
Eliminating redundancy in higher-order
unification: a lightweight approach

Brigitte Pientka

School of Computer Science
McGill University
Montreal, Canada

Abstract. In this paper, we discuss a lightweight approach to eliminate
the overhead due to implicit type arguments during higher-order unifica-
tion of dependently-typed terms. First, we show that some implicit type
information is uniquely determined, and can therefore be safely skipped
during higher-order unification. Second, we discuss its impact in prac-
tice during type reconstruction and during proof search within the logical
framework Twelf. Our experimental results show that implicit type ar-
guments are numerous and large in size, but their impact on run-time is
between 10% and 20%. On the other hand optimizations such as elim-
inating the occurs check are shown to be crucial to achieve significant
performance improvements.

1 Introduction

In recent years, logical frameworks which support formalizing language specifi-
cations together with their meta-theory have been pervasively used in small and
large-scale applications, from certifying code [1] to advocating a general infras-
tructure for formalizing language meta-theory and semantics [2]. In particular,
the logical framework LF [6], based on the dependently typed lambda-calculus,
and light-weight variants of it like LFi [11] have played a major role in these
applications. While the acceptance of logical framework technology has grown
and they have matured, one of the most criticized points is concerned with the
run-time performance. To address this problem, we concentrate in this paper
on one of the most common operations in type reconstruction and proof search:
higher-order unification. In prior work, we have proposed to optimize higher-
order pattern unification by eliminating unnecessary occurs checks during proof
search [16]. This optimization leads to significant performance improvements
in many example applications. In this work, we consider a different optimiza-
tion where we skip some redundant implicit type arguments during unification.
Unlike our prior optimization which is restricted to proof search, skipping some
redundant type arguments during unification is a general optimization and hence
impacts not only the proof search performance, but also any other algorithm re-
lying on unification such as type-reconstruction, coverage checking, termination
checking etc. Our approach is light-weight in the sense that we do not translate
or change our internal representation of terms and types. This has the advantage

that it can be seamlessly incorporated into the current implementation of the
Twelf system [14] and it can be easily compared to other existing optimizations.
Adapting this lightweight approach is not just a matter of practical engineering
convenience, but a change to a different internal representation of terms impacts
the foundation of LF itself and it remains unclear whether other algorithms such
as mode, termination, and coverage checking would still remain correct.

Our work is motivated by Necula and Lee’s [11] observation that the amount
of implicit type arguments can be substantial when representing terms with a
deep dependent type structure. Their main concern [11] however was in com-
pactly representing terms in a fragment of LF called LFi by allowing some im-
plicit type arguments to be omitted. Reed [17] has proposed an extension of
their idea to full LF. In contrast, we are interested in investigating the run-time
overhead due to implicit type arguments during higher-order unification and its
impact on type reconstruction and proof search in logical frameworks. In an early
empirical study, Michaylov and Pfenning [7] have conjectured that the impact
of redundant types during run-time may be significant. This paper investigates
this question in theory and practice. The contributions of this paper are two-
fold: 1) We identify arguments which can be safely omitted during higher-order
unification based on a static analysis of the declared type of constants. This in-
formation is then taken into account during run-time by looking up the relevant
information for each constant and exploiting it when unifying its arguments.
We justify this optimization theoretically using a contextual modal type theory.
2) We have implemented this optimization as part of the Twelf system [14],
and discuss its impact in practice. Our experimental results show that although
the size of redundant arguments is large and there is a substantial number of
them, their impact on run-time performance is surprisingly limited (roughly
20% improvement). Our experimental results also demonstrate that optimiza-
tions such as eliminating the occurs checks are more important than previously
thought. These results provide interesting insights into efficient implementations
of dependently typed systems in general, and can provide guidance for future
implementations.

The paper is organized as follows: First, we give an example to illustrate the
idea, and present some background on dependent type theory and type checking
algorithm. Our presentation follows ideas discussed in [10], where we have meta-
variables are first-class. Next, we present a formal algorithm which identifies
redundant type arguments and show the correctness of optimized higher-order
pattern unification where redundant type arguments are skipped. Finally, we
present experimental results and discuss related work.

2 Example: Translating natural deduction proofs

To illustrate the problem of redundant arguments in dependently typed sys-
tems, let us consider the following example, where we translate natural deduction
proofs into Hilbert-style proofs. We only consider a subset containing rules for
implication and universal quantification and provide an implementation within

the logical framework Twelf. Assuming o and i represent the type family for
propositions and individuals respectively, we define implication and universal
quantification as impi:o->o->o. and all:(i->o)->o. using higher-order ab-
stract syntax. The judgment for natural deduction is then implemented via a
type family nd which is indexed by propositions. Following the judgements-as-
types principle, we define constants impi and impe whose type corresponds to
introduction and elimination rules for implication and universal quantifiers.

nd: o -> type.

impi:(nd A -> nd B) -> nd (A imp B).

impe:nd (A imp B) -> nd A -> nd B.

alli:({a:i}nd A a) -> nd (all [x] A x).

alle:nd (all [x] A x) -> nd (A T).

The lambda-abstraction λx.M is denoted by [x] M and the dependent func-
tion type Πx:A1.A2 is represented as {x:A1}A2. We typically use capital letters
denote meta-variables (or schematic variables), while small letters denote ordi-
nary bound variables and meta-variables are assumed to be implicitly quantified
at the outside. For example, the type of impi is in fact {A:o}{B:o}(nd A ->
nd B) -> nd (A imp B). Following similar ideas, we define constants k, s, mp
for the Hilbert-style formulation.

hil: o -> type.

k : hil (A imp B imp A).

s : hil ((A imp B imp C) imp (A imp B) imp A imp C).

mp: hil (A imp B) -> hil A -> hil B.

f1: hil ((all [x:i] A x) imp (A T)).

f2: hil ((all [x:i] (B imp A x)) imp (B imp all [x:i] A x)).

Next, we define the translation of natural deduction proofs into Hilbert-style
proofs using the type family hildn. We refer the reader not familiar with repre-
senting derivations in the logical framework LF to [13].

hilnd :hil A -> nd A -> type.

hnd k :hilnd k (impi [u] impi [v] u).

hnd s :hilnd s (impi [u] impi [v] impi [w] impe (impe u w) (impe v w)).

hnd mp:hilnd H2 D2 -> hilnd H1 D1 -> hilnd (mp H1 H2) (impe D1 D2).

The code only reflects the explicit arguments describing the natural deduc-
tion and Hilbert-style derivations respectively. To illustrate, consider the second
clause where we translate the Hilbert axiom k to a natural deduction deriva-
tion. The correctness of this translation hinges on the underlying dependent
type structure and the translation hilnd takes in fact three arguments: the ac-
tual proposition ((A imp (B imp C)) imp ((A imp B) imp (A imp C))) be-
ing considered, a constant k representing the Hilbert-style proof for hil ((A
imp (B imp C)) imp ((A imp B) imp (A imp C))) and the natural deduc-
tion proof for nd ((A imp (B imp C)) imp ((A imp B) imp (A imp C))).
Similarly, when we build the natural deduction derivation for nd ((A imp (B
imp C)) imp ((A imp B) imp (A imp C))), we record how we instantiate

the implication introduction and elimination rules. This leads to the follow-
ing explicit representation of the clause hnd s, where we marked implicit type
arguments X with brackets bXc.
hilnd b((A imp (B imp C)) imp ((A imp B) imp (A imp C)))c (s bAc bBc bCc)
(impi b(A imp (B imp C))c b((A imp B) imp (A imp C))c
([u] impi b(A imp B)c b(A imp C)c
([v] impi bAc bCc

([w] impe bBc bCc (impe bAc b(B imp C)c u w) (impe bAc bBc v w))))).

As one can see from this example, the overhead of implicit type argument
can be substantial. When we execute this translation via a proof search interpre-
tation, we must unify a goal with a given clause head. This will involve unifying
not only its explicit arguments, but also all its implicit type arguments. In this
paper, we investigate how much type computation can be eliminated during uni-
fication, and what its effect and impact is on run-time performance. We exploit
and make precise a simple idea that some of the implicit type arguments in a
term M are uniquely determined by the type of the object M . Since we only
unify objects of the same type, it is safe for unification to skip over the arguments
in M which are uniquely determined by its type.

3 Contextual modal type theory

In this section we present the foundation for logical frameworks. We will follow
our development in [10] where we present a contextual modal dependent type
theory with first-class meta-variables. The presentation exploits a recent pre-
sentation technique for logical frameworks due to Watkins et al. [18] in which
only canonical forms are well-typed. The key idea underlying is to introduce
hereditary substitutions which always yields terms in canonical form after the
substitution has been applied. In the object calculus, we distinguish between
atomic objects R and normal objects M . Meta-variables together with a me-
diating substitution σ are in this presentation first-class and denoted by u[σ].
They are declared in the modal context ∆ and carry their own context of bound
variables Ψ and type A. Note that the substitution σ is part of the syntax of
meta-variables. This eliminates the need of pre-cooking [4] which raises existen-
tial variables to the correct context. This is a conservative extension of LF [6] so
we suppress some routine details such as signatures. For a full extension of this
fragment as a contextual dependent type theory we refer the reader to [10].

Normal Kinds K ::= type | Πx:A.K
Atomic Types P, Q ::= a · S
Normal Types A, B ::= P | Πx:A.B
Atomic Objects R ::= x · S | c · S | u[σ] · S
Normal Objects M, N ::= λx. M | R
Spines S ::= nil | M ; S

Contexts Γ, Ψ ::= · | Γ, x:A
Modal Contexts ∆ ::= · | ∆, u::A[Ψ]

Substitutions σ ::= · | σ, M/x
Modal subst. θ ::= · | θ, M/u

Typing at the level of objects is divided into three judgments:

∆; Γ ` M ⇐ A Check object M against canonical A
∆; Γ ` R ⇒ A Synthesize canonical A for atomic object R
∆; Γ ` S : A ⇒ P Synthesize a canonical P by checking a spine S against type A
∆; Γ ` σ ⇐ Ψ Check substitution σ against context Ψ

The central idea is based on two observations: First, we can characterize
canonical forms via bi-directional type-checking. Second, we can formalize nor-
malization as a primitive recursive functional exploiting the structure of types
and objects. The key idea is to replace ordinary substitution operation with
one which will always yield a canonical term, i.e. in places where the ordinary
substitution operation would create a redex, we must make sure to normalize
during substitutions. In particular, when applying the substitution [M/x] to a
term x · S, we must apply the substitution [M/x] to the spine S, but we also
must reduce the redex (M · [M/x]S) which would be created, since it is not
meaningful in the defined setting. Since when applying [M/x] to the spine S, we
again may encounter situations which require us to contract a redex, the sub-
stitution [M/x] must be hereditary. We therefore call this operation hereditary
substitution. Before we discuss this substitution operation further, let us first
present the bi-directional type checking rules.

Check normal object M against type

∆;Γ, x:A ` M ⇐ B

∆;Γ ` λx.M ⇐ Πx:A.B

∆;Γ ` R ⇒ P P = P ′

∆;Γ ` R ⇐ P

Synthesize atomic type P for atomic object R

∆;Γ ` S : A ⇒ P Σ(c) = A

∆;Γ ` c · S ⇒ P

∆;Γ ` S : A ⇒ P Γ (x) = A

∆;Γ ` x · S ⇒ P

(∆1, u::A[Ψ],∆2);Γ ` σ ⇐ Ψ (∆1, u::A[Ψ],∆2);Γ ` S : [σ]aΨA ⇒ P

(∆1, u::A[Ψ],∆2);Γ ` u[σ] · S ⇒ P

Synthesize atomic type P from spine S and type A

∆;Γ ` nil : P ⇒ P

∆;Γ ` M ⇐ A ∆;Γ ` S : [M/x]aA(B) ⇒ P

∆;Γ ` (M ;S) : Πx:A.B ⇒ P

Next we will describe the hereditary substitution operation. As we mentioned
above, we must carefully design it such that it also ensures that the result of ap-
plying a substitution σ to a canonical object M yields again a canonical object.
We define hereditary substitutions as a primitive recursive functional where we
pass in the type of the variable we substitute for. This will be crucial in determin-
ing termination of the overall substitution operation. If we hereditarily substitute
[λy.M/x](x · S), then if everything is well-typed, x : A1 → A2 for some A1 and
A2 and we will write [λy.M/x]A1→A2(x · S) indexing the substitution with the

type for x. These will all be total operations since any side condition can be
satisfied by α-conversion. It is worth pointing out that it suffices for the type
annotation A of the substitution [M/x]A to be “approximately” correct1

The definition for [R/x]nP (M) is straightforward, and we omit it here, since
no redices will be produced. Instead we concentrate on the ordinary substi-
tution [M/x]nA(N) where potentially redices are created. We define substitu-
tion as a primitive recursive functional [M/x]nA(N), [M/x]rA(R), [M/x]lA(S),
and[M/x]sA(σ).

[M/x]nA(λy. N) = λy. N ′ where N ′ = [M/x]nAN , y 6∈ FV(M) and y 6= x
[M/x]nA(R) = R′ where R′ = [M/a]rAR

[M/x]rA(c · S) = c · S′ where S′ = [M/x]lAS
[M/x]rA(x · S) = R where S′ = [M/x]lAS and R = reduce(M : A,S′)
[M/x]rA(y · S) = y · S′ if y 6= x and S′ = [M/x]lAS
[M/x]nA(u[σ] · S) = u[σ′] · S′ where σ′ = [M/x]sAσ and S′ = [M/x]lA

[M/x]lA(nil) = nil
[M/x]lA(N ;S) = N ′;S′ where N ′ = [M/x]nAN and S′ = [M/x]lAS

[M/x]sA(·) = ·
[M/x]sA(σ,N/y) = (σ′, N ′/y) where σ′ = [M/x]sAσ and N ′ = [M/x]nAN

The interesting case is when we substitute a term M for a variable x in the
term x ·S. As we outlined above, we need to possibly reduce the resulting redex
to maintain canonical forms. Hence we define the reduce(M : A,S) = R next.

reduce(λy.M : Πx:A1.A2, (N ;S)) = M ′′ where [N/y]nA1
M = M ′

and reduce(M ′ : A2, S) = M ′′

reduce(R : P, nil) = R
reduce(M : A,S) fails otherwise

Substitution may fail to be defined only if substitutions into the subterms
are undefined. The side conditions y 6∈ FV(M) and y 6= x do not cause failure,
because they can always be satisfied by appropriately renaming y. However,
substitution may be undefined if we try for example to substitute an atomic
term R for x in the term x · S where the spine S is non-empty. Similarly, the
reduce operation is undefined. The substitution operation is well-founded since
recursive appeals to the substitution operation take place on smaller terms with
equal type A, or the substitution operates on smaller types (see the case for
reduce(λy.M : A1 → A2, (N ;S))).
1 In [10] we define approximate types as dependent types where dependencies have

been erased. This is not necessary for the correctness of substitution, but it clarifies
the role of the type annotation of substitutions.

Hereditary substitution operations terminate, independently of whether the
terms involved are well-typed or not. The operation may fail, in particular if we
have ill-typed terms, or yield a canonical term as a result.

Theorem 1 (Substitution on Terms).

1. If ∆;Γ ` M ⇐ A and ∆;Γ, x:A,Γ ′ ` N ⇐ B and
[M/x]nAN = N ′, [M/x]aAB = B′ and [M/x]gA(Γ ′) = Γ ′′

then ∆;Γ, Γ ′′ ` N ′ ⇐ B′.
2. If ∆;Γ ` M ⇐ A and ∆;Γ, x:A,Γ ′ ` R ⇒ P and

R′ = [M/x]rAR, [M/x]aAP = P ′ and [M/x]gA(Γ ′) = Γ ′′

then ∆;Γ, Γ ′ ` R′ ⇒ P ′.

Substitutions for meta-variables u are a little more difficult. Recall that meta-
variables u are always associated with a postponed substitution and u[σ] forms
a closure. As soon as we know which term u stands for we can apply σ to it.

Moreover, because of α-conversion, the ordinary variables occurring in the
term M being substituted and the domain of σ may be different. As a result,
substitution for a meta-variable must carry a context, written as [Ψ.M/u]N
and [Ψ.M/u]σ where Ψ binds all free variables in M . This complication can be
eliminated in an implementation of our calculus based on de Bruijn indexes.

Finally, just as with ordinary substitutions we must be careful to only con-
struct canonical terms. In particular, when we substitute λx.M into the term
u[σ] ·S the resulting term [σ]M ·S is not in canonical form. Hence similar to or-
dinary hereditary substitutions we will define a primitive recursive functional for
contextual substitutions which is indexed by the type of the contextual variable
and ensure that the result is always in normal form.

[[Ψ.M/u]]nA[Ψ](λy. N) = λy. N ′ where N ′ = [[Ψ.M/u]]nA[Ψ]N

[[Ψ.M/u]]nA[Ψ](R) = R′

[[Ψ.M/u]]rA[Ψ](c · S) = c · S′ where S′ = [[Ψ.M/u]]rA[Ψ]S

[[Ψ.M/u]]rA[Ψ](x · S) = x · S′ where S′ = [[Ψ.M/u]]rA[Ψ]S

[[Ψ.M/u]]rA[Ψ](u[τ] · S) = R where τ ′ = [[Ψ.M/u]]sA[Ψ](τ), M ′ = [τ ′/Ψ]nΨ (M)
S′ = [[Ψ.M/u]]lA[Ψ](S) and reduce(M ′ : A,S′) = R

[[Ψ.M/u]]rA[Ψ](v[τ] · S) = v[τ ′] · S′ where v 6= u, τ ′ = [[Ψ.M/u]]sA[Ψ]τ

and S′ = [[Ψ.M/u]]lA[Ψ]S

[[Ψ.M/u]]lA[Ψ](nil) = nil

[[Ψ.M/u]]lA[Ψ](N ;S) = N ′;S′ where N ′ = [[Ψ.M/u]]nA[Ψ]N

and S′ = [[Ψ.M/u]]lA[Ψ]S

[[Ψ.M/u]]sA[Ψ](·) = ·
[[Ψ.M/u]]sA[Ψ](τ,N/y) = τ ′, N ′/y where τ ′ = [[Ψ.M/u]]sA[Ψ]τ

and N ′ = [[Ψ.M/u]]nA[Ψ]N

Applying [[Ψ.M/u]] to the term u[τ] ·S will first apply [[Ψ.M/u]] to the closure
u[τ]. This will yield the simultaneous substitution τ ′ = [[Ψ.M/u]]τ , but instead

of returning M [τ ′], it proceeds to eagerly apply τ ′ to M . Before τ ′ can be carried
out, however, it’s domain must be renamed to match the variables in Ψ , denoted
by τ ′/Ψ . In addition, the substitution [[Ψ.M/u]] must be applied to the spine S
yielding S′. Since the result M ′ ·S′ may not be canonical, we again must call the
reduce operation. Contextual substitutions are compositional, and contextual
substitution properties hold. We only show the one for normal terms but the
other can be stated similarly.

Theorem 2 (Contextual Substitution on Terms).
If ∆;Ψ ` M : A and (∆, u::A[Ψ],∆′);Γ ` N : B and
[[Ψ.M/u]]nA[Ψ]N = N ′, [[Ψ.M/u]]aA[Ψ]B = B′, and [[Ψ.M/u]]gA[Ψ]Γ = Γ ′

then (∆, ∆′);Γ ′ ` N ′ : B′.

Remark 1. Although our theory allows for meta-variables u[σ] · S, it is often
convenient to require that meta-variables are lowered and their spine S is there-
fore empty. This optimization is based on the observation that meta-variables
u::(Πx:A1.A2)[Ψ] must always be instantiated with λ-abstractions, because λ-
abstractions are the only canonical objects of function type. We can therefore
anticipate part of the structure of the instantiation of u and create a new vari-
able u′::A2[Ψ, x:A1]. Note that u′ has a simpler type, although a longer context.
In this way we can always lower existential variables until they have atomic
type, v::P [Ψ]. As a consequence, the only occurrences of meta-variables are as
u[σ] · nil and we often abbreviate this term simply by writing u[σ]. Finally it
is worth pointing out that any instantiation of u must be an atomic object R,
and applying a substitution [[Ψ.R/u]] to a term M will always directly yield a
canonical object.

Remark 2. Often it is convenient to refer to the pattern fragment [8, 12]. We call
a normal term M an atomic pattern, if all the subterms of the form u[σ] · nil are
such that u::Q[Ψ] and σ = y1/x1, . . . yk/xk where y1, . . . , yk are distinct bound
variables. This is already implicitly assumed for x1, . . . , xk because all variables
defined by a substitution must be distinct. Such a substitution is called a pattern
substitution. In addition, the type of any occurrence of u[σ] is atomic and we
will write Q for atomic types. Finally, we can show that pattern substitutions
and contextual substitutions commute [15].

To illustrate the use of meta-variables and ordinary variables, let us briefly
reconsider the previous example of translating natural deduction proofs to proofs
in Hilbert-style. Recall that bound variable dependencies are crucial when defin-
ing in f2:hil ((all [x:i] (B imp A x)) imp (B imp all [x:i] A x)), since we
are only allowed to move the universal quantifier inside an implication if the
formula B does not depend on the bound variable x. Our contextual modal type
theory, will give us an elegant way of distinguishing between meta-variables and
ordinary variables, and describing possible dependencies between them. We can
represent these clauses as follows: A, B, and T are meta-variables and will be
represented by contextual variables u, v, t.

f1: hil ((all λx.u[x/x’]) imp (u[t[·]/x’])).
f2: hil ((all λx.(v[·] imp u[x/x’])) imp (v[·] imp (all λx.u[x/x’]))).

Note that meta-variables u and v are associated with a substitution which
precisely characterizes their dependencies. Since v cannot depend on the bound
variable x, it is associated with the empty substitution. The instantiation for
meta-variable u on the other hand may refer to the bound variable x, which is
characterized by the associated substitution [x/x’]. In this example the type
of the constant f1 is not a higher-order pattern since it contains a subterm
u[t[·]/x’] where the substitution associated with the modal variable u is not
a pattern substitution. On the other hand the type of the constants f2 is a
higher-order pattern, since both meta-variable occurrences are patterns.

4 Synthesizing spine arguments from types

As we saw in the previous section, typing proceeds in a bi-directional way where
the type of atomic objects is synthesized. The central idea behind bi-directional
type-checking is to distinguish between objects whose type is uniquely deter-
mined and hence can be synthesized and objects whose type we already know
and we may not be able to uniquely determine from the surrounding information
and hence need to be checked against a given type. In this section, we will take
a slightly different view. In particular, we ask what information in the object is
uniquely determined, if we know its type. For example in the rule for the object
c · S we always synthesize the type P , by first looking up the type A of the
constant c and then inferring P from the spine S and the type A. Switching
perspectives we ask what information in the spine S can be synthesized if we
know the type A and its final target type P . In other words, we will think of the
object c ·S as a normal object and we can check it against a given type P . Intu-
itively, we can always recover argument Mi occurring in a spine S if [Mi/xi]P is
injective in the argument Mi. Therefore some information already present in P
is duplicated in S. Hence we will target the rule for checking a term c ·S and the
rules for type checking spines. In particular, we will introduce a new judgment
which says that we can synthesize a substitution θ by checking a canonical P
against the type A and a spine S:

∆;Θ;Γ ` S : A ⇐ P/θ

The context Θ characterizes the holes in the type A which can be uniquely
inferred from target type P . θ is a contextual substitution with domain Θ s.t.
[[θ]]A. Holes are described by meta-variables and we will ensure that only A can
refer to these meta-variables characterized by Θ. Hence we will replace the rule
for synthesizing an atomic type P for c · S with the following rule which checks
c · S against an atomic type P .

∆; ·;Γ ` S : A ⇐ P/· Σ(c) = A

∆;Γ ` c · S ⇐ P

Next, we show the rules for synthesizing a substitution θ by checking the
spine S and the type A against the atomic type P . Assume S = M1; . . . ;Mn; nil,
A = Πx1:A1. . . . Πxn:An.P ′, and atomic type P . Then for every xi where xi

occurs strict in P ′, we can retrieve Mi from P . θ will exactly keep track of those
Mi which we can synthesize from P . When we encounter Πxi:Ai.B where xi is
strict in the target type of B, we will introduce a fresh meta-variable u which will
later be instantiated by higher-order pattern matching2. Note that the criteria
of xi being strict in P is crucial because only for those xi can we ensure that
higher-order pattern matching will find a unique instantiation.

∆; Θ; Γ ` P
.
= P ′/θ

∆; Θ; Γ ` nil : P ′ ⇐ P/θ

∆; Θ; Γ ` strict (x, B) ∆; Θ, u::A[Γ]; Γ ` S : [u[idΓ]/x]aA(B) ⇐ P/(θ, Γ.M/u)

∆; Θ; Γ ` (M ; S) : Πx:A.B ⇐ P/θ

∆; Θ; Γ 6` (strict (x, B) ∆; Γ ` M ⇐ [[θ]]aΘ(A) ∆; Θ; Γ ` S : [M/x]aA(B) ⇐ P/θ

∆; Θ; Γ ` (M ; S) : Πx:A.B ⇐ P/θ

If u occurs strict in the target type of [u[idΓ]/x]aA(B) and u occurs as a
higher-order pattern, then we can always reconstruct M , the information which
is present in the spine (M ;S). Otherwise, we will continue to type check the spine
S and infer an instantiation for all the meta-variables occurring in Θ. Next, we
can show that the new type-checking algorithm which skips over some elements
is correct. The crucial lemma needed is the following:

Lemma 1.

1. If ∆;Θ;Γ ` S : B ⇐ P/θ then ∆;Γ ` S : [[θ]]aΘB ⇒ P
2. If ∆;Γ ` S : [[θ]]aΘB ⇒ P then ∆;Θ;Γ ` S : B ⇐ P/θ.

The type A of a constant c determines therefore which arguments in the
spine of the term c · S can be omitted. Therefore, we generate a simple bi-
nary recipe from the type A which is associated with the constant c. Let A =
Πx1:A1 . . . xn:An.P . If xi occurs strict as a higher-order pattern in P , then we
record 0 at the i-th position in the recipe b. If xi does not occur strict as a
higher-order pattern in P , then we record 1 at the i-th position in the recipe
b. Consider the constant f1:hil ((all λx.u[x/x’]) imp (u[t[·]/x’])). The
type has one occurrence of the meta-variable u which is not a pattern, namely
u[t[·]/x’]. As a consequence, every time we encounter a term of type P with
head f1, we must also consider the instantiations for u and t, because their
instantiation cannot be uniquely determined from the type P . The recipe asso-
ciated with f1 is therefore 11. On the other hand the type of constant f2 only

2 Technically we should say u[id] · nil instead of just u[id]

contains occurrences of the meta-variable u which are higher-order patterns.
If we encounter a term of type P with head f2, we can uniquely recover the
instantiations for u and v. The recipe associated with f2 will be 00.

We will then modify higher-order unification as follows: when we are unifying
two terms c · S and c · S′, we will first lookup the recipe b associated with c,
and then unify the spines S and S′ taking into account the recipe b. If the i-th
position in the recipe lists 0 then the i-th position in the spine S and S′ will
be skipped. If the i-th position in the recipe lists 1 then the i-th position in the
spine S and S′ must be unified. Crucial to the correctness of this optimization
is the fact that the synthesized modal substitution θ is uniquely determined by
the target type P and the type of the spine A.

Lemma 2. If ∆;Θ;Γ ` S : A ⇐ P/θ and ∆;Θ;Γ ` S′ : A ⇐ P/θ′ then θ = θ′.

Therefore, we already know that the spine S and S′ agree on some of its
arguments, and those arguments must not to be unified..

5 Experimental evaluation

The optimization of skipping some redundant type arguments during higher-
order unification is a general optimization which can affect any algorithm relying
on it. In this section, we discuss the impact of unifying redundant type arguments
during proof search and report on our experience in type reconstruction. All
experiments are done on a machine with the following specifications: 3.40GHz
Intel Pentium Processor, 1024 MB RAM. We are using SML of New Jersey 110.55
under the Linux distribution Gentoo 16.14. Times are measured in seconds. For
the timing analysis, we have done five runs, and we report on the average over
these runs as well as the standard deviation observed.

In this discussion, we will present our measures on run-time and run-time
improvement. In addition we also present quantitative evaluation by reporting on
how many redundant type arguments were omitted, the average and maximum
size of the omitted arguments.

5.1 Proof search

Unification is a central operation during proof search and its performance di-
rectly impacts the overall run-time performance. In previous work [16], we in-
vestigated optimizing higher-order pattern unification by linearizing terms and
delaying the occurs check together with other expensive checks concerning bound
variable occurrences. This optimization is called linear head compilation, since
the head of a logic programming clause is translated into a linear term and
constraints during compilation. This optimization can only be exploited during
proof search since it relies on the fact that the meta-variables in the head of
a clause and the meta-variables in the query are distinct. Here, we will first
compare the impact of eliminating the need to unify redundant type arguments
when no optimization of unification is done. Next, we will compare it to linear

head compilation, and finally we will report results of combining linear head
compilation with eliminating the need to unify redundant type arguments.

Labeling of table: The first column NO describes the runtime in seconds
when no optimization is done to unification. The second column TE describes
the runtime when we skip redundant type arguments. LH describes the time
using linear head compilation, and TELH gives the time when we combine linear
head compilation with skipping redundant type arguments. The column #op
refers to the number of skipped arguments during unification, and the column
Av(size) refers to the average size of the omitted arguments.

Compiler translations for MiniML We consider some examples from com-
piler verification (see [5]). When given an evaluation of some programs using a
big-step semantics, we translate this evaluation to a sequence of transitions on
an abstract machine and vice versa. The implicit type arguments denote the ac-
tual program being evaluated, and hence depending on the size of the program,
this may be large. The standard deviation on the reported examples was less
than 1%.

The first set of examples use a continuation based machine, and the example
programs being translated are simple programs involving multiplication, addi-
tion, square, and minus.

CPM – Proof search
NO TE LH TELH no-te no-lh lh-telh #op Av(size)

addMin1 134.61 133.32 12.26 12.21 1% 91% 0% 829 31.02
square3a 489.70 478.02 89.02 81.63 2% 82% 8% 1182 33.40
square4b 779.55 766.23 153.62 121.73 2% 80% 21% 488 28.20
squmin3a 435.52 423.91 69.92 62.10 3% 84% 11% 1128 33.74
squmin4a 743.83 622.08 140.03 130.21 16% 81% 7% 1496 30.75

Unifying redundant type arguments has limited impact on the overall perfor-
mance compared to no optimization. The last example shows an improvement
by 16%. This can be substantial if we consider the absolute runtime. However, in
many cases, the improvement is almost negligible given the standard deviation
of 1%. The results clearly demonstrate that linear head optimization is crucial
to achieve good performance. Redundant type elimination combined with linear
head compilation, can give an additional improvement between 0% and 21%.
In our examples many redundant type arguments were skipped (up to 1496),
the average size of the skipped argument was around 30 constructors, and the
maximum size of argument skipped was 185. Given this set-up, we expected a
much stronger impact on run-time performance. We believe that the reason for
the limited impact is that at the time when we need to unify redundant type
arguments they are syntactically equal. This means it is very cheap to unify two
arguments which are already syntactically equal.

The second set of examples use a CLS machine, a variant of the SECD ab-
stract machine. Examples are similar to the CPM machine involving programs

with addition, multiplication, square and minus. We are mainly interested trans-
lating evaluations of terms to reductions of their de Bruijn representation. Since
de Bruijn representations can be very large in size, our examples exhibit very
large redundant arguments. On average the size of omitted arguments was up to
549.38, and the maximum size of omitted argument was 75218. In the examples
considered there were also a substantial number of omitted terms (up to 6219).
If the time limit of 3h had been exceeded and no solution was found, this is
indicated by – in the table below

CLS – Proof search
NO TE LH TELH no-te no-lh lh-telh #op Av(size) max(size)

cls01 4044.18 3821.47 1.94 1.72 5.51% 99.95% 11.48% 1875 121.90 240
cls02 – – 30.29 23.67 – – 21.87% 1852 214.30 596
cls03 4450.01 4417.17 1.35 1.20 0.74% 99.97% 11.19% 1741 121.90 240
cls04 – – 2.87 2.64 – – 8.04% 2378 114.03 358
cls05 – – 482.61 413.28 – – 14.36% 6219 549.38 75218

Again there is almost no impact of skipping redundant arguments when we
compare it to no optimization at all. Linear head optimization is however cru-
cial to execute some examples. If we combine skipping over redundant type
arguments with linear head optimization, we can see an additional improvement
between 8% and 22%.

Translating classical proofs into cut-free proofs The next few examples
exploit a translation of proofs in classical logic into cut-free sequent calculi proofs.
Relative standard deviation was up to 2.7%.

Cut-elimination – Proof search producing cut-free proofs
NO TE LH TELH no-te no-lh lh-telh #op Av(size)

ndcf01 13.26 13.16 6.39 6.22 1% 52% 3% 97687 1.305
ndcf02 30.24 29.65 17.16 15.45 2% 43% 10% 264387 7.15
Due to space constraints, we only show here two significant examples. Al-

though there may be many redundant type arguments (up to 264,1433) their
size may not be very large, and their impact on runtime behavior is limited.

Summary of results To summarize the results, redundant type arguments
occur often as we can see by the large number of arguments skipped and they
are substantial in size. Their impact on runtime in the current Twelf implemen-
tation ranges up to 20% especially if we combine it with linear head compilation.
This seems counter-intuitive. To our surprise optimizations such as linear head
compilation are in fact crucial to overcome some performance barriers and sev-
eral examples were not executable without this optimization. Although we had
noticed the importance of linear head compilation in simply typed examples, we
were surprised that this optimization was also crucial for examples with a deeply
nested dependent type structure.

5.2 Type reconstruction

Higher-order unification does not only play an important role during proof
search, but is used in many algorithms, such as type reconstruction, termination,
and totality checking. Skipping redundant type arguments during unification
therefore impacts these algorithms.

We have experimented with a wide variety of type reconstruction examples,
from Kolmogoroff proof translation, Hilbert-style proof translations, typed as-
sembly language [3]. Similar to proof search, we observe that although there is
quite a large number of redundant implicit type arguments (< 1488) in some
of these test-suites), the impact on the performance during type reconstruction
is up to 13% on our examples. In the CPM compilation examples for example,
we observe between 2% and 13% runtime improvement, The maximum size of
omitted argument was 159, and the average size was between 13.37 and 32.33.

6 Related Work

J. Reed [17] investigates a bi-directional type checking algorithm for the logical
framework LF where some implicit type arguments can be omitted. The moti-
vation for his work is to compactly represent proofs and check them. However
the price is a complicated meta-theory, and a different dependently type lambda
calculus where some terms are explicitly annotated with types. The motivation
of his work lies in generalizing Necula and Lee’s work on compact proof rep-
resentations to the full power of dependent types. If we would want to adopt
his approach as a foundation for optimizing unification, proof search and type-
reconstruction, we would need to abandon our current representation of terms.
This could be not only a bothersome and daunting engineering task, but it is
also not clear whether other algorithms such as mode, termination, and cover-
age checking would still continue to work on this dependently typed variant of
LF. In contrast, we propose a lightweight approach which does not impact our
foundations itself, but can be employed locally to optimize unification.

Although the problem of index arguments is due to the dependent type struc-
ture of LF, a similar problem arises in λProlog [9] due to polymorphism. A sim-
ilar criteria as the one described in this paper, has been exploited by Nadathur
and Qi [9] in recent work on optimizing λProlog. They explore optimizations
such as eliminating typing annotations at lambda-labels and some implicit type
arguments due to polymorphism within the WAM for λProlog. However, their
proposal does not provide a high-level justification for this optimization and no
experimental comparison or discussion is given how much impact these opti-
mizations have in practice.

7 Conclusion

We have presented a lightweight approach to eliminate overhead of redundant
type information during unification. We have presented a clean theoretical foun-
dation for it based on contextual modal types, and evaluated the impact of

redundant type arguments in practice. Although redundant arguments arise fre-
quently and they are large in size, their impact on run-time is in the current
Twelf implementation between 10% and 20%. This may seem surprising at first,
since it is commonly believed that redundant type arguments can yield up to a
factor of two improvement. Our experimental results however seem to indicate
that unifying two arguments which are syntactically the same is very cheap.
A few interesting lessons we have learned from this work is that we have un-
derestimated the impact of linearization and delaying the occurs check during
unification and proof search. Linearization allows for quick failure, and more
importantly reduces the overhead of trailing during runtime, which can sub-
stantially improve the performance. As our results indicate, the size of omitted
arguments is in fact substantial, and reducing the overall size of terms may
yield better run-time performance, since most computation seems to be memory
bound. This seems to suggest that generating compact representations of terms
for proof search may be desirable and may yield a substantial run-time improve-
ment. On the other hand, choosing a different more compact representation of
terms as a basis of the implementation could be a bothersome and daunting
engineering task. In addition, it is also not clear whether other algorithms such
as mode, termination, and coverage checking would still continue to work on this
dependently typed variant of LF. Nevertheless, it may be worthwhile to consider
a compact term representation if a system is newly designed and is specialized
towards proof search.

There are several possible improvements which can be made. First, we could
take into account mode information to omit more type arguments during proof
search. However, the experimental results seem to indicate that the additional
performance improvement gained by omitting a few more implicit type argu-
ments may not be worth the effort.

Acknowledgments: Thanks to Jason Reed for many discussions related to
this topic.

References

1. Andrew Appel. Foundational proof-carrying code. In J. Halpern, editor, Pro-
ceedings of the 16th Annual Symposium on Logic in Computer Science (LICS’01),
pages 247–256. IEEE Computer Society Press, June 2001. Invited Talk.

2. B. Aydemir, A. Bohannon, M. Fairbairn, J. Foster, B. Pierce, P. Sewell, D. Vytin-
iotis, G. Washburn, S. Weirich, and S. Zdancewic. Mechanized metatheory for the
masses: The poplmark challenge, 2005.

3. Karl Crary and Susmit Sarkar. Foundational certified code in a metalogical frame-
work. In 19th International Conference on Automated Deduction, Miami, Florida,
USA, 2003. Extended version published as CMU technical report CMU-CS-03-108.

4. Gilles Dowek, Thérèse Hardin, Claude Kirchner, and Frank Pfenning. Unification
via explicit substitutions: The case of higher-order patterns. In M. Maher, edi-
tor, Proceedings of the Joint International Conference and Symposium on Logic
Programming, pages 259–273, Bonn, Germany, September 1996. MIT Press.

5. John Hannan and Frank Pfenning. Compiler verification in LF. In Andre Scedrov,
editor, Seventh Annual IEEE Symposium on Logic in Computer Science, pages
407–418, Santa Cruz, California, June 1992.

6. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January 1993.

7. Spiro Michaylov and Frank Pfenning. An empirical study of the runtime behavior
of higher-order logic programs. In D. Miller, editor, Proceedings of the Workshop
on the λProlog Programming Language, pages 257–271, Philadelphia, Pennsylvania,
July 1992. University of Pennsylvania. Available as Technical Report MS-CIS-92-
86.

8. Dale Miller. Unification of simply typed lambda-terms as logic programming. In
Eighth International Logic Programming Conference, pages 255–269, Paris, France,
June 1991. MIT Press.

9. Gopalan Nadathur and Xiaochu Qi. Optimizing the runtime processing of types in
polymorphic logic programming languages. In Geoff Sutcliffe and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning, 12th Inter-
national Conference, LPAR 2005, Montego Bay, Jamaica, December 2-6, 2005,
Proceedings, volume 3835 of Lecture Notes in Computer Science, pages 110–124.
Springer, 2005.

10. Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. A contextual modal
type theory. 2005.

11. George C. Necula and Peter Lee. Efficient representation and validation of logical
proofs. In Vaughan Pratt, editor, Proceedings of the 13th Annual Symposium on
Logic in Computer Science (LICS’98), pages 93–104, Indianapolis, Indiana, June
1998. IEEE Computer Society Press.

12. Frank Pfenning. Unification and anti-unification in the Calculus of Constructions.
In Sixth Annual IEEE Symposium on Logic in Computer Science, pages 74–85,
Amsterdam, The Netherlands, July 1991.

13. Frank Pfenning. Logical frameworks. In A. Robinson and A. Voronkov, editors,
Handbook of automated reasoning, pages 1063–1147, Amsterdam, The Netherlands,
The Netherlands, 2001. Elsevier Science Publishers B. V.

14. Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-
logical framework for deductive systems. In H. Ganzinger, editor, Proceedings
of the 16th International Conference on Automated Deduction (CADE-16), pages
202–206, Trento, Italy, July 1999. Springer-Verlag Lecture Notes in Artificial In-
telligence (LNAI) 1632.

15. Brigitte Pientka. Tabled higher-order logic programming. PhD thesis, Department
of Computer Sciences, Carnegie Mellon University, December 2003. CMU-CS-03-
185.

16. Brigitte Pientka and Frank Pfennning. Optimizing higher-order pattern unifica-
tion. In F. Baader, editor, 19th International Conference on Automated Deduction,
Miami, USA, Lecture Notes in Artificial Intelligence (LNAI) 2741, pages 473–487.
Springer-Verlag, July 2003.

17. Jason Reed. Redundancy Elimination for LF. In Carsten Schuermann, editor,
Fourth Workshop on Logical Frameworks and Meta-languages — LFM’04, Cork,
Ireland, 5 July 2004.

18. Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent
logical framework I: Judgments and properties. Technical Report CMU-CS-02-101,
Department of Computer Science, Carnegie Mellon University, 2002. Forthcoming.

