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�

-calculus
Clauses: implication, universal quantification

� Meta-language for specifying / implementing

logical systems (type system, safety logic,
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�
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Proof search

� Search strategy
Depth-first: incomplete, infinite paths
Iterative deepening: complete, infinite paths
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Proof search

� Search strategy
Depth-first: incomplete, infinite paths
Iterative deepening with bound: incomplete,
infinite paths

� Performance
Redundant computation
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Tabled logic programming

� Tabling, memoization, caching, loop detection,
magic sets ...

� Eliminate infinite and redundant computation by
memoization (Tamaki, Sato)

� Finds all possible answers to a query

� Terminates for programs in a finite domain

� Combines tabled and non-tabled execution

� Very successful: XSB system(Warren et.al.)
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Thesis

Tabled higher-order logic programming allows us to

� efficiently execute logical systems and

� automate the reasoning with and about them.
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Thesis

Tabled higher-order logic programming allows us to

� efficiently execute logical systems and
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Illustrating example: subtyping
Types � ::= neg

�
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�
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�

nat

�
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Subtyping relation in Elf
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Problem

� Redundant computation

� Infinite computation

� Non-termination instead of failure

� Sensitive to clause ordering

� Independent of the actual search strategy
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Proof search

� Logic programming
Depth-first
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Proof search

� Logic programming
Depth-first
program clauses

� Object-level theorem proving
Iterative deepening with bound
program clauses + lemmas

� Meta-level theorem proving:
Induction + case analysis + iterative deepening
program clauses + lemmas + proof assumptions

Tabled higher-order logic programming – p.11/30



Tabled logic programming

� Eliminate redundant and infinite paths from
proof search using memoization

� Table:
1. Record encountered sub-goals
2. Store corresponding solutions
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Strategy

� When to suspend goals ?

� When to retrieve answers ?

� How to retrieve answers (order) ?

� What is the retrieval condition ?

Multi-stage strategy:

only re-use answers from previous stages
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Advantages

� Translating inference rules to logic program is
straightforward.

� Programs have better complexities.

� Order of clauses is less important.

� Computation will terminate for finite domain.

� We can dis-prove more conjectures.

� Table contains useful debugging information.
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Trade-off

Price to pay :

� More complicated semantics

� Overhead caused by memoization
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Trade-off

Price to pay :

� More complicated semantics

� Overhead caused by memoization

Solution:

� Combine tabled and non-tabled proof search

� Make table access efficient: term indexing
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Typing rules

Mini ML e ::= n

�
�

� �

z

�
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�
�

� �

app � � � �
�

lam �
�

�
�

letn � � � � in � �

� �

� � 	



	



	

tp˙sub� �

� � 	

�
�

� � 	 �

�

� � 	 �

tp˙lam� �
lam �

�
� � 	 � 	 �

� �

� � � 	 �

� � �
� �

�

�
�

� � � 	

tp˙letn� �

letn � � � � in � � � 	
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Type Checker in Elf

tp˙sub � of tp˙lam � of

�

lam

� �

�
�

�
� � �

� �
�

of


 � �
�

�

of � � of
�

�
�

�
�

�

sub




�

tp˙letn � of

�

letn �

� �

�
�

� �
� �

of � �

of

�

� �
�

�
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Tabled computation (higher-order)
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�
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Tabled computation (higher-order)

:-? of

�
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� �

�
�

�
� �

tp˙lam: � � of � �

�

of � �

tp˙sub: � � of � �

�

of � sub �

Suspend and fail

Entry Answer

of

�

lam

� �

�
�

�
� � � � � � �

� � of � �

�

of � �

� �

�
�

�

�
�
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Challenges

� Store goals together with context :

� �

�

� Redesign table operations : goal

� � �

�
� � Table

� Context dependencies
(e.g. �� of � ��

�

�

sub

� ��
� )

� Type dependencies
(e.g. �� of � ��

�

�

of �
� � � �
	

)

� Indexing for higher-order terms
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Meta-level reasoning

Induction hypothesis generation

Iterative deepening

induction hypothesis

proof assumptions

Case Splitting

with depth bound
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Meta-level reasoning

Induction hypothesis generation

Iterative deepening

program clauses
lemmas
proof assumptions
induction hypothesis

induction hypothesis

depth

proof assumptions

Case Splitting
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Meta-level reasoning

Induction hypothesis generation

Iterative deepening

program clauses
lemmas
proof assumptions
induction hypothesis

induction hypothesis

depth

proof assumptions

Case Splitting
c1 c6 c7 . . .. . .c2
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Meta-level reasoning

Induction hypothesis generation

Focus on one split

No sharing across
  iterations

No usefull failure

No sharing across
  cases

Iterative deepening

program clauses
lemmas
proof assumptions
induction hypothesis

induction hypothesis

depth

proof assumptions

Case Splitting
c1 c6 c7 . . .. . .c2

Drawbacks:
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Meta-level reasoning with tabling

Induction hypothesis generation

program clauses
lemmas
proof assumptions
induction hypothesis

induction hypothesis

proof assumptions

Case Splitting
c1 c6 c7 . . .. . .c2

Table

Tabled proof search
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Meta-level reasoning with tabling

Induction hypothesis generation

program clauses
lemmas
proof assumptions
induction hypothesis

induction hypothesis

proof assumptions

Case Splitting
c1 c6 c7 . . .. . .c2

Tabled proof searchTable
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Meta-level reasoning with tabling

Induction hypothesis generation

program clauses
lemmas
proof assumptions
induction hypothesis

induction hypothesis

proof assumptions

Case Splitting
c1 c7 . . .. . .c2

Tabled proof searchTable

c6
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Meta-level search based on tabling

� Redundancy elimination during object-level search

� Detection of unprovable branches

� Preservation of partial results across case splitting
and induction hypothesis generation

� Proving different case split in parallel

� Detection of redundant case splits
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Overview of Thesis

� Proof-theoretical characterization:
Soundness of interpreter

� Design of efficient implementation techniques

1. Higher-order terms indexing
2. Context handling

� Implementation and Validation
1. Logic programming
2. Object and meta-level theorem proving
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Preliminary Experiments

� Specification (formerly not executable)

� Type systems: subtyping, intersections

� Rewriting based on

�

-calculus

� Conversions in the

�

-calculus

� Graph transition systems

� Implementations : better performance

� refinement types

� polymorphisms
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Other examples

Logical systems :

� Cartesian closed categories (CCC)

� Natural deduction calculi (NK, NJ)

� Decision procedures (e.g. congruence closure
algorithms)

� Parsing grammars

Examples for meta-reasoning:

� Soundness of Kolmogoroff translation between
NK and NJ

� Translation betwen CCC and

�

calculus
Tabled higher-order logic programming – p.25/30



Related Work

Tabled first-order logic programming:

� SLD resolution with memoization (Tamaki, Sato)

� Extensions to WAM (Warren, Chen)

Object and meta-level reasoning:

� Based on tactics:
Isabelle(Paulson),

�

Prolog(Felty,Miller)

� Based on higher-order logic programming:
Twelf (Schürmann, Pfenning)
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Related Work

Proof-theoretical characterization

� Uniform proofs (Miller, Nadathur, Pfenning,
Scedrov)

� Proof Irrelevance (Pfenning)

Implementation techniques (mainly first-order)

� Term indexing (I.V.Ramakrishnan, Sekar,
Voronkov)

� Substitution trees (Graf), higher-order (Klein)
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Related Work

Certificates:

� Justifiers: XSB (Roychoudhury, I.V.Ramakrishnan)

� Bit-strings: variant of PCC (Necula,Rahul)

� Proof terms: Elf, Twelf(Schürmann,Pfenning)
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Conclusion

� Tabled higher-order logic programming

� Tabled proof search impacts
1. Logic programming interpreter
2. Object- and meta-level theorem prover

� Proof-theoretic characterization

� Implementation of prototype

� Preliminary experiments
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