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An overview of today’s class 

Unit-Demand Pricing (cont’d) 

Multi-bidder Multi-item Setting 

Basic LP formulation 



 (a) UPP  

 One unit-demand bidder 

 n items 

 Bidder’s value for the i-th 
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i
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i
 

 

 

 

 

 (b) Auction 

 n bidders 

 One item 

 Bidder I’s value for the item vi is 

drawn independently from F
i
 

 

Two Scenarios 
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Bidders 

v1~ F1 

 

vi~ Fi 

 

vn~ Fn 



Benchmark 

Lemma 1: The optimal revenue achievable in 

scenario (a) is always less than the optimal revenue 
achievable in scenario (b). 

 

 

- Remark: This gives a natural benchmark for the revenue in (a).  



A nearly-optimal auction (Lecture 6)  

  

 In a single-item auction, the optimal expected revenue 

  Ev~F [max Σi xi(v) φi (vi)] = Ev~F [maxi φi(vi)
+]   

 

 Remember the following mechanism RM we learned in Lecture 6. 

1. Choose t such that Pr[maxi φi (vi)
+ ≥ t] = ½ . 

2. Set a reserve price ri =φi
-1 (t) for each bidder i with the t defined above. 

3. Give the item to the highest bidder that meets her reserve price (if any). 

4. Charge the payments according to Myerson’s Lemma. 

 

 By prophet inequality: 

 ARev(RM) = Ev~F [Σi xi(v) φi (vi)] ≥ ½ Ev~F [maxi φi(vi)
+] = ½ ARev(Myerson) 

 

 Let’s use the revenue of RM as the benchmark. 

 



Inherent loss of this approach 

  

 Relaxing the benchmark to be Myerson’s revenue in (b) 

 

 This step might lose a constant factor already. 

 

 To get the real optimum, a different approach is needed. 



 Only constant factor appx are known  

[CHK ’07, CHMS ’10]. 

 [Cai-Daskalakis ’11] There is a PTAS!  

 PTAS: Polynomial-Time Approximation Scheme — for every constant 

ε in [0,1], there is a polynomial time algorithm that achieves (1- ε) 

fraction of the optimum (for maximization problems). The running 

time is required to be polynomial for every fixed ε, but could be 

different for different ε. For example, the running time could be O(n1/ε) 

 

Optimal Multidimensional Pricing 

Fi is a Monotone Hazard Rate 

(MHR) distribution. 

* MHR Definition:  

   f(x)/(1-F(x)) is non-decreasing.  
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[Cai-Daskalakis ’11]  

Let X1, . . . , Xn be independent (but not necessarily 

identically distributed) MHR random variables, Let X= 

maxi Xi. Then there exists anchoring point β such that: 

 

Pr[X ≥ β] = Ω(1) 
contribution to E[X] from 

values here is ≤ ε β 

X1 
X3 

Xn 

β 

1/ε  log1/ε β 

Extreme Value Theorem (MHR) 

COROLLARY:  

(1-ε) OPT is 

extracted from 

values in  (ε β, 
1/ε log1/ε β). 



What if the items are i.i.d.? 

  

 Say you know for each item there are only two prices 1 and 2, 

you can use. 

 

 How many possible prices vectors are there? 

- 2n 

- Do you really need to search over all of them? 

 

 Only need to check O(n) different price vectors. 

 



What if the items are i.i.d.? 
  

 When you know you can use only c different prices on each item  

 

 Only need to check O(nc-1) different price vectors, when the 

distributions are i.i.d. 

 

 Our theorem says you only need to consider poly(1/ε) many different 

prices, so that gives you a PTAS for the i.i.d. case. 

 

 When the distributions are not i.i.d., we need to use a more 

sophisticated Dynamic Programming algorithm to find the optimal 

price vector. But having only a constant number of prices is still crucial 

here. 

 



Multi-item Multi-bidder Settings 



Multi-item Multi-bidder Setting 

  

 Remember the challenges. The optimal mechanism could have strange 

structure and uses randomization.  

 

 Closed form solution (like Myerson’s auction) seem impossible, even for a 
single bidder.  

 

 More powerful machinery is required. 

 

 Turn to Linear Programming for help. 
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Bidders 

Bidders: 

 have values on “items” and bundles of  “items”. 
 Valuation aka type              encodes that information. 

 Common Prior:  Each     is sampled independently from      . 

• Every bidder and the auctioneer knows  

 Additive: Values for bundles of items = sum of values for each item. 

 From now on,                                .  

Multi-item Multi-bidder Auctions: Set-up 

Auctioneer 



A few remarks on the setting 

  

 

 Ti is a subset of Rn
 

 

 Since we are designing algorithms, assume Ti is a discrete set. 

 

 We know Pr[ti=v] for all v in Ti  and Σv Pr[ti=v] =1. 

 



• Uses as input: the 

auction, own type, 

distributions about other 

bidders’ types; 

• Bids; 

 

Goal: Optimize own utility 

(= expected value minus 

expected price). 

• Designs auction, specifying allocation and payment 

rules; 

• Asks bidders to bid; 

• Implements the allocation and payment rule 

specified by the auction; 

 

Goal: Find an auction that: 

1) Encourages bidders to bid truthfully (w.l.o.g.) 

2) Maximizes revenue, subject to 1) 

Auctioneer: Each Bidder:  

Multi-item Multi-bidder Auctions: Execution 



LP Formulation 



Single Bidder Case 
  

 What are the decision variables? 

 

 An auction is simply an allocation rule and a payment rule. 

 

 Let’s set the decision variables accordingly.  

 

 Allocation rule: for each j in [m], v in T, there is a variable xj(v): the 

probability that the buyer receives item j when his report is v. 

- if the mechanism is item pricing, and has price pj for item j, then xj(v)=1 

if vj ≥ pj  and 0 otherwise. 

- if the mechanism is grand bundling with price r. Then for all j, xj(v)=1 if         

Σj vj ≥ r, otherwise all xj(v)=0. 

- For deterministic mechanisms, xj(v) is either 0 or 1. But to include 

randomized mechanisms, we should allow xj(v) to be fractional. 

 



Single Bidder Case 
  

 Payment rule: for each v in T, there is a variable p(v): the payment when the 

bid is v. 

 Objective function: max Σv Pr[t = v] p(v) 

  

 Linear in the variables, since Pr[t = v] are constants (part of our input). 

 

 Constraints: 

 

- incentive compatibility: Σj vj xj(v) – p(v) ≥ Σj vj xj(v’) – p(v’)  for all v and v’ in T 

 

- individual rationality (non-negative utility): Σj vj xj(v) – p(v) ≥ 0  for all v in T 

 

- feasibility: 0 ≤ xj(v) ≤ 1 for all j in [m] and v in T 

 





Single Bidder Case 
  

 We have a LP, we can solve it. But now what? 

 

 What is the mechanism? 

 

 In this case, it’s straightforward. Let x* and p* be the optimal solution of our LP. 

 

 Then when the bid is v, give the buyer item j with prob. xj(v) and charge him 

p(v). 

 

 This mechanism is feasible, incentive compatible and individual rational! 

 

 So the buyer will bid truthfully, and thus the expected revenue of the 

mechanism is the same as the solution of our LP! 


