
COMP 553: Algorithmic Game Theory

Fall 2014

Yang Cai

Lecture 21

How hard is computing a Nash

Equilibrium?

NASH, BROUWER and SPERNER

We informally define three computational problems:

• NASH: find a (appx-) Nash equilibrium in a n player game.

• BROUWER: find a (appx-) fixed point x for a continuous function f().

• SPERNER: find a trichromatic triangle (panchromatic simplex) given a

legal coloring.

Function NP (FNP)

A search problem L is defined by a relation RL(x, y) such that

RL(x, y)=1 iff y is a solution to x

A search problem L belongs to FNP iff there exists an efficient algorithm AL(x, y)

and a polynomial function pL() such that

(ii) if  y s.t. RL(x, y)=1   z with |z| ≤ pL(|x|) such that AL(x, z)=1

Clearly, SPERNER  FNP.

(i) if AL(x, z)=1  RL(x, z)=1

A search problem is called total iff for all x there exists y such that RL(x, y) =1.

Reductions between Problems

A search problem L  FNP, associated with AL(x, y) and pL , is polynomial-time

reducible to another problem L’  FNP, associated with AL’(x, y) and pL’, iff there

exist efficiently computable functions f, g such that

(i) x is input to L  f(x) is input to L’

AL’ (f(x), y)=1  AL(x, g(y))=1

RL’ (f(x), y)=0,  y  RL(x, y)=0,  y

(ii)

A search problem L is FNP-complete iff

L’ is poly-time reducible to L, for all L’  FNP

L  FNP

e.g. SAT

Our Reductions (intuitively)

NASH BROUWER SPERNER

both Reductions are polynomial-time

Is then SPERNER FNP-complete?

- With our current notion of reduction the answer is no, because SPERNER always has

a solution, while a SAT instance may not have a solution;

- To attempt an answer to this question we need to update our notion of reduction.

Suppose we try the following: we require that a solution to SPERNER informs us about

whether the SAT instance is satisfiable or not, and provides us with a solution to the

SAT instance in the ``yes’’ case;

 FNP

but if such a reduction existed, it could be turned into a non-deterministic algorithm

for checking “no” answers to SAT: guess the solution to SPERNER; this will inform
you about whether the answer to the SAT instance is “yes” or “no”, leading to

 …

A Complexity Theory of Total Search
Problems ? ??

100-feet overview of our methodology:

1. identify the combinatorial argument of existence, responsible for making the

problem total;

2. define a complexity class inspired by the argument of existence;

3. make sure that the complexity of the problem was captured as tightly as

possible (via a completeness result).

A Complexity Theory of Total Search
Problems ?

Space of Triangles

...

Starting Triangle

Recall Proof of Sperner’s Lemma

Combinatorial argument of existence?

The Non-Constructive Step

a directed graph with an unbalanced node (a node with indegree 

outdegree) must have another.

an easy parity lemma:

but, why is this non-constructive?

given a directed graph and an unbalanced node, isn’t it trivial
to find another unbalanced node?

the graph can be exponentially large, but has succinct description…

The PPAD Class [Papadimitriou ’94]

Suppose that an exponentially large graph with vertex set {0,1}n is defined by

two circuits:

P

N

node id

node id

node id

node id

END OF THE LINE: Given P and N: If 0n is an unbalanced node, find

another unbalanced node. Otherwise say “yes”.

PPAD = { Search problems in FNP reducible to END OF THE LINE}

possible previous

possible next

Inclusions

Sufficient to define appropriate circuits P and N as we

have in our proof.

- Each triangle is associated with a node id.

- If there is a red- yellow door such that red is on your

left, then cross this door, you will enter the successor

triangle.

- If there is a red- yellow door such that red is on your

right, then cross this door, you will enter the

predecessor triangle.

PROOF (sketch):

(i)

(ii)

Other arguments of existence, and resulting

complexity classes

“If a graph has a node of odd degree, then it must have another.”

PPA

“Every directed acyclic graph must have a sink.”

PLS

“If a function maps n elements to n-1 elements, then there is a collision.”

PPP

Formally?

The Class PPA [Papadimitriou ’94]

Suppose that an exponentially large graph with vertex set {0,1}n is defined by

one circuit:

C node id { node id1 , node id2}

ODD DEGREE NODE: Given C: If 0n has odd degree, find another node

with odd degree. Otherwise say “yes”.

PPA = { Search problems in FNP reducible to ODD DEGREE NODE}

possible neighbors

“If a graph has a node of odd degree, then it must have another.”

{0,1}n

...
0n

The Undirected Graph

= solution

The Class PLS [JPY ’89]

Suppose that a DAG with vertex set {0,1}n is defined by two circuits:

C node id {node id1, …, node idk}

FIND SINK: Given C, F: Find x s.t. F(x) ≥ F(y), for all y  C(x).

PLS = { Search problems in FNP reducible to FIND SINK}

F node id

“Every DAG has a sink.”

The DAG

{0,1}n

= solution

The Class PPP [Papadimitriou ’94]

Suppose that an exponentially large graph with vertex set {0,1}n is defined by

one circuit:

C node id node id

COLLISION: Given C: Find x s.t. C(x)= 0n; or find x ≠ y s.t. C(x)=C(y).

PPP = { Search problems in FNP reducible to COLLISION }

“If a function maps n elements to n-1 elements, then there is a collision.”

Hardness Results

Inclusions we have already established:

Our next goal:

The Main Result

DGP = Daskalakis, Goldberg, Papadimitriou

CD = Chen, Deng

Theorem[DGP, CD]: Finding a Nash equilibrium of a 2-

player game is a PPAD-complete problem.

The PLAN

...

0n

Generic PPAD

Embed PPAD

graph in [0,1]3

3D-SPERNER

 p.w. linear

BROUWER
multi-player

NASH

4-player

NASH

3-player

NASH

2-player

NASH

[Pap ’94]

[DGP ’05]

[DGP ’05]

[DGP

’05]
[DGP

’05]

[DGP ’05]

[DP ’05]

[CD’05]

[CD’06]

DGP = Daskalakis, Goldberg, Papadimitriou

CD = Chen, Deng

Algorithms for computing Nash equilibrium

Support Enumeration Algorithms

How better would my life be if I knew the support of the Nash equilibrium?

 … and the game is 2-player?

any feasible point (x, y) of the following linear program is an equilibrium!

Setting: Let (R, C) be an m by n game, and suppose a friend revealed

to us the supports and respectively of the Row and Column

players’ mixed strategies at some equilibrium of the game.

s.t.

and

Support Enumeration Algorithms

How better would my life be if I knew the support of the Nash equilibrium?

 … and the game is 2-player?

for guessing the support for solving the LP

Runtime:

Support Enumeration Algorithms

How better would my life be if I knew the support of the Nash equilibrium?

 … and the game is separable?

 can do this with Linear Programming too!

input: the support of every node at equilibrium

goal: recover the Nash equilibrium with that support

the idea of why this is possible is similar to the 2-player case:

- the expected payoff of a node from a given pure strategy is

linear in the mixed strategies of the other players;

- hence, once the support is known, the equilibrium conditions

correspond to linear equations and inequalities.

Rationality of Equilibria

Important Observation:

The correctness of the support enumeration algorithm implies that in 2-

player games and in polymatrix games there always exists an equilibrium

in rational numbers, and with description complexity polynomial in the

description of the game!

Computation of Approximate Equilibria

Theorem [Lipton, Markakis, Mehta ’03]:

For all and any 2-player game with at most n strategies per

player and payoff entries in [0,1], there exists an -approximate

Nash equilibrium in which each player’s strategy is uniform on a
multiset of their pure strategies of size

- By Nash’s theorem, there exists a Nash equilibrium (x, y).

- Suppose we take samples from x, viewing it as a distribution.

: uniform distribution over the sampled pure strategies

- Similarly, define by taking t samples from y.

Claim:

Proof idea: (of a stronger claim)

Computation of Approximate Equilibria

Lemma: With probability at least 1-4/n the following are satisfied:

Proof: Chernoff bounds.

Suffices to show the following:

Computation of Approximate Equilibria

set : every point is a pair of mixed

strategies that are uniform on

a multiset of size

Random sampling from takes

expected time

Oblivious Algorithm: set does not depend on the game we are solving.

Theorem [Daskalakis-Papadimitriou ’09] : Any oblivious algorithm for

general games runs in expected time

