COMP 553: Algorithmic Game Theory Lecture 20 Fall 2014

Yang Cai

In last lecture, we showed Nash's theorem that a Nash equilibrium exists in every game.

In our proof, we used Brouwer's fixed point theorem as a Blackbox.

In today's lecture, we explain Brouwer's theorem, and give an illustration of Nash's proof.

We proceed to prove Brouwer's Theorem using a combinatorial lemma, called Sperner's Lemma, whose proof we also provide.

Brouwer's Fixed Point Theorem

Theorem: Let $f: D \longrightarrow D$ be a continuous function from a convex and compact subset *D* of the Euclidean space to itself.

Then there exists an $x \in D$ s.t. x = f(x).

closed and bounded

Below we show a few examples, when *D* is the 2-dimensional disk.

N.B. All conditions in the statement of the theorem are necessary.

Nash's Proof

Nash's Function

$$\Delta \ni x \stackrel{f}{\mapsto} y \in \Delta :$$

$$y_p(s_p) := \frac{x_p(s_p) + \operatorname{Gain}_{p;s_p}(x)}{1 + \sum_{s'_p \in S_p} \operatorname{Gain}_{p;s'_p} x)}$$

where: $Gain_{p;s_p}(x) = \max\{u_p(s_p; x_{-p}) - u_p(x), 0\}$

f: [0,1]² →[0,1]², continuous such that fixed points = Nash eq.

Penalty Shot Game

Penalty Shot Game

Penalty Shot Game

fixed point

Sperner's Lemma

Sperner's Lemma

Lemma: Color the boundary using three colors in a legal way.

Sperner's Lemma

Sperner's Lemma

Proof of Sperner's Lemma

For convenience we introduce an outer boundary, that does not create new trichromatic triangles.

Next we define a directed walk starting from the bottom-left triangle.

Proof of Sperner's Lemma

Proof of Sperner's Lemma

Claim: *The walk* cannot exit the square, nor can it loop around itself in a rho-shape. Hence, it must stop somewhere inside. This can only happen at tri-chromatic triangle...

For convenience we *introduce an outer boundary, that does* not create new trichromatic triangles.

Next we define a directed walk starting from the *bottom-left triangle.*

Starting from other triangles we do the same going forward or backward.

Proof of Brouwer's Fixed Point Theorem

We show that Sperner's Lemma implies Brouwer's Fixed Point Theorem. We start with the 2-dimensional Brouwer problem on the square.

2D-Brouwer on the Square say d is the ℓ_{∞} norm Suppose $f: [0,1]^2 \rightarrow [0,1]^2$, continuous → must be uniformly continuous (by the <u>Heine-Cantor theorem</u>) $\forall \epsilon > 0, \ \exists \delta(\epsilon) > 0, s.t.$ $d(z,w) < \delta(\epsilon) \Longrightarrow d(f(z), f(w)) < \epsilon$ y_{\star} 1 ${\mathcal X}$ 0

2D-Brouwer on the Square

say d is the ℓ_{∞} norm

Suppose $f: [0,1]^2 \rightarrow [0,1]^2$, continuous

 \rightarrow must be uniformly continuous (by the <u>Heine-Cantor theorem</u>)

2D-Brouwer on the Square say d is the ℓ_{∞} norm Suppose $f: [0,1]^2 \rightarrow [0,1]^2$, continuous \rightarrow must be uniformly continuous (by the <u>Heine-Cantor theorem</u>) $\forall \epsilon > 0, \ \exists \delta(\epsilon) > 0, s.t.$ $d(z,w) < \delta(\epsilon) \Longrightarrow d(f(z), f(w)) < \epsilon$ y_{\star} color the nodes of the triangulation according to the direction of 1 f(x) - xchoose some ϵ and triangulate so that the diameter of cells is $\delta < \delta(\epsilon)$ ${\mathcal X}$

2D-Brouwer on the Square

Suppose $f: [0,1]^2 \rightarrow [0,1]^2$, continuous

say d is the ℓ_{∞} norm

 \rightarrow must be uniformly continuous (by the <u>Heine-Cantor theorem</u>)

$$\begin{aligned} \epsilon &> 0, \ \exists \delta(\epsilon) > 0, s.t. \\ d(z,w) &< \delta(\epsilon) \Longrightarrow d(f(z), f(w)) < \epsilon \end{aligned}$$

Claim: If z^{Y} is the yellow corner of a trichromatic triangle, then $|f(z^{Y}) - z^{Y}|_{\infty} < \epsilon + \delta.$

Proof of Claim

Claim: If z^{Y} is the yellow corner of a trichromatic triangle, then $|f(z^{Y}) - z^{Y}|_{\infty} < \epsilon + \delta$.

Proof: Let z^{Y} , z^{R} , z^{B} be the yellow/red/blue corners of a trichromatic triangle.

By the definition of the coloring, observe that the product of

$$f(z^{Y}) - z^{Y})_{x}$$
 and $(f(z^{B}) - z^{B})_{x}$ is ≤ 0 .

Hence:

$$\begin{split} |(f(z^{Y}) - z^{Y})_{x}| \\ &\leq |(f(z^{Y}) - z^{Y})_{x} - (f(z^{B}) - z^{B})_{x}| \\ &\leq |(f(z^{Y}) - f(z^{B}))_{x}| + |(z^{Y} - z^{B})_{x}| \\ &\leq d(f(z^{Y}), f(z^{B})) + d(z^{Y}, z^{B}) \\ &\leq \epsilon + \delta. \end{split}$$

Similarly, we can show:

$$|(f(z^Y) - z^Y)_y| \le \epsilon + \delta.$$

2D-Brouwer on the Square

Suppose $f: [0,1]^2 \rightarrow [0,1]^2$, continuous

say d is the ℓ_{∞} norm

 \rightarrow must be uniformly continuous (by the <u>Heine-Cantor theorem</u>)

 $\begin{aligned} \forall \epsilon > 0, \ \exists \delta(\epsilon) > 0, s.t. \\ d(z,w) < \delta(\epsilon) \Longrightarrow d(f(z), f(w)) < \epsilon \end{aligned}$

 \mathbf{x}

Claim: If z^{Y} is the yellow corner of a trichromatic triangle, then $|f(z^{Y}) - z^{Y}|_{\infty} < \epsilon + \delta.$

Choosing $\delta = \min(\delta(\epsilon), \epsilon)$

$$|f(z^Y) - z^Y|_{\infty} < 2\epsilon.$$

2D-Brouwer on the Square

Finishing the proof of Brouwer's Theorem:

- pick a sequence of epsilons: $\epsilon_i = 2^{-i}, i = 1, 2, \dots$

- define a sequence of triangulations of diameter: $\delta_i = \min(\delta(\epsilon_i), \epsilon_i), i = 1, 2, ...$

- pick a trichromatic triangle in each triangulation, and call its yellow corner $z_i^{
m Y}, i=1,2,\ldots$

- by compactness, this sequence has a converging subsequence w_i , i = 1, 2, ...with limit point w^* Claim: $f(w^*) = w^*$.

Proof: Define the function g(x) = d(f(x), x). Clearly, g is continuous since $d(\cdot, \cdot)$ is continuous and so is f. It follows from continuity that

 $g(w_i) \longrightarrow g(w^*)$, as $i \to +\infty$.

But $0 \le g(w_i) \le 2^{-i+1}$. Hence, $g(w_i) \longrightarrow 0$. It follows that $g(w^*) = 0$.

Therefore, $d(f(w^*), w^*) = 0 \implies f(w^*) = w^*$.

How hard is computing a Nash *Equilibrium*?

NASH, BROUWER and SPERNER

We informally define three computational problems:

- NASH: find a (appx-) Nash equilibrium in a n player game.
- **BROUWER:** find a (appx-) fixed point x for a continuous function f().
- SPERNER: find a trichromatic triangle (panchromatic simplex) given a legal coloring.

Function NP (FNP)

A search problem L is defined by a relation $R_L(x, y)$ such that

 $R_L(x, y) = 1$ iff *y* is a solution to *x*

A search problem is called *total* iff for all x there exists y such that $R_L(x, y) = 1$.

A search problem *L* belongs to FNP iff there exists an efficient algorithm $A_L(x, y)$ and a polynomial function $p_L(\cdot)$ such that

- (i) if $A_L(x, z)=1$ \rightarrow $R_L(x, z)=1$
- (ii) if $\exists y \text{ s.t. } R_L(x, y) = 1 \rightarrow \exists z \text{ with } |z| \le p_L(|x|) \text{ such that } A_L(x, z) = 1$

Clearly, SPERNER \in FNP.

Reductions between Problems

A search problem $L \in FNP$, associated with $A_L(x, y)$ and p_L , is *polynomial-time reducible* to another problem $L' \in FNP$, associated with $A_{L'}(x, y)$ and $p_{L'}$, iff there exist efficiently computable functions *f*, *g* such that

> (i) x is input to $L \rightarrow f(x)$ is input to L'(ii) $A_{L'}(f(x), y)=1 \rightarrow A_L(x, g(y))=1$ $R_{L'}(f(x), y)=0, \forall y \rightarrow R_L(x, y)=0, \forall y$

A search problem *L* is *FNP-complete* iff

e.g. SAT

 $L \in \text{FNP}$

L' is poly-time reducible to L, for all $L' \in FNP$

Our Reductions (intuitively)

NASH \longrightarrow BROUWER \longrightarrow SPERNER \in FNP both Reductions are polynomial-time

Is then SPERNER FNP-complete?

- With our current notion of reduction the answer is no, because SPERNER always has a solution, while a SAT instance may not have a solution;

- To attempt an answer to this question we need to update our notion of reduction. Suppose we try the following: we require that a solution to SPERNER informs us about whether the SAT instance is satisfiable or not, and provides us with a solution to the SAT instance in the ``yes" case;

but if such a reduction existed, it could be turned into a non-deterministic algorithm for checking "no" answers to SAT: guess the solution to SPERNER; this will inform you about whether the answer to the SAT instance is "yes" or "no", leading to $NP = co - NP \dots$

- Another approach would be to turn SPERNER into a non-total problem, e.g. by removing the boundary conditions; this way, SPERNER can be easily shown FNP-complete, but all the structure of the original problem is lost in the reduction.