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How hard is computing a Nash 

Equilibrium? 



NASH, BROUWER and SPERNER 

We informally define three computational problems: 

 

• NASH: find a (appx-) Nash equilibrium in a n player game. 

 

• BROUWER: find a (appx-) fixed point x for a continuous function f(). 

 

• SPERNER: find a trichromatic triangle (panchromatic simplex) given a 

legal coloring.  



Function NP (FNP) 

A search problem L is defined by a relation RL(x, y) such that 

RL(x, y)=1      iff     y is a solution to x 

A search problem L belongs to FNP iff there exists an efficient algorithm AL(x, y) 

and a polynomial function pL(  ) such that 

(ii) if    y  s.t.  RL(x, y)=1      z with |z| ≤ pL(|x|) such that AL(x, z)=1 

 

Clearly, SPERNER    FNP. 

(i) if AL(x, z)=1          RL(x, z)=1 

A search problem is called total iff for all x there exists y such that RL(x, y) =1. 



Reductions between Problems 

A search problem L  FNP, associated with AL(x, y) and pL , is polynomial-time 

reducible to another problem L’  FNP, associated with AL’(x, y) and pL’, iff there 

exist efficiently computable functions f, g such that 

(i) x is input to L        f(x) is input to L’ 

AL’ (f(x), y)=1         AL(x, g(y))=1 

RL’ (f(x), y)=0,  y  RL(x, y)=0,  y 

(ii)  

A search problem L is FNP-complete iff 

L’  is poly-time reducible to L, for all L’  FNP 

L  FNP 

e.g. SAT 



Our Reductions (intuitively) 

NASH BROUWER SPERNER 

both Reductions are polynomial-time 

Is then SPERNER  FNP-complete? 

- With our current notion of reduction the answer is no, because SPERNER always has 

a solution, while a SAT instance may not have a solution; 

- To attempt an answer to this question we need to update our notion of reduction. 

Suppose we try the following: we require that a solution to SPERNER informs us about 

whether the SAT instance is satisfiable or not, and provides us with a solution to the 

SAT instance in the ``yes’’ case; 

  FNP 

but if such a reduction existed, it could be turned into a non-deterministic algorithm 

for checking “no” answers to SAT: guess the solution to SPERNER; this will inform 
you about whether the answer to the SAT instance is “yes” or “no”, leading to 

                               … 



A Complexity Theory of Total Search 
Problems ? ?? 



100-feet overview of our methodology: 

1. identify the combinatorial argument of existence, responsible for making the 

problem total; 

2. define a complexity class inspired by the argument of existence; 

3. make sure that the complexity of the problem was captured as tightly as 

possible (via a completeness result). 

A Complexity Theory of Total Search 
Problems ? 



Space of Triangles 

... 

Starting Triangle 

Recall Proof of Sperner’s Lemma 



Combinatorial argument of existence? 



The Non-Constructive Step 

a directed graph with an unbalanced node (a node with indegree  

outdegree) must have another. 

an easy parity lemma: 

but, why is this non-constructive? 

given a directed graph and an unbalanced node, isn’t it trivial 
to find another unbalanced node? 

the graph can be exponentially large, but has succinct description… 



The PPAD Class [Papadimitriou ’94] 

Suppose that an exponentially large graph with vertex set {0,1}n is defined by 

two circuits: 

P 

N 

node id 

node id 

node id 

node id 

END OF THE LINE: Given  P  and  N: If  0n  is an unbalanced node, find 

another unbalanced node. Otherwise say “yes”. 

PPAD =  { Search problems in FNP reducible to END OF THE LINE}  

possible previous 

possible next 



Inclusions 

Sufficient to define appropriate circuits P and N as we 

have in our proof.  

 

- Each triangle is associated with a node id. 

 

- If there is a red- yellow door such that red is on your 

left, then cross this door, you will enter the successor 

triangle. 

 

- If there is a red- yellow door such that red is on your 

right, then cross this door, you will enter the 

predecessor triangle. 

PROOF (sketch): 

(i) 

(ii) 





Other arguments of existence, and resulting 

complexity classes 

“If a graph has a node of odd degree, then it must have another.” 

PPA 

“Every directed acyclic graph must have a sink.” 

PLS 

“If a function maps n elements to n-1 elements, then there is a collision.” 

PPP 

Formally? 



The Class PPA [Papadimitriou ’94] 

Suppose that an exponentially large graph with vertex set {0,1}n is defined by 

one circuit: 

C node id { node id1 , node id2} 

ODD DEGREE NODE: Given  C: If  0n  has odd degree, find another node 

with odd degree. Otherwise say “yes”. 

PPA =  { Search problems in FNP reducible to ODD DEGREE NODE}  

possible neighbors 

“If a graph has a node of odd degree, then it must have another.” 



{0,1}n 

... 
0n 

The Undirected Graph 

= solution 



The Class PLS  [JPY ’89] 

Suppose that a DAG with vertex set {0,1}n is defined by two circuits: 

C node id {node id1, …, node idk} 

FIND SINK: Given  C, F:  Find x  s.t. F(x) ≥ F(y), for all y  C(x).  

PLS =  { Search problems in FNP reducible to FIND SINK}  

F node id 

“Every DAG has a sink.” 



The DAG 

{0,1}n 

= solution 



The Class PPP  [Papadimitriou ’94] 

Suppose that an exponentially large graph with vertex set {0,1}n is defined by 

one circuit: 

C node id node id 

COLLISION: Given  C:  Find x  s.t. C( x )= 0n; or find x ≠ y s.t. C(x)=C(y).  

PPP =  { Search problems in FNP reducible to COLLISION }  

“If a function maps n elements to n-1 elements, then there is a collision.” 





Hardness Results 



Inclusions we have already established: 

Our next goal: 



The Main Result 

DGP = Daskalakis, Goldberg, Papadimitriou 

CD = Chen, Deng 

Theorem[DGP, CD]: Finding a Nash equilibrium of a 2-

player game is a PPAD-complete problem. 



The PLAN 

... 

0n
 

Generic PPAD 

Embed PPAD 

graph in [0,1]3 

3D-SPERNER 

 p.w. linear  

BROUWER 
multi-player 

NASH 

4-player 

NASH 

3-player 

NASH 

2-player 

NASH 

[Pap ’94] 

[DGP ’05] 

[DGP ’05] 

[DGP 

’05] 
[DGP 

’05] 

[DGP ’05] 

[DP ’05] 

[CD’05] 

[CD’06] 

DGP = Daskalakis, Goldberg, Papadimitriou 

CD = Chen, Deng 



Algorithms for computing Nash equilibrium 



Support Enumeration Algorithms 

How better would my life be if I knew the support of the Nash equilibrium? 

 … and the game is 2-player? 

any feasible point (x, y) of the following linear program is an equilibrium! 

Setting: Let  (R, C) be an m by n game, and suppose a friend revealed 

to us the supports        and        respectively of the Row and Column 

players’ mixed strategies at some equilibrium of the game. 

s.t. 

and 



Support Enumeration Algorithms 

How better would my life be if I knew the support of the Nash equilibrium? 

 … and the game is 2-player? 

for guessing the support for solving the LP 

Runtime: 



Support Enumeration Algorithms 

How better would my life be if I knew the support of the Nash equilibrium? 

 … and the game is separable? 

 can do this with Linear Programming too! 

input: the support         of every node      at equilibrium 

goal: recover the Nash equilibrium with that support 

the idea of why this is possible is similar to the 2-player case: 

- the expected payoff  of a node from a given pure strategy  is 

linear in the mixed strategies of the other players; 

- hence, once the support is known, the equilibrium conditions 

correspond to linear equations and inequalities. 



Rationality of Equilibria 

Important Observation: 

The correctness of the support enumeration algorithm implies that in 2-

player games and in polymatrix games there always exists an equilibrium 

in rational numbers, and with description complexity polynomial in the 

description of the game! 



Computation of Approximate Equilibria 

Theorem [Lipton, Markakis, Mehta ’03]: 

For all           and any 2-player game with at most n strategies per 

player and payoff entries in [0,1], there exists an    -approximate 

Nash equilibrium in which each player’s strategy is uniform on a 
multiset of their pure strategies of size 

- By Nash’s theorem, there exists a Nash equilibrium (x, y). 

- Suppose we take                               samples from x, viewing it as a distribution. 

: uniform distribution over the sampled pure strategies 

- Similarly, define          by taking t samples from y. 

Claim:                       

Proof idea: (of a stronger claim) 



Computation of Approximate Equilibria 

Lemma:   With probability at least 1-4/n the following are satisfied: 
 

 

Proof: Chernoff bounds. 

Suffices to show the following: 



Computation of Approximate Equilibria 

set      : every point is a pair of mixed 

strategies that are uniform on 

a multiset of size   

Random sampling from       takes 

expected time 

Oblivious Algorithm: set       does not depend on the game we are solving. 

Theorem [Daskalakis-Papadimitriou ’09] : Any oblivious algorithm for 

general games runs in expected time 


