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1 Myerson’s Auction Recap

1.1 Myerson’s Theorem

Recall the statement of Myerson’s Theorem:

Theorem (Myerson, ‘81). For any single-dimensional environment, let F = F1 ×F2 × · · · × Fn be the
joint value distribution, and (x,p) be a DSIC mechanism. The expected revenue of this is mechanism is
given by

Ev∼F

[
n∑

i=1

pi(v)

]
= Ev∼F

[
n∑

i=1

xi(v)φi(vi)

]
,

where φi(vi) := vi − (1 − Fi(vi))/fi(vi) is called bidder i’s virtual value (fi is the density function for
Fi).

Myerson showed that using the above result, if we want to maximize the revenue, a simple auction can
do the trick. Such auction, called Myerson’s Auction, are done as follows:

• Bidders report their values;

• The reported values are transformed into virtual values;

• The virtual-welfare maximizing allocation is chosen;

• Charge the payments according to Myerson’s Lemma;

• Transformation depends on the distributions Fi’s; it is a deterministic function (the virtual value
function).

1.2 Some nice properties of Myerson’s Auction

• DSIC, but optimal among all Bayesian Incentive Compatible (BIC) mechanisms.

• Deterministic, but optimal among all possibly randomized mechanisms. You might think that a
randomized mechanism would give higher revenue, yet Myerson’s auction is maximal. If we are in
a single-dimensional setting, the best mechanism is always deterministic. This does not hold for
multi-dimensional settings as we shall see below.1

• Central open problem in mathematical economics: How can we extend Myerson’s result to
multi-dimensional settings? Important progress has been made in the past few years. We will not
discuss these in class.

1Recall from Lecture 3 that a single dimensional environment is defined as having n bidders, with each bidder i having
a private valuation vi representing its value “per unit of stuff”. There is also a feasible set X, each element of which is an
n-dimensional vector x = (x1, . . . , xn), where xi denotes the “amount of stuff” given to bidder i.
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2 Challenges in Multi-Dimensional Settings

Besides being computationally more challenging, the optimal auctions in multi-dimensional environments
are also structurally more involved. We will consider three examples with two items and a single bidder,
and we will see that many of the counterintuitive phenomena already exist in such simple cases.

2.1 First example

In this example, we will assume that the bidder is additive, that is, v({1, 2}) = v1+v2. To further simplify
the setting, we will also suppose that v1 and v2 are both drawn i.i.d from a distribution F = U{1, 2},
i.e. Pr[vi = 1] = 1

2 = Pr[vi = 2].
What is the optimal auction here? It is somewhat unclear. The natural attempt would be to sell both

items using Myerson’s Auction separately. Intuitively, we would think that this gives a good revenue.
It is clear that in this case, the expected revenue is 2. This follows from the fact the expected revenue
from each item is at most 1. If we bundle the two items together and offer the package at $3, then the
expected revenue is

Revenue = 3× P[v1 + v2 ≥ 3] = 3× 3

4
=

9

4
> 2.

Hence, bundling items may help!
The effect of bundling becomes more obvious when the number of items becomes larger. Since they

are i.i.d., by the Central Limit Theorem (or Chernoff bound), we know that the bidder’s value for
the grand bundle (containing everything) will essentially be a random variable drawn from a Gaussian
distribution with mean n · µ and variance n · σ2, where µ and σ is the mean and variance of the value
for a single item.

x

f

σ2 = 0.36
σ2 = 0.64
σ2 = 1.00

Since the ratio between the standard deviation and the mean drops quickly (in the speed of
√
n). If we

set the price to be (1 − ε)n · µ, then the bidder will buy the grand bundle with probability almost 1.
Thus, revenue is almost the expected value. This is the best we can hope for.

2.2 Second example

Now, suppose we take F = U{0, 1, 2} instead. Selling the items separately gives a revenue of $4/3. The
best way to sell the grand bundle is set it at price $2, which gives the same revenue. But what are other
ways to sell the items? Consider the option of either buying of the two items for $2, or buying both
items for $3. In this case, the bidder’s choice is given by the following table:

v1\v2 0 1 2

0 $0 $0 $2
1 $0 $0 $3
2 $2 $3 $3
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Each entry has probability 1/9 and the amount assumes the bidder plays in the best possible way. Hence,
the expected revenue is

Revenue = 3× 3

9
+ 2× 2

9
=

13

9
>

4

3
.

2.3 Third example

Take two distributions F1 = U{1, 2} and F2 = U{1, 3}. Consider the option of either buying both items
for $4 or running a “lottery” where the bidder gets the first item for sure, gets the second item with
probability 1/2 and pay $2.50. The revenue in this case is just $2.65.

Every deterministic auction — where every outcome awards either nothing, the first item, the second
item, or both items — has strictly less expected revenue. Therefore, randomization may help!

3 Unit-demand Bidder Pricing Problem (UPP)

Consider the following fundamental pricing problem depicted in the figure below:

B

v1 ∼ F1

...

1 p1

...
...

vi ∼ Fi i pi

...
...

...

vn ∼ Fn n pn

?

We want to pick the item (e.g. cellphone) that maximize the utility of the bidder B, who values each
item i with vi drawn from some distribution Fi. The retailer has to come up with n prices p1, . . . , pn.
The bidder chooses the item that maximizes vi − pi, if any of them is positive. The revenue will be the
corresponding pi. We want to focus on pricing only, not considering randomized ones. In this setting, it
is important to note that using randomization can only get a constant factor better than pricing.

3.1 Our goal for UPP

We want to design a pricing scheme that achieves a constant fraction of the revenue that is achievable
by the optimal scheme. Hence, we want to design a polynomial time algorithm that takes the Fi’s as
input and outputs a pricing scheme p1, . . . , pn. We shall assume that all Fi’s are regular, that is, the
virtual value function ϕi is non-decreasing in vi.

Theorem (CHK ’07). There exists a simple pricing scheme (polynomial-time computable) that achieves
at least 1

4 of the revenue of the optimal scheme.

Remark. The constant can be improved with a better analysis.

3.2 Benchmark

We have seen approximation results before in Lecture 6,7 for simple nearly-optimal auctions. However,
the benchmark was clear there – Myerson’s auction. In the current settings however, we do not have a
good grasp on what the optimal pricing scheme is or even how it looks like. We wish to compare with
the optimal revenue, but we have no clue what the optimal revenue is. Do we know any natural upper
bound for the optimal revenue? Again, it is not immediately obvious how to proceed.
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3.3 Two scenarios

We consider two scenarios:

(A) First scenario.

• One unit-demand bidder B

• n items

• Bidder’s value for the i-th item vi
is drawn independently from Fi.

B

v1 ∼ F1

...

1

...

vi ∼ Fi i

...
...

vn ∼ Fn n

(B) Second scenario.

• n bidders

• One item I

• Bidder i’s value vi for the item
is drawn independently from Fi.

1

...

i

...

n

v1 ∼ F1

...

vi ∼ Fi I

...

vn ∼ Fn

Here is a lemma that draws an important relationship between the two scenarios described above.

Lemma. The optimal revenue achievable in scenario A is always less than the optimal revenue achievable
in scenario B.

Proof: Let PRev(p) be the expected revenue in A with pricing p. Further, let ARev(M) be the expected
revenue in B with auction M . For any p, we construct a mechanism Mp for B as follows:

We first set pi as the reserve price for bidder i, and give the item to bidder

i∗ = arg max
i

+(bi − pi).

This is our allocation rule: give the item to the bidder with largest surplus bi − pi. It is clear why this
is monotone. Thus, the mechanism is DSIC. The payment rule is given by

Payment = pi∗ + max
j 6=i∗

(bj − pj)︸ ︷︷ ︸
≥0

≥ pi∗ .

If v is the valuation in A, we buy item i∗, in which case the payment is just pi∗ . Therefore, the payment
in scenario A is always less than the optimal revenue achievable in scenario B, as desired. �

Remark. This means the revenue of Myerson’s auction in scenario B is an upper bound for the revenue
in scenario A, and we can use it as a benchmark.
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