
DVS: An Object-Oriented Framework for Distributed Verilog Simulation

Lijun Li, Hai Huang and Carl Tropper
School of Computer Science

McGill University
Montreal, Canada

lli22, hhuang17, carl@cs.mcgill.ca

Abstract

There is a wide-spread usage of hardware design lan-
guages(HDL) to speed up the time-to-market for the design
of modern digital systems. Verification engineers can sim-
ulate hardware in order to verify its performance and cor-
rectness with help of an HDL. However, simulation can’t
keep pace with the growth in size and complexity of circuits
and has become a bottleneck of the design process. Dis-
tributed HDL simulation on a cluster of workstations has
the potential to provide a cost-effective solution to this prob-
lem.

In this paper, we describe the design and implementa-
tion of DVS, an object-oriented framework for distributed
Verilog simulation. Verilog is an HDL which sees wide in-
dustrial use. DVS is an outgrowth of Clustered Time Warp,
originally developed for logic simulation. The design of the
framework emphasizes simplicity and extensibility and aims
to accommodate experiments involving partitioning and dy-
namic load balancing. Preliminary results obtained by sim-
ulating a 16bit multiplier are presented.

1 Introduction

Moore’s Law states that computational power will
roughly double every 18 months. To the semiconductor de-
signer, this means a never-ending challenge in bringing in-
creasingly larger and more complex IC(Integrated Circuit)
to market.

The complexity and size of digital systems described by
Verilog continues to grow. The introduction of the system-
on-chip(SoC), which contains CPUs, memory and analog
circuitry on a single chip has only served to exacerbate this
problem. The SoC is intended for use in embedded systems.
Sequential Verilog simulators, or even specialized hardware
accelerators, cannot keep up with this pace, and has become
a bottleneck of the design process. To accommodate the
growing need for increased memory demands as well as the

need for decreased simulation time, it is necessary to make
use of distributed and parallel computer systems[18]. Net-
works of workstations provide a cost-effective environment
for distributed simulation.

Verilog and VHDL are both important VLSI design lan-
guages. However, research efforts to date have focused
on distributed VHDL simulators[7, 12, 13]. This paper
presents a description of our research to date on a distributed
Verilog simulation framework. To the best of our knowl-
edge, ours is the first distributed Verilog simulator.

Writing a Verilog compiler represents a substantial com-
mitment. Consequently, we made use of Icarus Verilog, an
open source Verilog compiler and simulator. We also re-
designed Clustered Time Warp[2] and used it as our back-
end simulation environment.

The rest of this paper is organized as follows. In sec-
tion 2 we (briefly) introduce PDES, the Icarus Verilog com-
piler and VVP(Verilog Virtual Processor) simulator. In
section 3 we detail our effort to design and implement
DVS(Distributed Verilog Simulator), a distributed Verilog
simulation framework. Preliminary results obtained by sim-
ulating a 16bit multiplier are presented in section 4, while
the last section contains our conclusions.

2 Background and Related work

2.1 PDES

A distributed simulation system is composed of pro-
cesses which communicate with each other via message
passing. Each process simulates a portion of the physical
system and is referred to as a logical process(LP). During
the simulation, LPs create events, send events to other LPs
and receive events from others LPs. Two families of syn-
chronization algorithms are widely used in order to main-
tain causality in a distributed simulation, known as the con-
servative and optimistic algorithms.

Conservative algorithms[6] are characterized by block-
ing behavior. An LP blocks until it has a safe event to pro-

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03)
1087-4097/03 $17.00 © 2003 IEEE

cess.
An example of an optimistic algorithm is Time Warp[9].

In Time Warp, LPs maintain an input queue which con-
tains events received from other LPs, an output queue which
stores copies of events sent to other LPs and a state list
which stores the LPs state at checkpoint. Time Warp al-
lows a local causality violation but uses rollback and anti-
messages to correct possibly erroneous computation. Time
Warp can suffer from cascading rollbacks and excessive
memory consumption.

2.2 Verilog

p1
p2 p3

p4

C ~D A B ~B ~D A C

g1 g2 g3 g4

g5

eSeg

//structural description
Module binaryToESeg;
 wire eSeg, p1, p2, p3, p4;
 reg A, B, C, D;

 nand #1
 g1(p1, C, ~D),
 g2(p2, A, B),
 g3(p3, ~b, ~D),
 g4(p4, A, C),
 g5(eSeg, p1, p2, p3, p4);
endmodule

//behavioral description
Module binaryToESeg;
 wire eSeg, p1, p2, p3, p4;
 reg A, B, C, D;

 always @(A or B or C or D)
 begin
 eSeg = 1;
 if(~A&D) eSeg = 0;
 if (~A&B&~C) eSeg = 0;
 if (~B&~C&D) eSeg = 0;
 end
endmodule

Figure 1. Structural and behavioral descrip-
tion of Verilog

The Verilog Hardware Description Language is stan-
dardized in IEEE standard #1364-1995. It supports both
a behavioral description and a structural description of a
digital system. Figure 1 shows an example of how Verilog
describes an IC design[17]. It is part of a binary to seven
segment display driver.

The Verilog language describes a digital system as a set
of modules. Each module has an interface to other modules
and represents a logical unit in a structural description (such
as an interconnection of gates) or a behavioral description
which is similar to a programming language.

Verilog is designed to allow concurrent execution. A dig-
ital system can be conceived of as a set of concurrent pro-
cesses found in initial blocks, always blocks and continuous
assignments. Wait and event control statements can be used
to synchronize two concurrent processes. The existence of
concurrent processes in Verilog indicates that it is suitable
for distributed simulation[4]. A comprehensive description
of Verilog can be found in [17].

2.3 Overview of Icarus Verilog

Icarus Verilog [19] is an open-source EDA (Electronic
Design Automation) Verilog simulator being developed by
Stephen Williams. As shown in figure 2, Icarus Verilog
includes two independent parts: an IVerilog compiler and
a VVP(Verilog Virtual Processor) simulator. The bridge
connecting these two parts is VVP assembly code, an in-
termediate representation of the original circuit. The IVer-
ilog compiler is a translator that translates the input Verilog
source code into VVP assembly code. The VVP simulator
is an event-driven simulation engine, which interprets VVP
assembly code and process the events. We give a brief in-
troduction to Icarus Verilog in the following sections.

Preprocessed Source

Parser

Internal pform

Elaboration

Internal netlist

Optimizer

Optimized netlist

Code Generator

Preprocessor

iverilog Compiler

vvp Simulator

verilog Source File

Simulation Results

vvp Assembly Code

Figure 2. Architecture for Icarus Verilog

2.3.1 IVerilog Compiler

Although the Verilog language enhances modularity and en-
capsulation by the use of modules in the source file of a cir-
cuit, the hierarchical structure of modules is not appropriate
for the purpose of simulation. The IVerilog compiler flat-
tens modules in the original source file in the following five
consecutive phases:

� Preprocessor. It mainly performs file inclusion for ’in-
clude directive and macro substitution for ’define di-
rective.

� Parser. The preprocessed source file is parsed and its
internal representation is generated with syntax and se-
mantic checking performed.

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03)
1087-4097/03 $17.00 © 2003 IEEE

� Elaboration. The root module is located, unresolved
references are resolved, and all instantiations of mod-
ules are expanded. After scope elaboration and netlist
elaboration, an internal flattened netlist is generated
from the hierarchically structured modules.

� Optimizer. Some useful transformations can be per-
formed on the internal netlist in order to simplify
netlist and improve simulation efficiency.

� Code generator. All circuit information is now stored
in the flattened and optimized internal netlist. There
are five target formats that can be generated from the
netlist, of which VVP assembly code is the default one
used for simulation.

2.3.2 VVP Simulator

The VVP simulator is an interpreter for VVP assembly
code. It parses VVP assembly code to generate netlist of
structural items and exert input vectors to drive the simula-
tion.

The separation of the IVerilog compiler and the VVP
simulator is similar to the separation of compiler and inter-
preter in Java. The VVP assembly code is the counterpart
of bytecode in Java. Since large VLSI circuit files normally
take a long time for compilation, this strategy saves a lot
of time. Once the VVP assembly code file is generated by
the IVerilog compiler, we can use it in our partitioner and
distributed simulator.

3 Design and implementation of the simula-
tion framework

In this section, we explain our effort to design and im-
plement DVS, an object-oriented framework for distributed
Verilog simulation.

3.1 Architecture

Figure 3 illustrates the architecture of DVS. It takes VVP
assembly code as input, which is generated by the IVerilog
compiler for simulation efficiency. The VVP parser con-
structs the functor list and virtual thread list, which will be
used by the distributed simulation engine after partitioning.

The 3 layers of DVS are shown in the right side of fig-
ure 3. The bottom layer is the communication layer which
provides a common message parsing interface to the upper
layer. Inside this layer, the software communication plat-
form can be PVM or MPI. Users can choose one of them
without touching the code of upper layer.

The middle layer is a parallel discrete event simulation
kernel, OOCTW, which is an object-oriented version of

Avril’s CTW(Clustered Time Warp)[2]. It provides services
such as rollback, state saving and restoring, GVT computa-
tion and fossil collection to the top layer.

The top layer is the distributed simulation engine, which
includes an event process handler and an interpreter which
executes instructions in the code space of virtual thread.

vvp Parser

Partitioner

vvp Assembly Code

Functor List
Vthread List

Simulation Results

Distributed
Simulation Engine

OOCTW

MPI / PVM

Figure 3. Architecture of DVS

3.2 VVP parser

The Verilog language provides the ability to model a cir-
cuit by means of both structural descriptions and behav-
ioral descriptions. Structural descriptions model the circuit
as a network of interconnecting gates and wires, while be-
havioral descriptions model the circuit at a higher level as
always and initial blocks. They are translated to .functor
statement and .thread statement in the VVP assembly code
generated by the IVerilog compiler. The VVP parser parses
VVP assembly code and instantiates these structural and be-
havioral statements as functors and vthreads which are de-
scribed in the following sections.

3.2.1 Structural item: functor

Structural items are represented by functors in the VVP sim-
ulator. Each functor has four input ports and one output
port. Gates with more than four input ports are divided into
smaller gates and cascaded. Functors also have associated
delay values. All functors are stored in a functor list which
will be used for partitioning and simulation.

During the simulation, when the value in any input port
of a functor changes, a new output value is calculated by
querying a truth table. If the result is different from the
current value in the output port, the value in the output port
is updated, and a propagation event is scheduled with the
associated delay value. After this delay time expires, the
propagation event is processed, and the signal is assigned to
corresponding input ports of all fanout functors.

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03)
1087-4097/03 $17.00 © 2003 IEEE

ParFMRB

1

#partition_id
Vertex

Edge1
*

1 *

+buildGraph()
+savePartition()
+loadPartition()

Graph

LogicalProcess

Functor VThread
FunctorGraph NetlistGraph

+doPartition()

ParBase
1

ParDFS ParBFS ParRandom ParCake

Figure 4. UML description of partitioner

3.2.2 Behavioral item: vthread

Behavioral items are represented by virtual threads
(vthread) in the VVP simulator. It should be noted that
vthreads run in the virtual machine of the VVP simulator
instead of running directly in the operating system. Each
vthread contains a mechanism for thread execution, includ-
ing a program counter, 4 numeric index registers and 64k
private bit registers.

All vthreads instantiated by the VVP parser are orga-
nized as a vthread list. In gate-level logic simulation,
vthreads are normally used to drive functors with input vec-
tors.

3.3 Partitioner

Partitioning plays an important role in affecting the per-
formance of parallel logic simulation[3]. In order to ex-
ploit different partitioning algorithms in DVS, we designed
a generic partitioner and integrated it into the framework of
DVS.

3.3.1 Design of Partitioner

The design goal of our partitioner is to provide a flexible in-
frastructure for testing different partitioning algorithms ap-
plied to different circuit implementations. As shown in fig-
ure 4, the partitioner has two major parts: the partitioning
algorithm and the circuit graph being partitioned.

The circuit graph is represented by Vertex and Edge ob-
jects in the abstract Graph class. The Graph class also pro-
vides interfaces to partitioning algorithms for retrieving in-
formation for vertices and edges in a graph. Designers of
different simulators can subclass it and implement the build-
Graph method to fill in vertices and edges using application-

specific information. In DVS, we use FunctorGraph to build
the graph using the functor list.

The base class for partitioning algorithms, ParBase, is
also an abstract class. All partitioning algorithms should
be derived from ParBase and provides an algorithm-specific
implementation for the doPartition method. In DVS, the
partitioner will automatically select the corresponding al-
gorithm at run time based on the partitioning argument in
the command line.

3.3.2 Partitioning functors and vthreads

Since circuit information is available in both the IVerilog
compiler and the VVP simulator, we can perform partition-
ing on either side. After investigating the internal data struc-
tures on both sides, and also considering that both functors
and vthreads are LPs in DVS, we decide to use the functor
list and vthread list in our partitioning algorithm.

The structure of the functor list is similar to an adja-
cency list, which is convenient for partitioning. Further-
more, since every computer in the simulation has the same
copy of functor list, it can be readily used for message rout-
ing when the destination functor resides on remote com-
puter. If dynamic load balancing is performed during the
simulation, the re-partitioning can be done on the functor
list, and the re-mapping of functors is as simple as modify-
ing the partition-id of corresponding functors.

The treatment of vthreads is different from functors. We
observe that when functors and vthreads are placed in the
same partition, more rollbacks tend to occur. OOCTW uses
clustered rollback, i.e., a straggler at one LP causes all LPs
in the same cluster to rollback. Vthreads tends to advance
much faster than functors in LVT because behavioral sim-
ulation is more efficient than logic simulation. Thus a fast
vthread is likely to cause all of the slow functors in the same
cluster to rollback more frequently. Therefore, we put all
of the vthreads on one computer. Since the total number of
vthreads is small in gate-level logic simulation, the lost con-
currency can be compensated for by fewer rollbacks. The
large number of functors are partitioned and assigned to the
rest of the computers in the simulation.

3.3.3 Partitioning metrics and direction of ongoing re-
search

The graph partitioning problem is NP-complete; therefore
most partitioning algorithms are based on heuristics. A
comprehensive survey of netlist partitioning can be found
in [1]. Empirical studies [3, 2, 11, 16] show that there are
three major factors that determine the quality of a partition:
load balance, communication and concurrency. The goal of
a partitioning algorithm is to maintain load balance, mini-
mize communication and exploit concurrency. The optimal

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03)
1087-4097/03 $17.00 © 2003 IEEE

partition is the one that finds the best tradeoff among these
three factors.

CLIP/CDIP[15] and Metis/hMetis[10, 8] are state-of-art
algorithms for large circuit partitioning, both of which are
fast and result in a small cutsize. However, they only con-
sider communication and load balance. Concurrency is not
addressed in either CLIP or Metis. We aim to introduce
concurrency into CLIP or Metis in our ongoing research. In
order to achieve load balancing, pre-simulation[5] can also
be used to get an accurate activity level for each gate.

3.4 OOCTW(Object-oriented CTW)

3.4.1 Motivation

Clustered Time Warp(CTW)[2] was developed with logic
simulation in mind. LPs (representing gates) are grouped
into clusters. Each cluster has an input and an output queue
associated with it. Events were executed sequentially within
the cluster. Several rollback and checkpoint algorithms
were developed for use with CTW.

CTW is a good starting point for the implementation
of object-oriented Time Warp. A cluster bundles gates to-
gether in order to overcome the fine event granularity of
VLSI simulation. Furthermore, a cluster provides a very
good basis for load balancing. We can also move an en-
tire cluster between processes instead of just moving gates.
However, CTW is not object-oriented. It is not easy to inte-
grate it directly with the sequential simulator. Therefore, we
used an object-oriented paradigm to transform CTW into
OOCTW, which (we hope) will be an open and flexible syn-
chronization backend.

The main design goal of OOCTW is to integrate it with
the original Verilog simulator. The motivation for the de-
sign is to limit the changes made to the sequential simula-
tor because we hope to take advantage of its new version.
The other design goal is to make the Time Warp library
more reusable, readable and understandable so new mem-
bers in the laboratory can concentrate on the optimization
algorithms instead of falling into the black hole of Time
Warp. Finally, the Time Warp library must be flexible and
open so it can be a test bed for new optimization algorithms.

To date we have only implemented one of the roll-
back algorithms developed for CTW, clustered rollback, in
OOCTW. In clustered rollback, when a straggler or an an-
timessage arrives at the cluster, all of the LPs with larger
LVTs than the straggler or the antimessage are rolled back.
Other modifications of CTW are checkpointing when the
LVT of an LP advances and the use of Mattern’s GVT
algorithm[14].

LogicalProcess

EventState

gvt_event

GVTManager

Cluster

FunctorState
VThreadState

Functor VThread

CommManager Statistics

VerilogEvent

Figure 5. UML description of OOCTW

3.4.2 Class hierarchy of OOCTW

The diagram above the dashed rectangle in figure 5 is a
UML description of OOCTW. The Cluster is the container
and scheduler of all LPs. The scheduling algorithm we em-
ployed is LTSF(Lowest Timestamp First). An LP is sched-
uled for execution when it has an event with the lowest
timestamp in the cluster. The cluster manages a future event
list and an output event list. The GVT computation is also
processed in the cluster. Each time the cluster receives a
new GVT, it invokes fossil collection. Statistics are also
collected in the Cluster such as simulation time, rollback
number, communication cost, etc.

As shown in figure 5, class LP executes rollback and
provides virtual methods for state saving and state restora-
tion. The derived classes override the virtual methods to
have application-specific implementations of state saving
and restoration. An LP maintains a processed event list but
doesn’t maintain an output event list. When an LP sends
out an event which crosses the cluster boundaries, it inserts
a copy of the event into the output event list of the cluster.

The event class provides operators such as�,� and ==
to compare the timestamp of two events. The procedures
to decide whether an event is a negative event are also pro-
vided in the class. Class gvt event inherits from event class.
It is used to compute the GVT via Mattern’s algorithm[14].

The base class for state is an abstract base class. It pro-
vides an interface for the application specific state. In DVS,
there are two different kinds of LPs with their own state,
which will be explained in detail in the following section.

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03)
1087-4097/03 $17.00 © 2003 IEEE

Type Usage
THREAD Schedule a virtual thread
EVAL Evaluate the functor
PROP Propagate the value change after gate delay
INQUIRY Inquiry value of a remote functor
RESPOND Respond inquiry of functor value
FINISH Finish of the simulation

Table 1. Events in distributed Verilog simula-
tion engine

3.5 Distributed Simulation Engine

The original sequential VVP simulator is turned into
a distributed simulation engine via its integration with
OOCTW. The classes in the distributed simulation engine
are shown in the dashed rectangle of figure 5. Functor de-
fines structural items in Verilog while Vthread defines be-
havioral blocks. They both inherit from class LP and over-
ride the abstract member methods so they are able to save
state, rollback and restore state. FunctorState and Vthread-
State implement the interface of state, which is used to log
the state of the functors and vthreads.

VerilogEvent inherits from class event. Several types of
events in the distributed simulation engine are shown in ta-
ble 1.

THREAD event is used to awake the blocked virtual
thread which is waiting for an event to happen, such as a
value change of a register. EVAL and PROP are used to
propagate value changes among the network of functors.

INQUIRY event is used to detect the value of a func-
tor located in a remote host. For example, the variable ’a’
in statement $display($time,,a) may be located in a remote
processor. Therefore, the virtual thread will send an IN-
QUIRY message to get the value of the remote functor. The
remote processor will send back the response as soon as it
processes the event.

After partitioning, the simulator schedules the THREAD
event to invoke the virtual threads whose partition ID
matches the host id of the local machine. These virtual
threads will feeds input vectors to the network of functors.
The simulator keeps processing events until it gets FINISH
event broadcasted by machine 0.

Each simulator in different machines keeps the topology
of all of the functors in order to route messages. However,
only those functors with the same ID as the local host are ac-
tive. The passive functors are only used to route messages.
No evaluation happens on passive functors.

The $display and $monitor in Verilog are used to print
values of variables or logic gates. However, the state of an
LP is not stable until its LVT is smaller than GVT. There-

fore, I/O can’t be committed immediately after the instruc-
tion is issued. Hence, we created a delayed I/O instruction
list to save all I/O instructions and the time at which they
are issued. Each time a new GVT is generated, the simula-
tor will check the delayed I/O list. If the timestamp of the
I/O instruction is smaller than GVT, it will be committed.

3.6 Optimization to distributed Verilog simula-
tion engine

� Direct execution of zero delay event

When the simulator generates a zero delay event which
has the same timestamp as the current LVT, it executes
the event directly without inserting it into the event
queue then popping it out and executing it. This intro-
duces some indeterminism but doesn’t affect the final
simulation result. The direct execution reduces mem-
ory operations and speeds up the simulation.

In fact, there are a lot of simultaneous events in the
Verilog simulation. A functor will propagate its value
change to all of its fanout functors. All propagated
evaluation events are simultaneous events which have
the same timestamp as the current LVT because we as-
sume zero wire delay. If the fanout functors resides on
the same cluster, the Verilog simulator can execute the
corresponding evaluation events directly.

� on-the-fly fossil collection

In order to improve the efficiency of the simulator, the
designer of Icarus simulator maintains a free event list
in order to minimize the invocation of the system calls
such as malloc/free and new/delete. Each time the sim-
ulator schedules a new event, it first checks the free list.
If it is not empty, the new event can directly use the
memory space occupied by the head of the free list.
When the simulator finishes processing the event, it
puts the event pointer into the free list instead of delet-
ing the memory space.

The free list is inherited in the distributed simulator.
Moreover, we created the free state list for state saving
of LPs.

4 Experiments

All of our experiments were conducted on a network
of 8 computers, each of which has dual PentiumIII pro-
cessors and 256M RAM. They are interconnected by a
Myrinet(www.myri.com), a high speed network with link
capacity of 1Gbit per second. All machines run the
FreeBSD operating system. LAM MPI is used for message
passing between different processors.

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03)
1087-4097/03 $17.00 © 2003 IEEE

The Verilog source file used in the simulation describes
a 16bit multiplier. It includes 2416 gates and one virtual
thread which feed 50 random vectors to the circuit. We
assume the unit gate delay and zero transmission delay on
the wire. Only the simulation results with BFS partition-
ing is presented because we have compared the performance
of BFS, DFS and random partitioning algorithm and found
BFS to have the best performance. BFS partitioning algo-
rithm can reduce communication, which is the most expen-
sive operation in distributed environment. Each data point
collected in the experiments is an average of five consecu-
tive simulation runs. The number of machines in the figure
doesn’t include machine 0 which only contains vthreads.
The simulation time for 1 machine is the running time of
the DVS without partitioning.

1 2 3 4 5
14

15

16

17

18

19

20

21

22

Number of machines

S
im

ul
at

io
n

tim
e(

se
co

nd
s)

Figure 6. Simulation time in seconds vs. num-
ber of machines

The simulation time vs. the number of machines is
shown in figure 6. It should be noticed that the simulation
time is longer when 2 machines are used. This is caused by
the load imbalance and communication cost. From the up-
per part in figure 7, we know that the partitioning algorithm
only reduces the total number of event processed on ma-
chine 1 by a small amount when 2 machines are used. How-
ever, the communication cost increases by a large amount.
The total communication cost can be computed by multi-
plying the number messages shown in the lower part of fig-
ure 7 with average sending/receiving cost, which is listed
in table 2. The reduction in workload is not large enough
to compensate the communication cost. Therefore, the total
simulation time for 2 machines is longer than the time for 1
machine.

Using more machines reduces the number of events pro-
cessed per machine a great deal, thus the time used to pro-

1 2 3 4 5
0

2

4

6

8

10
x 10

5

Number of machines

N
um

be
r

of
 e

ve
nt

s
pr

oc
es

se
d

1 2 3 4 5
0

1

2

3

4

5
x 10

4

Number of machines

N
um

be
r

of
 m

es
sa

ge
s

se
nt

 a
nd

 r
ec

ei
ve

d

Figure 7. Number of events processed by ev-
ery machine(Upper part) and number of mes-
sages sent and received(Lower part) by every
machine vs. number of machines. Note: The
two figures use different scale.

Operation Time
Processing an event 1.83us
Saving a state 2.08us
Saving an event 2.56us
Sending a message(Blocking) 31.9us
Receiving a message(Blocking) 32.2us
Message latency 10us

Table 2. Cost of operations in DVS

cess events is reduced by the amount which is large enough
to compensate the communication cost involved in the dis-
tributed simulation. The simulation times keep decreasing
when the number of machines increases from 3 to 5. We get
a speedup of 1.4 when 5 machines are used.

Unfortunately, so far DVS still runs slower than the orig-
inal Icarus Verilog simulator. We attribute this to the fine
granularity of VLSI simulation, large communication cost,
load imbalance and the small circuit size of our Verilog
source file. From table 2, we know that overhead for VLSI
simulation is more than 2 times the cost of processing an
event.

By increasing the event granularity, reducing communi-
cation costs and achieving load balance, we look forward
to outperforming the original simulator in further experi-
ments(in which we simulate larger circuits) and demonstrat-
ing the scalability of DVS as well.

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03)
1087-4097/03 $17.00 © 2003 IEEE

5 Conclusions and work in progress

We have succeeded in creating DVS, an object-oriented
framework for distributed Verilog simulation. It employs
OOCTW as the synchronization backend and takes advan-
tage of the open source code of Icarus Verilog simulator. It
is designed to be flexible for future extension and optimiza-
tion.

To our knowledge, DVS is the first distributed Verilog
simulator. Previous research in distributed HDL simulation
has been focused on VHDL[7, 12, 13].

The performance of DVS in our preliminary experiments
is promising. Many optimizations can be applied to make
it more efficient. Certainly, larger circuits will lead to bet-
ter speedup, and will hopefully be able to demonstrate the
scalability of DVS.

From our experiments, it is clear that an effective load-
balancing and/or partitioning algorithm contains the key to
the success of VLSI simulation. We intend to focus our
effort in this direction, as previously discussed.

References

[1] C. J. Alpert and A. B. Kahng. Recent directions in
netlist partitioning: A survey. Integr. VLSI Journal,
19(1-2):1–81, Aug 1995.

[2] Herve Avril and Carl Tropper. Scalable clustered time
warp and logic simulation. VLSI design, 00:1–23,
1998.

[3] M. L. Briner Bailey and Chamberlain. Parallel logic
simulation of vlsi systems. In ACM Computing Sur-
veys, volume 26, pages 255–294, Sept 1994.

[4] Prithviraj Banerjee. Parallel Algorithms for VLSI
Computer Aided Design. Prentice Hall, Inc., 1994.

[5] R. D. Chamberlain and C. D. Henderson. Evaluation
the use of pre-simulation in vlsi circuit partitioning.
In Proceedings of the 8th Workshop on Parallel and
Distributed Simulation(PADS’94), 1994.

[6] K.M. Chandy and J. Misra. Asynchronous dis-
tributed simulation via a sequence of parallel compu-
tattions. Communications of the ACM, 24(11):198–
206, November 1981.

[7] Radharamanan Radhakrihnan Dale E. Martin and
Philip Wilsey. Analysis and simulation of mixed-
technology vlsi systems. Journal of Parallel and Dis-
tributed Computing, 62:468–493, 2002.

[8] Vipin Kumar George Karypis, Rajat Aggarwal and
Shashi Shekhar. Multilevel hypergraph partitioning:

Applications in vlsi domain. In ACM/IEEE Design
Automation Conference, pages 526–529, 1997.

[9] D. Jefferson. Virtual time. ACM Transactions on
Programming Lauguages and Systems, 7(3):405–425,
1985.

[10] George Karypis and Vipin Kumar. A fast and high
quality multilevel scheme for partitioning irregular
graphs. Technical Report TR 95-035, Department
of Computer Science, University of Minnesota, Min-
neapolis, MN, 1995.

[11] H. K. Kim and J. Jean. Concurrency preserving
partitioning(cpp) for parallel logic simulation. In
10th Workshop on parallel and distributed simula-
tion(PADS’95), pages 98–105, May 1996.

[12] V. Krishnaswamy and P. Banerjee. Design and imple-
mentation of an actor based parallel vhdl simulator.
In 9th Workshop on parallel and distributed simula-
tion(PADS’95), pages 135–143, 1995.

[13] D. Lungeanu and C.-J.R. Shi. Parallel and distributed
vhdl simulation. In Proc. DATE, pages 658–662,
March 2000.

[14] F. Mattern. Efficient algorithms for distributed snap-
shots and global virtual time approximation. Journal
of Parallel and Distributed Computing, 18(4):423–
434, 1993.

[15] Wenyong Deng Shantanu Dutt. Cluster-aware itera-
tive improvement techniques for partitioning large vlsi
circuits. ACM Transactions on Design Automation of
Electronic Systems(TODAES), 7(1):91–121, Jan 2002.

[16] Swaminathan Subramanian, Dhananjai M. Rao, and
Philip A. Wilsey. Applying multilevel partitioning to
parallel logic simulation. In Parallel and Distributed
Computing Practices, volume 4, pages 37–59, March
2001.

[17] Donald E. Thomas and Philip R. Moorby. The Ver-
ilog Hardware Description Language Fourth Edition.
KLUWER Academic Publisher, 1992.

[18] Carl Tropper. Parallel Discrete-Event Simulation Ap-
plications. Journal of Parallel and Distributed Com-
puting, 62:327–335, 2002.

[19] Stephen Williams. Icarus Verilog.
http://icarus.com/eda/verilog.

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03)
1087-4097/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

