Tabled higher-order logic programming

Thesis Proposal

Brigitte Pientka

Department of Computer Science
Carnegie Mellon University

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - Tabled logic programming interpreter
 - Object- and meta-level theorem prover
- Thesis work
- Conclusion

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - Tabled logic programming interpreter
 - Object- and meta-level theorem prover
- Thesis work
- Conclusion

Higher-order logic programming

Terms: (dependently) typed λ -calculus

Clauses: implication, universal quantification

Higher-order logic programming
 Terms: (dependently) typed λ-calculus
 Clauses: implication, universal quantification

 Meta-language for specifying / implementing logical systems

proofs about them

Higher-order logic programming
 Terms: (dependently) typed λ-calculus
 Clauses: implication, universal quantification

 Meta-language for specifying / implementing logical systems (type system, safety logic, congruence closure . . .)
 proofs about them

• Higher-order logic programming Terms: (dependently) typed λ -calculus Clauses: implication, universal quantification

 Meta-language for specifying / implementing logical systems (type system, safety logic, congruence closure . . .) proofs about them (correctness, soundness etc.)

Higher-order logic programming
 Terms: (dependently) typed λ-calculus
 Clauses: implication, universal quantification

 Meta-language for specifying / implementing logical systems (type system, safety logic, congruence closure . . .) proofs about them (correctness, soundness etc.)

• Approaches: Elf, λ Prolog, Isabelle

- Implementing logical systems
- Executing them and generating certificate
- Checking certificate
- Reasoning with and about them

- Implementing logical systems higher-order logic program
- Executing them and generating certificate
- Checking certificate
- Reasoning with and about them

- Implementing logical systems higher-order logic program
- Executing them and generating certificate logic programming interpreter Elf
- Checking certificate
- Reasoning with and about them

- Implementing logical systems higher-order logic program
- Executing them and generating certificate logic programming interpreter Elf
- Checking certificate type checker
- Reasoning with and about them

- Implementing logical systems higher-order logic program
- Executing them and generating certificate logic programming interpreter Elf
- Checking certificate type checker
- Reasoning with and about them object- and meta-level theorem prover Twelf

- Implementing logical systems higher-order logic program
- Executing them and generating certificate logic programming interpreter Elf
- Checking certificate type checker
- Reasoning with and about them object- and meta-level theorem prover Twelf

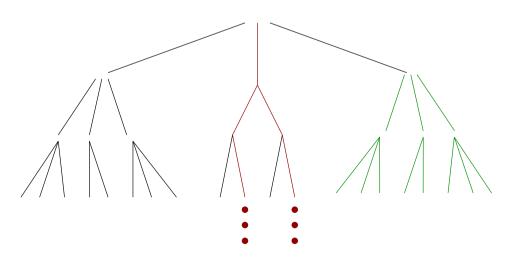
Reduces the effort required for each logical system

- Implementing logical systems higher-order logic program
- Executing them and generating certificate logic programming interpreter Elf
- Checking certificate type checker
- Reasoning with and about them object- and meta-level theorem prover Twelf

Reduces the effort required for each logical system

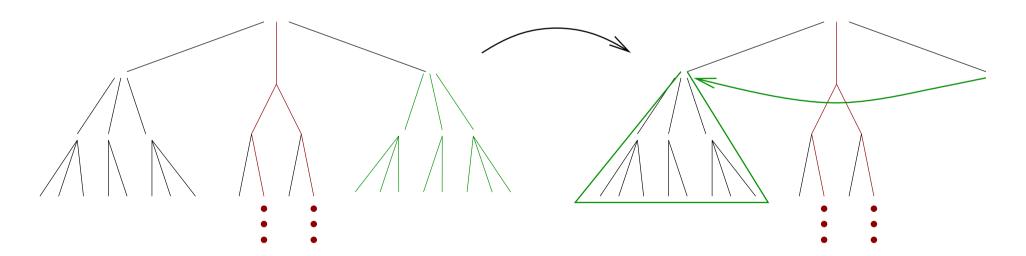
Proof search tree

- Search Strategy
 - Depth-first: incomplete, infinite paths
 - Iterative deepening: complete, infinite paths
- Performance: redundant computation



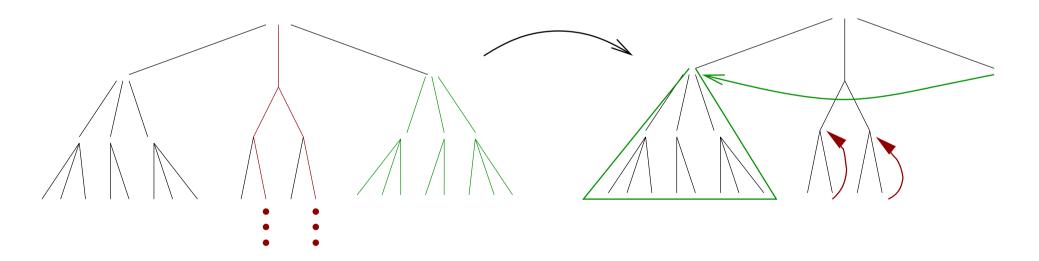
Proof search tree

- Search Strategy
 - Depth-first: incomplete, infinite paths
 - Iterative deepening: complete, infinite paths
- Performance: redundant computation



Proof search tree

- Search Strategy
 - Depth-first: incomplete, infinite paths
 - Iterative deepening: complete, infinite paths
- Performance: redundant computation



Tabled evaluation for Prolog

- Tabling, memoization, caching, loop detection, magic sets ...
- Eliminate infinite and redundant computation by memoization (Tamaki, Sato)
- Finds all possible answers to a query
- Terminates for programs in a finite domain
- Combines tabled and non-tabled execution
- Very successful: XSB system(Warren et.al.)

This talk

- 1. Extend tabled logic programming to higher-order
- 2. Demonstrate the use of tabled search to
 - efficiently execute logical systems
 - automate reasoning with and about them.

This talk

- 1. Extend tabled logic programming to higher-order
- 2. Demonstrate the use of tabled search to
 - efficiently execute logical systems (interpreter using tabled search)
 - automate reasoning with and about them.

This talk

- 1. Extend tabled logic programming to higher-order
- 2. Demonstrate the use of tabled search to
 - efficiently execute logical systems (interpreter using tabled search)
 - automate reasoning with and about them. (theorem prover using tabled search)

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - Tabled logic programming interpreter
 - Object- and meta-level theorem prover
- Thesis work
- Conclusion

Types τ ::= neg | zero | pos | nat | int

Types τ ::= neg | zero | pos | nat | int

$$\frac{}{}$$
 zn $\frac{}{}$ pn zero $\stackrel{}{\underline{\,}}$ nat pos $\stackrel{}{\underline{\,}}$ nat

Types τ ::= neg | zero | pos | nat | int

$$-----$$
 zn $-----$ pn $-----$ nati $-----$ zero \preceq nat $----$ nati $-----$ neg \preceq int

Types
$$\tau$$
 ::= neg | zero | pos | nat | int

$$\frac{}{T \preceq T} \operatorname{refl}$$

$$\frac{T \preceq R \qquad \qquad R \preceq S}{T \preceq S} \operatorname{tr}$$

refl: sub T T.

 $\operatorname{tr}: \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

refl: sub T T.

 $\operatorname{tr}: \quad \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

refl: sub T T.

 $\operatorname{tr}: \quad \operatorname{sub} T S$

 $\leftarrow \operatorname{sub} T \ R$

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

refl: T = zero

Success

refl: sub T T.

 $\operatorname{tr}: \quad \operatorname{sub} T S$

 $\leftarrow \mathsf{sub} \ T \ R$

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

tr: sub zero R , sub $R\ T$.

refl: sub T T.

 $\operatorname{tr}: \quad \operatorname{sub} T S$

 $\leftarrow \mathsf{sub} \ T \ R$

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

tr: sub zero R , sub $R\ T$.

refl: sub zero T

refl: sub T T.

 $\operatorname{tr}: \quad \operatorname{sub} T S$

 $\leftarrow \mathsf{sub} \ T \ R$

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

tr: sub zero R , sub $R\ T$.

refl: sub zero T

refl: T = zero

Redundant answer

refl: sub T T.

 $\operatorname{tr}: \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

tr: sub zero R , sub $R\ T$.

refl: sub zero T

tr: sub zero R , sub $R\ T$.

refl: sub T T.

 $\operatorname{tr}: \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

tr: sub zero R , sub $R\ T$.

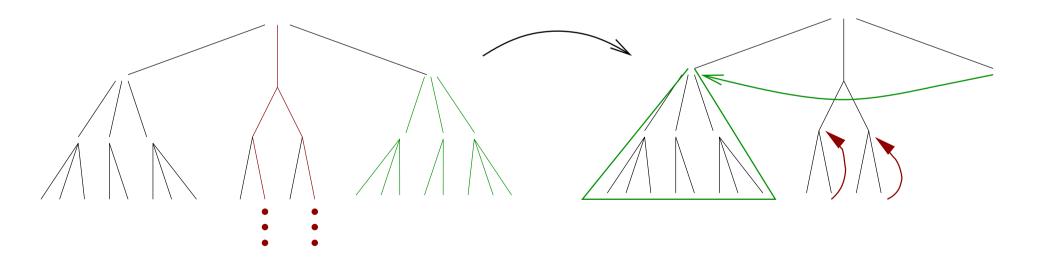
refl: sub zero T

tr: sub zero R , sub $R\ T$.

Infinite path

Problem

- Redundant and infinite computation
- Non-termination instead of failure
- Sensitive to clause ordering
- Independent of the actual search strategy



Tabled logic programming

- Eliminate redundant and infinite paths from proof search using memoization
- Table:
 - 1. Store sub-goals
 - 2. Store solutions
 - 3. Retrieve solutions
- Depth-first multi-stage strategy

%tabled sub.

refl: sub T T.

 $\operatorname{tr}: \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

%tabled sub.

Compute all supertypes of zero

refl: sub T T.

:-? sub zero T.

 $\operatorname{tr}: \quad \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

 $\begin{array}{|c|c|c|c|} \hline \textbf{Entry} & \textbf{Answer} \\ \hline \textbf{sub zero } T & \\ \hline \end{array}$

nati: sub nat int.

negi: sub neg int.

Tabled higher-order logic programming – p.13/40

%tabled sub.

refl: sub T T.

 $\operatorname{tr}: \quad \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

refl: T = zero

Success!

%tabled sub .

refl: sub T T.

 $\operatorname{tr}: \quad \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

refl: T = zero

Add answer to table

%tabled sub .

refl: sub T T.

 $\operatorname{tr}: \quad \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

 tr : sub $\operatorname{zero} R$, $\operatorname{sub} R T$.

Variant of previous goal

%tabled sub .

refl: sub T T.

 $\operatorname{tr}: \quad \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

 ${\sf tr}$: sub zero R , sub R T.

Fail and suspend goal

%tabled sub .

refl: sub T T.

 $\operatorname{tr}: \quad \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

zn: T = nat

Success!

%tabled sub .

refl: sub T T.

 $\operatorname{tr}: \quad \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

zn: T = nat

Add answer to table

 $\begin{array}{ccc} \text{Entry} & \text{Answer} \\ \text{sub zero } T & \left[\text{zero } / T \right], \left[\text{nat } / T \right] \end{array}$

%tabled sub .

refl: sub T T.

 $\operatorname{tr}: \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

zn: T = nat

Add answer to table

 $\begin{array}{|c|c|c|c|} \hline \text{Entry} & \text{Answer} \\ \hline \text{sub zero } T & [\text{zero }/T] \text{ , } [\text{nat }/T] \\ \hline \end{array}$

First Stage completed!

%tabled sub .

refl: sub T T.

 $\operatorname{tr}: \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

resume $\operatorname{sub}\operatorname{zero} R$, $\operatorname{sub} R$ T.

 $\begin{array}{|c|c|c|c|} \hline \text{Entry} & \text{Answer} \\ \hline \text{sub zero } T & [\text{zero }/T] \text{ , [nat }/T] \\ \hline \end{array}$

%tabled sub .

refl: sub T T.

 $\operatorname{tr}: \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

resume $\operatorname{sub}\operatorname{zero} R$, $\operatorname{sub} R$ T.

[nat /R] sub nat T.

 $\begin{array}{|c|c|c|c|} \hline \text{Entry} & \text{Answer} \\ \hline \text{sub zero } T & [\text{zero }/T] \text{ , } [\text{nat }/T] \\ \hline \end{array}$

%tabled sub .

refl: sub T T.

 $\operatorname{tr}: \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

resume $\operatorname{sub}\operatorname{zero} R$, $\operatorname{sub} R$ T.

[nat /R] sub nat T.

Add goal to table

Entry	Answer
sub zero ${\cal T}$	$oxed{\left[{{zero}\left/ T ight]}$, $\left[{{nat}\left/ T ight]}$
sub nat ${\cal T}$	

%tabled sub.

refl: sub T T.

 $\operatorname{tr}: \quad \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

resume sub zero R , sub $R\ T$.

 $\lceil \operatorname{nat}/R \rceil$ sub $\operatorname{nat} T$

refl T = nat

Success

Entry	Answer
$\operatorname{sub}\operatorname{zero} T$	$igl[{\sf zero}\ /T]$, $igl[{\sf nat}\ /Tigr]$
sub nat ${\cal T}$	

%tabled sub .

refl: sub T T.

 $\operatorname{tr}: \quad \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

resume $\operatorname{sub}\operatorname{zero} R$, $\operatorname{sub} R$ T.

 $\lceil \operatorname{nat}/R \rceil$ sub $\operatorname{nat} T$

refl T = nat

Add answer to table

Entry	Answer
$\operatorname{sub}\operatorname{zero} T$	$[{\sf zero}\ /T]$, $[{\sf nat}\ /T]$
sub nat ${\cal T}$	$[nat\:/T]$

%tabled sub.

refl: sub T T.

 $\operatorname{tr}: \quad \operatorname{sub} T S$

 \leftarrow sub T R

 \leftarrow sub R S.

zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

:-? sub zero T.

Entry	Answer
$\operatorname{sub}\operatorname{zero} T$	$[{\sf zero}\ /T]$, $[{\sf nat}\ /T]$, $[{\sf int}\ /T]$
$\operatorname{sub}\operatorname{nat} T$	[nat/T] , $[int/T]$
sub int T	$[\operatorname{int}/T]$

• When to suspend goals ?

- When to suspend goals ?
- When to retrieve answers ?

- When to suspend goals ?
- When to retrieve answers?
- How to retrieve answers (order) ?

- When to suspend goals?
- When to retrieve answers?
- How to retrieve answers (order) ?
- What is the retrieval condition?
 - Variant
 - Subsumption

- When to suspend goals?
- When to retrieve answers?
- How to retrieve answers (order) ?
- What is the retrieval condition?
 - Variant
 - Subsumption

Multi-stage strategy: only re-use answers from previous stages

Advantages

- Translating inference rules to logic program is straightforward.
- Programs have better complexities.
- Order of clauses is less important.
- Computation will terminate for finite domain.
- We find all answers to a query.
- We can dis-prove more conjectures.
- Table contains useful debugging information.

Trade-off

Price to pay:

- More complicated semantics
- Overhead caused by memoization

Trade-off

Price to pay:

- More complicated semantics
- Overhead caused by memoization

Solution:

- Combine tabled and non-tabled proof search
- Term indexing:
 - 1. Make table access efficient
 - 2. Make storage space small

First-order tabled logic programming

- Tabled logic programming
 - atomic subgoals
 - untyped first-order terms
- Procedural descriptions of tabling
 - SLD resolution with memoization (Tamaki, Sato)
 - SLG resolution (Warren, Chen)
- Term indexing (I.V.Ramakrishnan, Sekar, Voronkov) discrimination tries, substitution trees, path indexing

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - Tabled logic programming interpreter
 - Object- and meta-level theorem prover
- Thesis work
- Conclusion

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - Tabled logic programming interpreter
 - Object- and meta-level theorem prover
- Thesis work
- Conclusion

Typing rules

Mini ML e ::=
$$n(e) \mid z \mid s(e) \mid app e_1 e_2 \mid$$
 $lam x.e \mid letn u = e_1 in e_2$

$$\frac{\Gamma \vdash e : \tau' \qquad \tau' \preceq \tau}{\Gamma \vdash e : \tau} \text{ tp-sub} \qquad \frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \text{lam } x.e : \tau_1 \to \tau_2} \text{ tp-lam}$$

$$\frac{\Gamma \vdash e_1 : \tau_1}{\Gamma \vdash \operatorname{letn} u = e_1 \operatorname{in} e_2 : \tau} \operatorname{tp-letn}$$

Type Checker in Elf

$$\begin{aligned} \text{tp-letn :of (letn } E_1 \; ([u] \; E_2 \; u)) \; T \\ & \leftarrow \text{ of } E_1 \; T_1 \\ & \leftarrow \text{ of } (E_2 \; E_1) \; T. \end{aligned}$$

:-? of
$$(\operatorname{lam} ([x] x)) T$$

Entry		Answer
	of $([x] x)$	

:-? of
$$(\operatorname{lam}\ ([x]\ x))\ T$$
 tp-sub: of $(\operatorname{lam}\ ([x]\ x))\ R$, sub $R\ T$.

Entry		Answer
	of $(\operatorname{lam}\ ([x]\ x))\ T$	

: -? of
$$(\operatorname{lam}\ ([x]\ x))\ T$$
 tp-sub: of $(\operatorname{lam}\ ([x]\ x))\ R$, sub $R\ T$. Variant of previous goal

Entry		Answer
	of $(\operatorname{lam}\ ([x]\ x))\ T$	

:-? of
$$(\operatorname{lam}\ ([x]\ x))\ T$$
 tp-sub: of $(\operatorname{lam}\ ([x]\ x))\ R$, sub $R\ T$. Fail and suspend

Entry		Answer
	of $(\operatorname{lam}\ ([x]\ x))\ T$	

:-? of
$$(\operatorname{lam}\ ([x]\ x))\ T$$
 tp-lam: $u:\operatorname{of}\ x\ T_1\vdash\operatorname{of}\ x\ T_2$

Entry		Answer
	of $(\operatorname{lam}\ ([x]\ x))\ T$	

:-? of
$$(\operatorname{lam}\ ([x]\ x))\ T$$
 tp-lam: u : of x T_1 \vdash of x T_2 Add goal to table

Entry	Answer
of $(\operatorname{lam}\ ([x]\ x))\ T$	
$u:$ of x $T_1 \vdash$ of x T_2	

:-? of
$$(\operatorname{lam}\ ([x]\ x))\ T$$
 tp-lam: u : of x $T_1 \vdash$ of x T_2 u : $T_1 = P$, $T_2 = P$, $T = (P \Rightarrow P)$ Success

Entry	Answer
of $(\operatorname{lam}\ ([x]\ x))\ T$	
$u:$ of x $T_1 \vdash$ of x T_2	

:-? of
$$(\operatorname{lam}\ ([x]\ x))\ T$$
 tp-lam: u : of $x\ T_1 \vdash$ of $x\ T_2$ u : $T_1 = P$, $T_2 = P$, $T = (P \Rightarrow P)$ Add answers to table

Entry	Answer
of $([x] x)$	$[(P \Rightarrow P)/T]$
$u:$ of x $T_1 \vdash$ of x T_2	P/T_1 , P/T_2

:-? of ([x]x)

tp-lam: u : of x $T_1 \vdash$ of x T_2

tp-sub: u : of x $T_1 \vdash$ of x R , sub R T_2

Entry	Answer
of $([x] x)$	$[(P \Rightarrow P)/T]$
$u:$ of x $T_1 \vdash$ of x T_2	P/T_1 , P/T_2

:-? of $(\operatorname{lam} ([x] x)) T$

tp-lam: u : of x $T_1 \vdash$ of x T_2

tp-sub: u : of x $T_1 \vdash$ of x R , sub R T_2

Variant of previous goal

Entry	Answer
of $(\operatorname{lam}\ ([x]\ x))\ T$	$[(P \Rightarrow P)/T]$
$u:$ of x $T_1 \vdash$ of x T_2	$[P/T_1$, $P/T_2]$

:-? of ([x]x)

tp-lam: u : of x $T_1 \vdash$ of x T_2

tp-sub: u : of x $T_1 \vdash$ of x R , sub R T_2

Suspend and fail

Entry	Answer
of $(\operatorname{lam}\ ([x]\ x))\ T$	$[(P \Rightarrow P)/T]$
$u:$ of x $T_1 \vdash$ of x T_2	$[P/T_1$, $P/T_2]$

:-? of
$$(\operatorname{lam} ([x] x)) T$$

First stage is completed

Entry	Answer
of $(\operatorname{lam}\ ([x]\ x))\ T$	$[(P \Rightarrow P)/T]$
$u:$ of x $T_1 \vdash$ of x T_2	P/T_1 , P/T_2

Challenges

- Store goals together with context : $\Gamma \vdash a$
- Redesign table operations : goal $(\Gamma \vdash a) \in \mathsf{Table}$
- Context dependencies

e.g.
$$u$$
: of x $T_1 \vdash \mathsf{sub}\ R\ T_2$, $\vdash \mathsf{sub}\ S\ T$

Type dependencies

e.g.
$$u$$
: of x $T_1 \vdash$ of x $(R x u)$, u : of x $T_1 \vdash$ of x R

Indexing for higher-order terms

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - Tabled logic programming interpreter
 - Object- and meta-level theorem prover
- Thesis work
- Conclusion

Theorem proving

- Object-level
 - Prove derived rules
 - Lemma: \mathcal{D} : sub zero int .
 - Derive from program clauses + lemmas
- Meta-level
 - Prove theorems about the logical system
 - Theorem: If \mathcal{D} : of e τ and \mathcal{E} : eval e v then \mathcal{F} : of v τ .
 - Proofs by structural induction and case analysis

Current approaches

- λProlog(Felty,Miller), Isabelle(Paulson): based on tactics
- Twelf(Schürmann,Pfenning): based on higher-order logic programming iterative deepening with bound

Meta-level search

- Clauses: program, lemmas, proof assumptions
- Proof obligation (query): derive from clauses
- If we cannot derive the query from the clauses,
 - 1. Refine proof assumptions: case split (choice!)
 - 2. Generate induction hypothesis
 - 3. Try again

Meta-Search

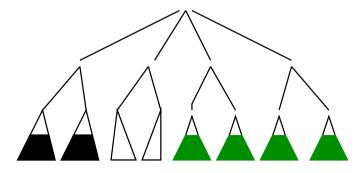
1. iteration

Failure

2. iteration

Failure

3. iteration

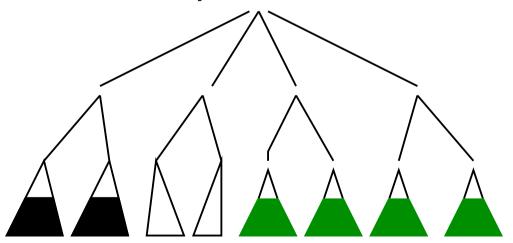


Success

Redundant computation

- Object-level search
- Across failed proof attempts
- Across branches
- Across different parallel proof attempts

Meta-level proof tree



Benefits of tabled meta-level search

- Redundancy elimination during object-level search
- Preservation of partial results across cases and iterations
- Detection of unprovable branches
- Faster failure
- Proving different case split in parallel
- Detection of redundant case splits (e.g. split a and then split b split b and then split a)

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - Tabled logic programming interpreter
 - Object- and meta-level theorem prover
- Thesis work
- Conclusion

Thesis

Tabled higher-order logic programming allows us to

efficiently execute logical systems

automate reasoning with and about them.

Thesis

Tabled higher-order logic programming allows us to

- efficiently execute logical systems (interpreter using tabled search)
- automate reasoning with and about them.

Thesis

Tabled higher-order logic programming allows us to

- efficiently execute logical systems (interpreter using tabled search)
- automate reasoning with and about them. (theorem prover using tabled search)

Overview of Thesis

- Proof-theoretical characterization:
 Soundness of interpreter
- Design of efficient implementation techniques
 - 1. Higher-order term indexing
 - 2. Context handling
- Implementation and Validation
 - 1. Logic programming
 - 2. Object and meta-level theorem proving

Examples: interpreter - 1

	Elf	variant	subsumption
subtyping1			
zsuper	∞		
casez1	∞	$\sqrt{}$	$\sqrt{}$
disprove			
zerop	∞		
casez2	∞	$\sqrt{}$	$\sqrt{}$
subtyping			
tid	∞		
sarrow	∞	$\sqrt{}$	$\sqrt{}$

Examples: interpreter - 2

Warning: table everything; no indexing Elf variant subsumption term rewriting λ calculus: tid5 no na comb no na refinement types: shiftl na inc na plus na plus' na

Object-level reasoning - 3

Warning: table everything; no indexing

	Spass	Twelf	variant	subsumption
conversions λ calculus:				
tid5		no	$\sqrt{}$	na
comb		no	$\sqrt{}$	na
Cartesian closed categories:				
I 1	no	no	?	?
12	no	no	?	?
13	no	no	?	?

Other examples

Logical systems:

- Natural deduction calculi (NK, NJ)
- Decision procedures (e.g. congruence closure algorithms)
- Parsing grammars

Examples for meta-reasoning:

- Soundness of Kolmogoroff translation between NK and NJ
- Translation between CCC and λcalculus

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - Tabled logic programming interpreter
 - Object- and meta-level theorem prover
- Thesis work
- Conclusion

Contributions

- Extension of tabling to higher-order setting
 - 1. Terms: dependently typed λ -calculus
 - 2. Table: store goals with a context
- Application of tabled search to
 - 1. higher-order logic programming
 - 2. object- and meta-level theorem proving
- Proof-theoretical characterization of tabled search
- Implementation of a prototype

Near Future

- Soundness of the interpreter
- Indexing for higher-order terms
- Redesign of the meta-theorem prover

Related Work

Proof-theoretical characterization

- Uniform proofs (Miller, Nadathur, Pfenning, Scedrov)
- Proof Irrelevance (Pfenning)

Certificates:

- Justifiers: XSB (Roychoudhury, I.V.Ramakrishnan)
- Bit-strings: variant of PCC (Necula, Rahul)
- Proof terms: Elf, Twelf(Schürmann, Pfenning)