Tabled higher-order logic programming

Thesis Proposal

Brigitte Pientka

Department of Computer Science

Carnegie Mellon University

Tabled higher-order logic programming - p.1/30

Outline

- Introduction
- Illustrating example: subtyping
- Tabled higher-order logic programming
 - 1. Tabled logic programming interpreter
 - 2. Object- and meta-level theorem prover
- Thesis work
- Related work
- Conclusion

Introduction

Higher-order logic programming
 Terms: (dependently) typed λ-calculus
 Clauses: implication, universal quantification

Introduction

- Higher-order logic programming
 Terms: (dependently) typed λ-calculus
 Clauses: implication, universal quantification
- Meta-language for specifying / implementing logical systems

proofs about them

Introduction

- Higher-order logic programming
 Terms: (dependently) typed λ-calculus
 Clauses: implication, universal quantification
- Meta-language for specifying / implementing logical systems (type system, safety logic, congruence closure . . .) proofs about them

- Higher-order logic programming
 Terms: (dependently) typed λ-calculus
 Clauses: implication, universal quantification
- Meta-language for specifying / implementing logical systems (type system, safety logic, congruence closure . . .) proofs about them (correctness, soundness etc.)

- Higher-order logic programming
 Terms: (dependently) typed λ-calculus
 Clauses: implication, universal quantification
- Meta-language for specifying / implementing logical systems (type system, safety logic, congruence closure . . .) proofs about them (correctness, soundness etc.)
- Approaches: Elf, λ Prolog, Isabelle

- Implementing logical systems
- Executing them and generating certificate

•

•

- Checking certificate
- Reasoning with and about them

- Implementing logical systems
 higher-order logic program
- Executing them and generating certificate
- Checking certificate
- Reasoning with and about them

- Implementing logical systems
 higher-order logic program
- Executing them and generating certificate logic programming interpreter Elf
- Checking certificate
- Reasoning with and about them

- Implementing logical systems
 higher-order logic program
- Executing them and generating certificate logic programming interpreter Elf
- Checking certificate
 type checker
- Reasoning with and about them

- Implementing logical systems
 higher-order logic program
- Executing them and generating certificate logic programming interpreter Elf
- Checking certificate
 type checker
- Reasoning with and about them object- and meta-level theorem prover Twelf

- Implementing logical systems
 higher-order logic program
- Executing them and generating certificate logic programming interpreter Elf
- Checking certificate
 type checker
- Reasoning with and about them object- and meta-level theorem prover Twelf

Reduces the effort required for each logical system

- Implementing logical systems
 higher-order logic program
- Executing them and generating certificate logic programming interpreter Elf
- Checking certificate
 type checker
- Reasoning with and about them object- and meta-level theorem prover Twelf

Reduces the effort required for each logical system

Search strategy

Depth-first: incomplete, infinite paths Iterative deepening: complete, infinite paths

Search strategy

Depth-first: incomplete, infinite paths Iterative deepening with bound: incomplete, infinite paths

Search strategy

Depth-first: incomplete, infinite paths Iterative deepening with bound: incomplete, infinite paths

Performance

Redundant computation

Tabled logic programming

- Tabling, memoization, caching, loop detection, magic sets ...
- Eliminate infinite and redundant computation by memoization (Tamaki, Sato)
- Finds all possible answers to a query
- Terminates for programs in a finite domain
- Combines tabled and non-tabled execution
- Very successful: XSB system(Warren *et.al.*)

Tabled higher-order logic programming allows us to

- · efficiently execute logical systems and
- automate the reasoning with and about them.

Tabled higher-order logic programming allows us to

- efficiently execute logical systems and (interpreter using tabled search)
- automate the reasoning with and about them.

Tabled higher-order logic programming allows us to

- efficiently execute logical systems and (interpreter using tabled search)
- automate the reasoning with and about them. (theorem prover using tabled search)

Types τ ::= neg | zero | pos | nat | int

Types τ ::= neg | zero | pos | nat | int

Types τ ::= neg | zero | pos | nat | int

Types τ ::= neg | zero | pos | nat | int

• • • •

- refl : sub T T.
- ${\rm tr}: \qquad {\rm sub} \ T \ S$
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub} \ R \ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

- refl : sub T T.
- tr : sub T S
- Compute all supertypes of zero :-? sub zero T.

- $\leftarrow \mathsf{sub} \ T \ R$
- $\leftarrow \mathsf{sub} \ R \ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

refl : sub T T.

tr:

Compute all supertypes of zero

- : –? sub zero T.
- $\leftarrow \operatorname{sub} T R \qquad \operatorname{refl:} \quad T = \operatorname{zero}$ $\leftarrow \operatorname{sub} R S \qquad \qquad \operatorname{Success}$

- \leftarrow sub R S.
- zn : sub zero nat .

sub T S

- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

- refl : sub T T.
- tr : sub T S
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub} \; R \; S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

Compute all supertypes of zero

- : –? sub zero T.
- tr: sub zero $R \leftarrow \text{sub } R T$.

refl : sub T T.

tr:

Compute all supertypes of zero

- : –? sub zero T.
- $\leftarrow \mathsf{sub} \ T \ R \qquad \mathsf{tr:} \qquad \mathsf{sub} \ \mathsf{zero} \ R \leftarrow \mathsf{sub} \ R \ T.$
- $\leftarrow \mathsf{sub} \ R \ S. \qquad \mathsf{refl:} \qquad \mathsf{sub} \ \mathsf{zero} \ T$

zn: sub zero nat.

sub T S

- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

refl : sub T T.

tr:

- Compute all supertypes of zero
- :-? sub zero T.
- $\leftarrow \mathsf{sub} \ T \ R \qquad \text{tr:} \qquad \mathsf{sub} \ \mathsf{zero} \ R \leftarrow \mathsf{sub} \ R \ T.$
- $\leftarrow \mathsf{sub} \ R \ S. \qquad \mathsf{refl:} \qquad \mathsf{sub} \ \mathsf{zero} \ T$
- zn: sub zero nat.

sub T S

- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

refl: T = zero

Redundant answer

refl : sub T T.

tr:

- Compute all supertypes of zero
- :-? sub zero T.
- $\leftarrow \mathsf{sub} \ T \ R \qquad \text{tr:} \qquad \mathsf{sub} \ \mathsf{zero} \ R \leftarrow \mathsf{sub} \ R \ T.$
- $\leftarrow \mathsf{sub} \ R \ S. \qquad \mathsf{refl:} \qquad \mathsf{sub} \ \mathsf{zero} \ T$

tr:

zn: sub zero nat.

sub T S

- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

sub zero $R \leftarrow$ sub R T.

refl : sub T T.

tr:

- Compute all supertypes of zero
- : –? sub zero T.
- $\leftarrow \mathsf{sub} \ T \ R \qquad \text{tr:} \qquad \mathsf{sub} \ \mathsf{zero} \ R \leftarrow \mathsf{sub} \ R \ T.$
- $\leftarrow \mathsf{sub} \ R \ S. \qquad \mathsf{refl:} \qquad \mathsf{sub} \ \mathsf{zero} \ T$

tr:

zn: sub zero nat.

sub T S

- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

sub zero $R \leftarrow$ sub R T.

Infinite path

Problem

- Redundant computation
- Infinite computation
- Non-termination instead of failure
- Sensitive to clause ordering
- Independent of the actual search strategy

- Logic programming Depth-first
- Object-level theorem proving Iterative deepening with bound
- Meta-level theorem proving: Induction + case analysis + iterative deepening

- Logic programming Depth-first program clauses
- Object-level theorem proving Iterative deepening with bound
- Meta-level theorem proving: Induction + case analysis + iterative deepening
Proof search

- Logic programming Depth-first program clauses
- Object-level theorem proving Iterative deepening with bound program clauses + lemmas
- Meta-level theorem proving: Induction + case analysis + iterative deepening

Proof search

- Logic programming Depth-first program clauses
- Object-level theorem proving Iterative deepening with bound program clauses + lemmas
- Meta-level theorem proving: Induction + case analysis + iterative deepening program clauses + lemmas + proof assumptions

Tabled logic programming

- Eliminate redundant and infinite paths from proof search using memoization
- Table:
 - 1. Record encountered sub-goals
 - 2. Store corresponding solutions

$\% tabled \; {\rm sub}$.

- refl : sub T T.
- ${\rm tr}: \quad {\rm sub} \ T \ S$
 - $\leftarrow \mathsf{sub} \; T \; R$
 - $\leftarrow \mathsf{sub} \ R \ S.$

- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

 $\% tabled \ {\rm sub}$.

- refl : sub T T.
- tr : sub T S
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub} \ R \ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

Compute all supertypes of zero

: –? sub zero T.

EntryAnswersub zero T

 $\% tabled \ {\rm sub}$.

- refl : sub T T.
- tr : sub T S ref
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub}\ R\ S.$
- zn : sub zero nat .
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

Compute all supertypes of zero

- : –? sub zero T.
- refl: T = zeroSuccess!

EntryAnswersub zero T

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- tr : sub T S
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub}\ R\ S.$
- zn : sub zero nat .
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

Compute all supertypes of zero

- : –? sub zero T.
- refl: T = zero
 - Add answer to table

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- tr: sub T S tr:
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub}\ R\ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

Compute all supertypes of zero

- : –? sub zero T.
 - sub zero $R \leftarrow$ sub R T.
 - Variant of previous goal

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- tr: sub T S tr:
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub}\ R\ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

Compute all supertypes of zero

- : –? sub zero T.
 - sub zero $R \leftarrow$ sub R T.
 - Fail and suspend goal

 $\% tabled \ {\rm sub}$.

- refl : sub T T.
- tr: sub T S zn :
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub}\ R\ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

Compute all supertypes of zero

- : –? sub zero T.
- zn : T = natSuccess!

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- tr : sub T S
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub}\ R\ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.
- negi: sub neg int.

Compute all supertypes of zero

- : –? sub zero T.
- zn: T = nat
 - Add answer to table

EntryAnswersub zero T[zero /T], [nat /T]

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- tr: sub T S zn:
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub} \ R \ S.$
- zn : sub zero nat .
- pn: sub pos nat.
- nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

- :-? sub zero T.
 - $T = \mathsf{nat}$
 - Add answer to table

EntryAnswersub zero T[zero /T], [nat /T]

First Stage completed!

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- tr : sub T S
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub} \ R \ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero

: –? sub zero T.

 $\textbf{resume sub zero } R \leftarrow \textbf{sub } R \ T.$

EntryAnswersub zero T[zero /T], [nat /T]

Tabled higher-order logic programming - p.13/30

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- tr : sub T S

 $\leftarrow \mathsf{sub} \ T \ R$

 $\leftarrow \mathsf{sub}\ R\ S.$

- Compute all supertypes of zero
- : –? sub zero T.
- **resume** sub zero $R \leftarrow \text{sub} R T$.
- $[\mathsf{nat}\ /R]$ sub nat T.
- zn : sub zero nat .
- pn: sub pos nat.
- nati: sub nat int.

negi: sub neg int.

EntryAnswersub zero T[zero /T], [nat /T]

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- tr : sub T S

 $\leftarrow \mathsf{sub} \ T \ R$ $\leftarrow \mathsf{sub} \ R \ S.$

Compute all supertypes of zero

: –? sub zero T.

 $\textbf{resume sub zero } R \leftarrow \textbf{sub } R \ T.$

 $[\operatorname{\mathsf{nat}}/R]$ sub nat T.

Add goal to table

- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.

negi: sub neg int.

Entry	Answer
sub zero T	[zero $/T$], [nat $/T$]
sub nat T	

I.

 $\% tabled \ {\rm sub}$.

- refl : sub T T.
- tr : sub T S

 $\leftarrow \mathsf{sub} \ T \ R$

- \leftarrow sub R S.
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero : -? sub zero T_{-} **resume** sub zero $R \leftarrow$ sub R T. $|\mathsf{nat}|/R|$ sub nat Trefl T = nat**Success** Answer Entry sub zero T|zero /T|, |nat /T|sub nat T

 $\% tabled \ {\rm sub}$.

- refl : sub T T.
- tr : sub T S

 $\leftarrow \mathsf{sub} \ T \ R$

- $\leftarrow \mathsf{sub}\ R\ S.$
- zn: sub zero nat.

pn: sub pos nat.

nati: sub nat int.

negi: sub neg int.

Compute all supertypes of zero : -? sub zero T_{-} **resume** sub zero $R \leftarrow$ sub R T. $|\mathsf{nat}|/R|$ sub nat Trefl T = natAdd answer to table Entry Answer [zero /T], [nat /T] sub zero $T \mid$ sub nat T|nat/T|

 $\% tabled \; {\rm sub}$.

- refl : sub T T.
- tr : sub T S
 - $\leftarrow \mathsf{sub} \ T \ R$
 - $\leftarrow \mathsf{sub} \ R \ S.$
- zn: sub zero nat.
- pn: sub pos nat.
- nati: sub nat int.

negi: sub neg int.

Compute all s	supertypes of zero
---------------	--------------------

: –? sub zero T.

Entry	Answer
sub zero T	[zero $/T$], [nat $/T$], [int $/T$]
sub nat T	[nat $/T$], [int $/T$]
sub int T	$\left[\operatorname{int}/T ight]$

• When to suspend goals ?

- When to suspend goals ?
- When to retrieve answers ?

- When to suspend goals ?
- When to retrieve answers ?
- How to retrieve answers (order) ?

- When to suspend goals ?
- When to retrieve answers ?
- How to retrieve answers (order) ?
- What is the retrieval condition ?

- When to suspend goals ?
- When to retrieve answers ?
- How to retrieve answers (order) ?
- What is the retrieval condition ?

Multi-stage strategy:

only re-use answers from previous stages

Advantages

- Translating inference rules to logic program is straightforward.
- Programs have better complexities.
- Order of clauses is less important.
- Computation will terminate for finite domain.
- We can dis-prove more conjectures.
- Table contains useful debugging information.

Trade-off

Price to pay :

- More complicated semantics
- Overhead caused by memoization

Trade-off

Price to pay :

- More complicated semantics
- Overhead caused by memoization

Solution:

- Combine tabled and non-tabled proof search
- Make table access efficient: term indexing

Typing rules

Mini ML e ::= $n(e) | z | s(e) | app e_1 e_2 |$ $lam x.e | letn u = e_1 in e_2$

$$\frac{\Gamma \vdash e : \tau' \qquad \tau' \preceq \tau}{\Gamma \vdash e : \tau} \text{tp`sub} \qquad \frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \text{Iam } x.e : \tau_1 \to \tau_2} \text{tp`lam}$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \qquad \Gamma \vdash [e_1/u]e_2 : \tau}{\Gamma \vdash \operatorname{letn} u = e_1 \operatorname{in} e_2 : \tau} \operatorname{tp^{-}letn}$$

•

•

Type Checker in Elf

 $\begin{array}{ll} \text{tp`sub:of } E \ T & \text{tp`lam:of} \left(\text{lam} \left(\begin{bmatrix} x \end{bmatrix} E \ x \right) \right) \left(T_1 \Rightarrow T_2 \right) \\ \leftarrow \text{ of } E \ T' & \leftarrow \left(\{y\} \text{ of } y \ T_1 \rightarrow \text{ of } \left(E \ y \right) \ T_2 \right). \\ \leftarrow \text{ sub } T' \ T. \end{array}$

$\begin{aligned} \text{tp`letn :of} \left(\text{letn } E_1 \left(\left[u \right] E_2 u \right) \right) T \\ & \leftarrow \text{ of } E_1 T_1 \\ & \leftarrow \text{ of } \left(E_2 E_1 \right) T. \end{aligned}$

:-? of (lam ([x] x)) T

EntryAnswerof (lam ([x] x)) T

•

:-? of (lam ([x] x)) Ttp'sub: of $(\text{lam } ([x] x)) R \leftarrow \text{sub } R T$.

•

•

:-? of (lam ([x] x)) Ttp'sub: of $(\text{lam } ([x] x)) R \leftarrow \text{sub } R T$. Variant of previous goal

:-? of (Iam ([x] x)) Ttp'sub: of $(\text{Iam } ([x] x)) R \leftarrow \text{sub } R T$. Fail and suspend

:-? of $(\operatorname{lam} ([x] x)) T$ tp'lam: u : of $x T_1 \vdash$ of $x T_2$

•

•

:-? of (lam ([x] x)) Ttp'lam: u : of $x T_1 \vdash$ of $x T_2$ Add goal to table

EntryAnswerof
$$(lam ([x] x)) T$$
 $u : of x T_1 \vdash of x T_2$

• •

:-? of
$$(\text{lam } ([x] x)) T$$

tp'lam: u : of $x T_1 \vdash \text{ of } x T_2$
 u : $T_1 = P, T_2 = P, T = (P \Rightarrow P)$
Success

EntryAnswerof
$$(lam ([x] x)) T$$
 $u : of x T_1 \vdash of x T_2$

•

• • •

:-? of
$$(\text{lam } ([x] x)) T$$

tp lam: u : of $x T_1 \vdash \text{ of } x T_2$
 u : $T_1 = P, T_2 = P, T = (P \Rightarrow P)$
Add answers to table

EntryAnswerof
$$(lam ([x] x)) T$$
 $[(P \Rightarrow P)/T]$ $u : of x T_1 \vdash of x T_2$ $[P/T_1, P/T_2]$

•

• • •
Tabled computation (higher-order)

:-? of $(\operatorname{lam} ([x] x)) T$ tp'lam: u : of $x T_1 \vdash \operatorname{of} x T_2$ tp'sub: u : of $x T_1 \vdash \operatorname{of} x R \leftarrow \operatorname{sub} R T_2$

EntryAnswerof (lam ([x] x)) T $[(P \Rightarrow P)/T]$ $u : of x T_1 \vdash of x T_2$ $[P/T_1, P/T_2]$

Tabled computation (higher-order)

:-? of
$$(\text{lam } ([x] x)) T$$

tp lam: u : of $x T_1 \vdash$ of $x T_2$
tp sub: u : of $x T_1 \vdash$ of $x R \leftarrow$ sub $R T_2$
Variant of previous goal

EntryAnswerof
$$(lam ([x] x)) T$$
 $[(P \Rightarrow P)/T]$ $u : of x T_1 \vdash of x T_2$ $[P/T_1, P/T_2]$

• •

• • •

Tabled computation (higher-order)

:-? of
$$(\text{lam } ([x] x)) T$$

tp lam: u : of $x T_1 \vdash$ of $x T_2$
tp sub: u : of $x T_1 \vdash$ of $x R \leftarrow$ sub $R T_2$
Suspend and fail

EntryAnswerof
$$(lam ([x] x)) T$$
 $[(P \Rightarrow P)/T]$ $u : of x T_1 \vdash of x T_2$ $[P/T_1, P/T_2]$

•

• • •

Challenges

- Store goals together with context : $\Gamma \vdash a$
- Redesign table operations : goal $(\Gamma \vdash a) \in \text{Table}$
- Context dependencies (e.g. $u : of x T_1 \vdash sub R T_2$)
- Type dependencies (e.g. $u : of x T_1 \vdash of x (R x u)$)
- Indexing for higher-order terms

Drawbacks:

- No sharing across iterations
- Focus on one split
- No sharing across cases
- No usefull failure

Meta-level reasoning with tabling

Meta-level reasoning with tabling

Meta-level reasoning with tabling

Meta-level search based on tabling

- Redundancy elimination during object-level search
- Detection of unprovable branches
- Preservation of partial results across case splitting and induction hypothesis generation
- Proving different case split in parallel
- Detection of redundant case splits

Overview of Thesis

- Proof-theoretical characterization: Soundness of interpreter
- Design of efficient implementation techniques
 - 1. Higher-order terms indexing
 - 2. Context handling
- Implementation and Validation
 - 1. Logic programming
 - 2. Object and meta-level theorem proving

Preliminary Experiments

- Specification (formerly not executable)
 - Type systems: subtyping, intersections
 - Rewriting based on λ -calculus
 - Conversions in the λ -calculus
 - Graph transition systems
- Implementations : better performance
 - refinement types
 - polymorphisms

Other examples

Logical systems :

- Cartesian closed categories (CCC)
- Natural deduction calculi (NK, NJ)
- Decision procedures (e.g. congruence closure algorithms)
- Parsing grammars
- Examples for meta-reasoning:
 - Soundness of Kolmogoroff translation between NK and NJ
 - Translation betwen CCC and $\lambda calculus$

Tabled first-order logic programming:

- SLD resolution with memoization (Tamaki, Sato)
- Extensions to WAM (Warren, Chen)

Object and meta-level reasoning:

- Based on tactics: Isabelle(Paulson), λProlog(Felty,Miller)
- Based on higher-order logic programming: Twelf (Schürmann, Pfenning)

Related Work

Proof-theoretical characterization

- Uniform proofs (Miller, Nadathur, Pfenning, Scedrov)
- Proof Irrelevance (Pfenning)

Implementation techniques (mainly first-order)

- Term indexing (I.V.Ramakrishnan, Sekar, Voronkov)
- Substitution trees (Graf), higher-order (Klein)

Related Work

Certificates:

- Justifiers: XSB (Roychoudhury, I.V.Ramakrishnan)
- Bit-strings: variant of PCC (Necula, Rahul)
- Proof terms: *Elf, Twelf*(Schürmann, Pfenning)

Conclusion

- Tabled higher-order logic programming
- Tabled proof search impacts
 - 1. Logic programming interpreter
 - 2. Object- and meta-level theorem prover
- Proof-theoretic characterization
- Implementation of prototype
- Preliminary experiments