
Tabled higher-order logic
programming

Thesis Proposal

Brigitte Pientka

Department of Computer Science

Carnegie Mellon University

Tabled higher-order logic programming – p.1/30

Outline

� Introduction

� Illustrating example: subtyping

� Tabled higher-order logic programming
1. Tabled logic programming interpreter
2. Object- and meta-level theorem prover

� Thesis work

� Related work

� Conclusion

Tabled higher-order logic programming – p.2/30

Introduction

� Higher-order logic programming
Terms: (dependently) typed

�

-calculus
Clauses: implication, universal quantification

Tabled higher-order logic programming – p.3/30

Introduction

� Higher-order logic programming
Terms: (dependently) typed

�

-calculus
Clauses: implication, universal quantification

� Meta-language for specifying / implementing

logical systems

proofs about them

Tabled higher-order logic programming – p.3/30

Introduction

� Higher-order logic programming
Terms: (dependently) typed

�

-calculus
Clauses: implication, universal quantification

� Meta-language for specifying / implementing

logical systems (type system, safety logic,
congruence closure . . .)

proofs about them

Tabled higher-order logic programming – p.3/30

Introduction

� Higher-order logic programming
Terms: (dependently) typed

�

-calculus
Clauses: implication, universal quantification

� Meta-language for specifying / implementing

logical systems (type system, safety logic,
congruence closure . . .)

proofs about them (correctness, soundness etc.)

Tabled higher-order logic programming – p.3/30

Introduction

� Higher-order logic programming
Terms: (dependently) typed

�

-calculus
Clauses: implication, universal quantification

� Meta-language for specifying / implementing

logical systems (type system, safety logic,
congruence closure . . .)

proofs about them (correctness, soundness etc.)

� Approaches: Elf,
�

Prolog, Isabelle

Tabled higher-order logic programming – p.3/30

Generic framework for . . .

� Implementing logical systems

� Executing them and generating certificate

� Checking certificate

� Reasoning with and about them

Tabled higher-order logic programming – p.4/30

Generic framework for . . .

� Implementing logical systems
higher-order logic program

� Executing them and generating certificate

� Checking certificate

� Reasoning with and about them

Tabled higher-order logic programming – p.4/30

Generic framework for . . .

� Implementing logical systems
higher-order logic program

� Executing them and generating certificate
logic programming interpreter Elf

� Checking certificate

� Reasoning with and about them

Tabled higher-order logic programming – p.4/30

Generic framework for . . .

� Implementing logical systems
higher-order logic program

� Executing them and generating certificate
logic programming interpreter Elf

� Checking certificate
type checker

� Reasoning with and about them

Tabled higher-order logic programming – p.4/30

Generic framework for . . .

� Implementing logical systems
higher-order logic program

� Executing them and generating certificate
logic programming interpreter Elf

� Checking certificate
type checker

� Reasoning with and about them
object- and meta-level theorem prover Twelf

Tabled higher-order logic programming – p.4/30

Generic framework for . . .

� Implementing logical systems
higher-order logic program

� Executing them and generating certificate
logic programming interpreter Elf

� Checking certificate
type checker

� Reasoning with and about them
object- and meta-level theorem prover Twelf

Reduces the effort required for each logical system

Tabled higher-order logic programming – p.4/30

Generic framework for . . .

� Implementing logical systems
higher-order logic program

� Executing them and generating certificate
logic programming interpreter Elf

� Checking certificate
type checker

� Reasoning with and about them
object- and meta-level theorem prover Twelf

Reduces the effort required for each logical system

Tabled higher-order logic programming – p.4/30

Proof search

� Search strategy
Depth-first: incomplete, infinite paths
Iterative deepening: complete, infinite paths

Tabled higher-order logic programming – p.5/30

Proof search

� Search strategy
Depth-first: incomplete, infinite paths
Iterative deepening with bound: incomplete,
infinite paths

Tabled higher-order logic programming – p.5/30

Proof search

� Search strategy
Depth-first: incomplete, infinite paths
Iterative deepening with bound: incomplete,
infinite paths

� Performance
Redundant computation

Tabled higher-order logic programming – p.5/30

Tabled logic programming

� Tabling, memoization, caching, loop detection,
magic sets ...

� Eliminate infinite and redundant computation by
memoization (Tamaki, Sato)

� Finds all possible answers to a query

� Terminates for programs in a finite domain

� Combines tabled and non-tabled execution

� Very successful: XSB system(Warren et.al.)

Tabled higher-order logic programming – p.6/30

Thesis

Tabled higher-order logic programming allows us to

� efficiently execute logical systems and

� automate the reasoning with and about them.

Tabled higher-order logic programming – p.7/30

Thesis

Tabled higher-order logic programming allows us to

� efficiently execute logical systems and
(interpreter using tabled search)

� automate the reasoning with and about them.

Tabled higher-order logic programming – p.7/30

Thesis

Tabled higher-order logic programming allows us to

� efficiently execute logical systems and
(interpreter using tabled search)

� automate the reasoning with and about them.
(theorem prover using tabled search)

Tabled higher-order logic programming – p.7/30

Illustrating example: subtyping
Types � ::= neg

�

zero

�

pos

�

nat

�

int

Tabled higher-order logic programming – p.8/30

Illustrating example: subtyping
Types � ::= neg

�

zero

�

pos

�

nat

�

int

zn
zero

�

nat
pn

pos

�

nat

Tabled higher-order logic programming – p.8/30

Illustrating example: subtyping
Types � ::= neg

�

zero

�

pos

�

nat

�

int

zn
zero

�

nat
pn

pos

�

nat
nati

nat

�

int
negi

neg

�

int

Tabled higher-order logic programming – p.8/30

Illustrating example: subtyping
Types � ::= neg

�

zero

�

pos

�

nat

�

int

zn
zero

�

nat
pn

pos

�

nat
nati

nat

�

int
negi

neg

�

int

refl� � �

� � � � � �
tr� � �

Tabled higher-order logic programming – p.8/30

Subtyping relation in Elf
refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Tabled higher-order logic programming – p.9/30

Subtyping relation in Elf
refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

Tabled higher-order logic programming – p.9/30

Subtyping relation in Elf
refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

refl: � zero

Success

Tabled higher-order logic programming – p.9/30

Subtyping relation in Elf
refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

tr: sub zero sub �

Tabled higher-order logic programming – p.9/30

Subtyping relation in Elf
refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

tr: sub zero sub �

refl: sub zero

Tabled higher-order logic programming – p.9/30

Subtyping relation in Elf
refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

tr: sub zero sub �

refl: sub zero

refl: � zero

Redundant answer

Tabled higher-order logic programming – p.9/30

Subtyping relation in Elf
refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

tr: sub zero sub �

refl: sub zero

tr: sub zero sub �

Tabled higher-order logic programming – p.9/30

Subtyping relation in Elf
refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

tr: sub zero sub �

refl: sub zero

tr: sub zero sub �

Infinite path

Tabled higher-order logic programming – p.9/30

Problem

� Redundant computation

� Infinite computation

� Non-termination instead of failure

� Sensitive to clause ordering

� Independent of the actual search strategy

Tabled higher-order logic programming – p.10/30

Proof search

� Logic programming
Depth-first

� Object-level theorem proving
Iterative deepening with bound

� Meta-level theorem proving:
Induction + case analysis + iterative deepening

Tabled higher-order logic programming – p.11/30

Proof search

� Logic programming
Depth-first
program clauses

� Object-level theorem proving
Iterative deepening with bound

� Meta-level theorem proving:
Induction + case analysis + iterative deepening

Tabled higher-order logic programming – p.11/30

Proof search

� Logic programming
Depth-first
program clauses

� Object-level theorem proving
Iterative deepening with bound
program clauses + lemmas

� Meta-level theorem proving:
Induction + case analysis + iterative deepening

Tabled higher-order logic programming – p.11/30

Proof search

� Logic programming
Depth-first
program clauses

� Object-level theorem proving
Iterative deepening with bound
program clauses + lemmas

� Meta-level theorem proving:
Induction + case analysis + iterative deepening
program clauses + lemmas + proof assumptions

Tabled higher-order logic programming – p.11/30

Tabled logic programming

� Eliminate redundant and infinite paths from
proof search using memoization

� Table:
1. Record encountered sub-goals
2. Store corresponding solutions

Tabled higher-order logic programming – p.12/30

Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Tabled higher-order logic programming – p.13/30

Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

Entry Answer
sub zero

Tabled higher-order logic programming – p.13/30

Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

refl: � zero

Success!

Entry Answer
sub zero

Tabled higher-order logic programming – p.13/30

Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

refl: � zero

Add answer to table

Entry Answer
sub zero

�

zero

� �

Tabled higher-order logic programming – p.13/30

Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

tr : sub zero sub �

Variant of previous goal

Entry Answer
sub zero

�

zero

� �

Tabled higher-order logic programming – p.13/30

Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

tr : sub zero sub �

Fail and suspend goal

Entry Answer
sub zero

�

zero

� �

Tabled higher-order logic programming – p.13/30

Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

zn : � nat

Success!

Entry Answer
sub zero

�

zero

� �

Tabled higher-order logic programming – p.13/30

Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

zn : � nat

Add answer to table

Entry Answer
sub zero

�

zero

� �
�

�

nat

� �

Tabled higher-order logic programming – p.13/30

Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

zn: � nat

Add answer to table

Entry Answer
sub zero

�

zero

� �
�

�

nat

� �

First Stage completed!

Tabled higher-order logic programming – p.13/30

Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

resume sub zero sub �

Entry Answer
sub zero

�

zero

� �
�

�

nat

� �

Tabled higher-order logic programming – p.13/30

Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

resume sub zero sub �

�

nat

� �

sub nat �

Entry Answer
sub zero

�

zero

� �
�

�

nat

� �

Tabled higher-order logic programming – p.13/30

Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

resume sub zero sub �

�

nat

� �

sub nat .
Add goal to table

Entry Answer
sub zero

�

zero

� �
�

�

nat

� �

sub nat

Tabled higher-order logic programming – p.13/30

Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

resume sub zero sub �

�

nat

� �

sub nat

refl � nat

Success

Entry Answer
sub zero

�

zero

� �
�

�

nat

� �

sub nat

Tabled higher-order logic programming – p.13/30

Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

resume sub zero sub �

�

nat

� �

sub nat

refl � nat

Add answer to table

Entry Answer
sub zero

�

zero

� �
�

�

nat

� �

sub nat

�

nat

� �

Tabled higher-order logic programming – p.13/30

Tabled computation

%

� �
��

�
�

sub �

refl � sub �

tr � sub

�

sub

sub

�
�

zn � sub zero nat �

pn � sub pos nat �

nati � sub nat int �

negi � sub neg int �

Compute all supertypes of zero

:-? sub zero �

Entry Answer
sub zero

�

zero

� �
�

�

nat

� �
�

�

int

� �

sub nat

�

nat

� �
�

�

int

� �

sub int

�

int

� �

Tabled higher-order logic programming – p.13/30

Strategy

� When to suspend goals ?

Tabled higher-order logic programming – p.14/30

Strategy

� When to suspend goals ?

� When to retrieve answers ?

Tabled higher-order logic programming – p.14/30

Strategy

� When to suspend goals ?

� When to retrieve answers ?

� How to retrieve answers (order) ?

Tabled higher-order logic programming – p.14/30

Strategy

� When to suspend goals ?

� When to retrieve answers ?

� How to retrieve answers (order) ?

� What is the retrieval condition ?

Tabled higher-order logic programming – p.14/30

Strategy

� When to suspend goals ?

� When to retrieve answers ?

� How to retrieve answers (order) ?

� What is the retrieval condition ?

Multi-stage strategy:

only re-use answers from previous stages

Tabled higher-order logic programming – p.14/30

Advantages

� Translating inference rules to logic program is
straightforward.

� Programs have better complexities.

� Order of clauses is less important.

� Computation will terminate for finite domain.

� We can dis-prove more conjectures.

� Table contains useful debugging information.

Tabled higher-order logic programming – p.15/30

Trade-off

Price to pay :

� More complicated semantics

� Overhead caused by memoization

Tabled higher-order logic programming – p.16/30

Trade-off

Price to pay :

� More complicated semantics

� Overhead caused by memoization

Solution:

� Combine tabled and non-tabled proof search

� Make table access efficient: term indexing

Tabled higher-order logic programming – p.16/30

Typing rules

Mini ML e ::= n

�
�

� �

z

�

s

�
�

� �

app � � � �
�

lam �
�

�
�

letn � � � � in � �

� �

� � 	

	

	

tp˙sub� �

� � 	

�
�

� � 	 �

�

� � 	 �

tp˙lam� �
lam �

�
� � 	 � 	 �

� �

� � � 	 �

� � �
� �

�

�
�

� � � 	

tp˙letn� �

letn � � � � in � � � 	

Tabled higher-order logic programming – p.17/30

Type Checker in Elf

tp˙sub � of tp˙lam � of

�

lam

� �

�
�

�
� � �

� �
�

of

 � �
�

�

of � � of
�

�
�

�
�

�

sub

�

tp˙letn � of

�

letn �

� �

�
�

� �
� �

of � �

of

�

� �
�

�

Tabled higher-order logic programming – p.18/30

Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

Entry Answer

of

�

lam

� �

�
�

�
� �

Tabled higher-order logic programming – p.19/30

Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp˙sub: of

�

lam

� �

�
�

�
� �

sub �

Entry Answer

of

�

lam

� �

�
�

�
� �

Tabled higher-order logic programming – p.19/30

Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp˙sub: of

�

lam

� �

�
�

�
� �

sub �

Variant of previous goal

Entry Answer

of

�

lam

� �

�
�

�
� �

Tabled higher-order logic programming – p.19/30

Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp˙sub: of

�

lam

� �

�
�

�
� �

sub �

Fail and suspend

Entry Answer

of

�

lam

� �

�
�

�
� �

Tabled higher-order logic programming – p.19/30

Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp˙lam: � � of � �

�

of � �

Entry Answer

of

�

lam

� �

�
�

�
� �

Tabled higher-order logic programming – p.19/30

Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp˙lam: � � of � �

�

of � �

Add goal to table

Entry Answer

of

�

lam

� �

�
�

�
� �

� � of � �

�

of � �

Tabled higher-order logic programming – p.19/30

Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp˙lam: � � of � �

�

of � �

�: � �

�

� �

�

�
� �

Success

Entry Answer

of

�

lam

� �

�
�

�
� �

� � of � �

�

of � �

Tabled higher-order logic programming – p.19/30

Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp˙lam: � � of � �

�

of � �

�: � �

�

� �

�

�
� �

Add answers to table

Entry Answer

of

�

lam

� �

�
�

�
� � � � � � �

� � of � �

�

of � �

� �

�
�

�

�
�

Tabled higher-order logic programming – p.19/30

Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp˙lam: � � of � �

�

of � �

tp˙sub: � � of � �

�

of � sub �

Entry Answer

of

�

lam

� �

�
�

�
� � � � � � �

� � of � �

�

of � �

� �

�
�

�

�
�

Tabled higher-order logic programming – p.19/30

Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp˙lam: � � of � �

�

of � �

tp˙sub: � � of � �

�

of � sub �

Variant of previous goal

Entry Answer

of

�

lam

� �

�
�

�
� � � � � � �

� � of � �

�

of � �

� �

�
�

�

�
�

Tabled higher-order logic programming – p.19/30

Tabled computation (higher-order)

:-? of

�

lam

� �

�
�

�
� �

tp˙lam: � � of � �

�

of � �

tp˙sub: � � of � �

�

of � sub �

Suspend and fail

Entry Answer

of

�

lam

� �

�
�

�
� � � � � � �

� � of � �

�

of � �

� �

�
�

�

�
�

Tabled higher-order logic programming – p.19/30

Challenges

� Store goals together with context :

� �

�

� Redesign table operations : goal

� � �

�
� � Table

� Context dependencies
(e.g. �� of � ��

�

�

sub

� ��
�)

� Type dependencies
(e.g. �� of � ��

�

�

of �
� � � �
	

)

� Indexing for higher-order terms

Tabled higher-order logic programming – p.20/30

Meta-level reasoning

Induction hypothesis generation

Iterative deepening

induction hypothesis

proof assumptions

Case Splitting

with depth bound

Tabled higher-order logic programming – p.21/30

Meta-level reasoning

Induction hypothesis generation

Iterative deepening

program clauses
lemmas
proof assumptions
induction hypothesis

induction hypothesis

depth

proof assumptions

Case Splitting

Tabled higher-order logic programming – p.21/30

Meta-level reasoning

Induction hypothesis generation

Iterative deepening

program clauses
lemmas
proof assumptions
induction hypothesis

induction hypothesis

depth

proof assumptions

Case Splitting
c1 c6 c7c2

Tabled higher-order logic programming – p.21/30

Meta-level reasoning

Induction hypothesis generation

Focus on one split

No sharing across
 iterations

No usefull failure

No sharing across
 cases

Iterative deepening

program clauses
lemmas
proof assumptions
induction hypothesis

induction hypothesis

depth

proof assumptions

Case Splitting
c1 c6 c7c2

Drawbacks:

Tabled higher-order logic programming – p.21/30

Meta-level reasoning with tabling

Induction hypothesis generation

program clauses
lemmas
proof assumptions
induction hypothesis

induction hypothesis

proof assumptions

Case Splitting
c1 c6 c7c2

Table

Tabled proof search

Tabled higher-order logic programming – p.21/30

Meta-level reasoning with tabling

Induction hypothesis generation

program clauses
lemmas
proof assumptions
induction hypothesis

induction hypothesis

proof assumptions

Case Splitting
c1 c6 c7c2

Tabled proof searchTable

Tabled higher-order logic programming – p.21/30

Meta-level reasoning with tabling

Induction hypothesis generation

program clauses
lemmas
proof assumptions
induction hypothesis

induction hypothesis

proof assumptions

Case Splitting
c1 c7c2

Tabled proof searchTable

c6

Tabled higher-order logic programming – p.21/30

Meta-level search based on tabling

� Redundancy elimination during object-level search

� Detection of unprovable branches

� Preservation of partial results across case splitting
and induction hypothesis generation

� Proving different case split in parallel

� Detection of redundant case splits

Tabled higher-order logic programming – p.22/30

Overview of Thesis

� Proof-theoretical characterization:
Soundness of interpreter

� Design of efficient implementation techniques

1. Higher-order terms indexing
2. Context handling

� Implementation and Validation
1. Logic programming
2. Object and meta-level theorem proving

Tabled higher-order logic programming – p.23/30

Preliminary Experiments

� Specification (formerly not executable)

� Type systems: subtyping, intersections

� Rewriting based on

�

-calculus

� Conversions in the

�

-calculus

� Graph transition systems

� Implementations : better performance

� refinement types

� polymorphisms

Tabled higher-order logic programming – p.24/30

Other examples

Logical systems :

� Cartesian closed categories (CCC)

� Natural deduction calculi (NK, NJ)

� Decision procedures (e.g. congruence closure
algorithms)

� Parsing grammars

Examples for meta-reasoning:

� Soundness of Kolmogoroff translation between
NK and NJ

� Translation betwen CCC and

�

calculus
Tabled higher-order logic programming – p.25/30

Related Work

Tabled first-order logic programming:

� SLD resolution with memoization (Tamaki, Sato)

� Extensions to WAM (Warren, Chen)

Object and meta-level reasoning:

� Based on tactics:
Isabelle(Paulson),

�

Prolog(Felty,Miller)

� Based on higher-order logic programming:
Twelf (Schürmann, Pfenning)

Tabled higher-order logic programming – p.26/30

Related Work

Proof-theoretical characterization

� Uniform proofs (Miller, Nadathur, Pfenning,
Scedrov)

� Proof Irrelevance (Pfenning)

Implementation techniques (mainly first-order)

� Term indexing (I.V.Ramakrishnan, Sekar,
Voronkov)

� Substitution trees (Graf), higher-order (Klein)

Tabled higher-order logic programming – p.27/30

Related Work

Certificates:

� Justifiers: XSB (Roychoudhury, I.V.Ramakrishnan)

� Bit-strings: variant of PCC (Necula,Rahul)

� Proof terms: Elf, Twelf(Schürmann,Pfenning)

Tabled higher-order logic programming – p.28/30

Conclusion

� Tabled higher-order logic programming

� Tabled proof search impacts
1. Logic programming interpreter
2. Object- and meta-level theorem prover

� Proof-theoretic characterization

� Implementation of prototype

� Preliminary experiments

Tabled higher-order logic programming – p.29/30

	Outline
	Introduction
	Generic framework for . . .
	Proof search
	Tabled logic programming
	Thesis
	Illustrating example: subtyping
	Subtyping relation in Elf
	Problem
	Proof search
	Tabled logic programming
	Tabled computation
	Strategy
	Advantages
	Trade-off
	Typing rules
	Type Checker in Elf
	Tabled computation (higher-order)
	Challenges
	Meta-level reasoning �romSlide *{5}{with tabling}
	Meta-level search based on tabling
	Overview of Thesis
	Preliminary Experiments
	Other examples
	Related Work
	Related Work
	Related Work
	Conclusion

