time. Finally, event reconstruction facilitates load
balancing because only the state queue of an LP needs to be
moved between processors. We plan to implement dynamic
load balancing in DVS[9].

References

[1] Herve Avril and Carl Tropper. Scalable clustered time
warp and logic simulation. VLSI design, 00:1–23,
1998.

[2] M. Bailey, J. Briner, and R. Chamberlain. Parallel
logic simulation of vlsi systems. ACM Computing Sur-
veys, 26(03):255–295, Sept. 1994.

[3] H. Bauer and Sporrer C. Reducing rollback overhead
in time-warp based distributed simulation with opti-
mized incremental state saving. In Proc. of the 26th
Annual Simulation Symposium, pages 12–20. Socity
for Computer Simulation, April 1993.

[4] S. Bellenot. State skipping performance with the time
warp operating system. In 6th Workshop on Parallel
and Distributed Simulation, pages 53–61. Socity for
Computer Simulation, January 1992.

[5] Christopher D. Carothers, Kalyan S. Perumalla, and
Richard Fujimoto. Efficient optimistic parallel sim-
ulations using reverse computation. In Workshop on
Parallel and Distributed Simulation, pages 126–135,
1999.

[6] Hai Huang. A partitioning framework for distributed
verilog simulation. Master’s thesis, School of Com-
puter Science, McGill University, 2003.

[7] P.A. Wilsey J. Fleischmann. Comparative analysis of
periodic state saving techniques in time warp simula-
tors. In Ninth Workshop on Parallel and Distributed
Simulation (PADS’95), pages 50–58, June 1995.

[8] D. Jefferson. Virtual time. ACM Transactions on
Programming Lauguages and Systems, 7(3):405–425,
1985.

[9] Lijun Li, Hai Huang, and Carl Tropper. Dvs: an
object-oriented framework for distributed verilog sim-
ulation. In Parallel and Distributed Simulation, 2003.
(PADS 2003), pages 173–180, June 2003.

[10] Yi-Bing Lin, Bruno R. Preiss, Wayne M. Loucks,
and Edward D. Lazowska. Selecting the checkpoint
interval in time warp parallel simulation. In Proc.
1993 Workshop on Parallel and Distributed Simula-
tion, pages 3–10. Institute of Electrical and Electron-
ics Engineers, May 1993.

[11] Donald E. Thomas and Philip R. Moorby. The Ver-
ilog Hardware Description Language Fourth Edition.
KLUWER Academic Publisher, 1992.

[12] Carl Tropper. Parallel Discrete-Event Simulation Ap-
plications. Journal of Parallel and Distributed Com-
puting, 62:327–335, 2002.

[13] P. Wilsey and A. Palaniswamy. Rollback relaxation:
A technique for reducing rollback costs in an opti-
mistically synchronized simulation. In International
Conference on Simulation and Hardware Description
Languages, Society for Computer Simulation, pages
143–148, January 1994.

Proceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS’04)

1087-4097/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

