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Abstract
Inductive datatypes provide mechanisms to define finite datasuch
as finite lists and trees via constructors and allow programmers
to analyze and manipulate finite data via pattern matching. In
this paper, we develop a dual approach for working with infinite
data structures such as streams. Infinite data inhabits coinductive
datatypes which denote greatest fixpoints. Unlike finite data which
is defined by constructors we define infinite data by observations.
Dual to pattern matching, a tool for analyzing finite data, wede-
velop the concept of copattern matching, which allows us to syn-
thesize infinite data. This leads to a symmetric language design
where pattern matching on finite and infinite data can be mixed.

We present a core language for programming with infinite struc-
tures by observations together with its operational semantics based
on (co)pattern matching and describe coverage of copatterns. Our
language naturally supports both call-by-name and call-by-value
interpretations and can be seamlessly integrated into existing lan-
guages like Haskell and ML. We prove type soundness for our lan-
guage and sketch how copatterns open new directions for solving
problems in the interaction of coinductive and dependent types.
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1. Introduction
Representing and reasoning about infinite computation plays a cru-
cial role in our quest for designing and implementing safe soft-
ware systems, since we often want to establish behavioral proper-
ties about our programs, reason about I/O interaction and processes,
and establish liveness properties that eventually something good
will happen. While finite structures such as natural numbersor fi-
nite lists are modelled by inductive types, infinite structures such
as streams or processes are elegantly characterized by coinductive
types. Inductive types are now very well understood and supported
by functional languages and proof assistants, whereas the theoreti-
cal foundations and practical tools for coinductive types lag behind.

For example, in the Calculus of (Co)Inductive Constructions,
the core theory underlying Coq [INRIA 2010], coinduction isbro-
ken, since computation does not preserve types [Giménez 1996;
Oury 2008]. In Agda [2012], a dependently typed proof and pro-
gramming environment based on Martin Löf type theory, inductive
and coinductive types cannot be mixed in a compositional way. For
instance, one can encode the property “infinitely often” from tem-
poral logic, but not its dual “eventually forever” [Altenkirch and
Danielsson 2010].

Over the past decade there has been growing consensus [Set-
zer 2012; McBride 2009; Granström 2009] that one should distin-
guish between finite, inductive data defined by constructorsand in-
finite, coinductive data which is better described byobservations.
This view was pioneered by Hagino [1987] who modeled finite ob-
jects via initial algebras and infinite objects via final coalgebras
in category theory. His development culminated in the design of
symML, a version of ML where one can declarecodatatypesvia a
list of their destructors [Hagino 1989]. For example, the codatatype
of streams is defined via the destructorshead and tail which de-
scribe the observations we can make about streams. Cockett and
Fukushima [1992] took up his work and designed a languageChar-
ity where one programs directly with the morphisms of category
theory. But while Charity was later extended with pattern match-
ing on (initial) data types [Tuckey 1997], no correspondingdual
concept was developed for codatatypes (called final data types in
Charity).

In this paper, we take a first step towards building a type-
theoretic foundation for programming with infinite structures via
observations. Dual to pattern matching for analyzing finitedata,
we introducecopatternmatching for manipulating infinite data and
describe coverage for copatterns. In order to focus on the main
concepts and avoid the additional complexities that come with
dependent types, for instance, the need to guarantee termination
or productivity, we confine ourselves to simple types in thisarticle.



Our theoretical treatment of patterns and copatterns takesin-
spiration from the growing body of work which relates classical
and linear logic to programming language theory via the Curry-
Howard-Isomorphism; more precisely, we build on the duality be-
tween (finite) values as right-hand side proof terms and continua-
tions or evaluation contexts as left-hand side terms of sequent cal-
culus [Curien and Herbelin 2000; Wadler 2005; Kimura and Tat-
suta 2009]. Following Zeilberger’s [2008b] deep analysis of fo-
cused proofs in linear sequent calculus [Andreoli 1992] andits
relationship to pattern matching and evaluation order in program-
ming languages, we distinguish between positive types which char-
acterize finite data and negative types which describe infinite data.
While values are matched against patterns, evaluation contexts are
matched against copatterns. Our notion of copatterns extends pre-
vious work by Licata, Zeilberger, and Harper [2008] to treatleast
fixed-points as positive types and greatest fixed-point as negative
types, and we recognize copatterns as adefinition schemefor infi-
nite objects.

More precisely, we regard copatterns asexperimentson black-
box infinite objects such as functions, streams and processes. Infi-
nite objects can be defined by a finite, covering set of observations,
which are pairs of experiment (copattern) together with itsoutcome
(defining term). We take the distinction between the finite / initial
/ positive and the infinite / final / negative serious and give intro-
duction rules and patterns for the former and elimination rules and
copatterns for the latter. This leads to a core functional language
based on natural deduction instead of the sequent calculus formu-
lation explored in by Zeilberger [2008b] et al. [Licata et al. 2008].

Our contributions are the following:

1. We show how copatterns complement the syntax of existing
functional languages and enable a style of programming with
infinite objects by observations (Section 2.2). There is no need
to move to a different programming paradigm such as classi-
cal logic [Curien and Herbelin 2000; Wadler 2003] or the mor-
phisms of category theory (Charity).

2. We describe a non-deterministic algorithm for checking copat-
tern coverage and prove thatwell-typedand completeprograms
do not go wrong(Section 5). The construction of a covering
set of copatterns corresponds to the interactive construction of
a program as in Agda and Epigram (Section 2.1).

3. We explain how copatterns can be a fruitful paradigm in rewrit-
ing and dependent type theory. Inrewriting, definition by ob-
servations lead naturally tostronglynormalizing rewrite rules
and a semantics without infinitary rewriting [Kennaway and
de Vries 2003] (Section 2.3). In dependent type theory, they
overcome the subject reduction problem of the Calculus of
(Co)inductive Constructions [Giménez 1996] (Section 2.4).

The remainder of this article is structured as follows: We infor-
mally describe copatterns in Section 2 and explain in detailtheir
benefits in programming, rewriting and type theory. In Section 3,
we define formally our core language with copatterns and its static
semantics. We then describe its operational semantics together with
copattern matching in Section 4. Coverage of copatterns together
with the type safety proof is presented in Section 5. We briefly de-
scribe a prototype implementation of copatterns for Agda inSec-
tion 6, before we conclude with a discussion of related work (Sec-
tion 7) and an outlook to further work (Section 8).

2. Copatterns and Their Applications
In this section we explain copatterns (Section 2.1) and fleshout
the arguments started in the introduction. We illustrate how copat-
terns impact functional programming (Section 2.2), rewriting (Sec-
tion 2.3), and dependent type theory (Section 2.4).

2.1 From function definition to copatterns

We introduce copatterns in the scenario of interactive program
construction by refining the left hand side of a function definition
step by step. As we will see, copatterns arise naturally as the
generalization of definition by pattern matching.

As an example, we construct the infinite streamN,N −
1, . . . , 1, 0, N,N − 1, . . . , 1, 0, . . . of natural numbers via an
auxiliary function cycleNats : Nat → Stream Nat such that
cycleNats n = n, n− 1, . . . , 1, 0, N,N − 1, . . . , 1, 0, . . . .

Before we begin, let us defineStream Nat as a recursive record
type containing the possible observations we can make about
streams. These observations are also referred to as destructors,
since they allow us to take apart streams.

record Stream A = { head : A,
tail : Stream A }

Now we will constructcycleNats step-by-step, similar to the
interactive editing in Agda [Norell 2007] and Epigram [McBride
and McKinna 2004]. The starting point is the template:

cycleNats : Nat → Stream Nat
cycleNats = ?

Since a function is an infinite object, we define it byobservation
rather than giving its value (aλ-abstraction) directly. However,
we cannot give a value ofcycleNats n for every natural number
n, instead, we applycycleNats to a genericnatural number, the
pattern variablex.

cycleNats x = ?

Application tox, which we write as· x, is our first instance of a
copattern, anapplicative copattern. It is, in this case, a genericex-
perimenton cycleNats. The observation of its outcome determines
cycleNats.

We are left with the task of constructing aStream of natural
numbers. We can make two principal experiments on a stream:
we can observe its head and its tail, and the outcome of these two
experiments determines the stream. These experiments giveus two
new copatterns:head · andtail ·, calleddestructor copatterns, and
lead to the next refinement of our definition ofcycleNats:

head (cycleNats x) = ?
tail (cycleNats x) = ?

The observedhead of cycleNats x is justx. To determine thetail,
we need to split on the pattern variablex:

head (cycleNats x) = x
tail (cycleNats 0) = ?
tail (cycleNats (1 + x′)) = ?

This generalizes the applicative copattern form· x to · p wherep
is a pattern, as usual, a term built from constructors, literals, and
uniquely occurring variables only. We finally can fill the remaining
two holes and complete our definition ofcycleNats:

head (cycleNats x) = x
tail (cycleNats 0) = cycleNats N
tail (cycleNats (1 + x′)) = cycleNats x′

The infinite objectcycleNats, a function yielding streams, is de-
fined via the complete set of copatterns{head (· x), tail (· 0),
tail (· (1+x′))} where·, the hole, is a placeholder for the function
cycleNats. It is determined by the following set of observations,
i. e., experiments mapped to their results:

head (· x) 7→ x
tail (· 0) 7→ cycleNats N
tail (· (1 + x′)) 7→ cycleNats x′



2.2 Copatterns in functional programming: Restoring a
missing symmetry

Destructor copatterns are a useful addition to functional languages
even if no coinduction is involved. In the following we evolve an
implementation of the state monad typical for Haskell to demon-
strate why the absence of general copatterns breaks symmetry, and
how copatterns restore it.

A first implementation defines the typeState S A of a stateful
computation with resultA just as a synonym forS → (A × S).
The monadic operationsreturn and≫= (“bind”) are given in an
applicative style.

State S A = S → A× S

return : A → State S A
return a s = (a, s)

_≫=_ : State S A → (A → State S B) → State S B
(m ≫= k) s = let (a, s′) = m s in k a s′

Returninga in states yields the pair(a, s) of result and unchanged
state, and executing the sequencem ≫= k in states first executes
m : State S A in states, resulting in a valuea : A and a new
states′, in which we run the continuationk applied toa. The code
explains itself nicely if the application tos is read asin states.

There are reasons to move away from type synonymState S A
to a bijection between the monadic typeState S A and its im-
plementation asS → A × S. For instance, in Haskell, type syn-
onyms interact badly with type-class based overloading, and in-
stead,State S A is implemented as a single-field record type with
projectionrunState and constructorstate.

record State S A = state{runState : S → A× S}

runState : State S A → S → A× S
state : (S → A× S) → State S A

As we update our implementation of the monad operations, we are
in for an unpleasant surprise: We can only partially keep up the
applicative style, more precisely, only on the right hand side of
=, the expression side. Here, we only have to prefix the monadic
valuesm and k a with the projectionrunState. But on the left
hand side, the pattern side, we cannot do the same change, since
projections are not allowed there. Instead we have to turn the l.h.s.
application tos to a r.h.s.λ-abstraction overs, and prefix it with
constructorstate.

return : A → State S A
return a = state (λs. (a, s))

_≫=_ : State S A → (A → State S B) → State S B
m ≫= k = state (λs. let (a, s′) = runStatem s

in runState (k a) s′)

The projection bits are still nice to read, e. g.,runState m s reads
as run m in states, however, the definition ofm ≫= k as the
stateful computation, that if you pass it states, . . . is a bit bumpy.
The symmetry is broken.

Copatterns, which allow projections also on the l.h.s., restore the
symmetry and allow a smooth definition of the monad operations
again.

return : A → State S A
runState (return a) s = (a, s)

_≫=_ : State S A
→ (A → State S B)
→ State S B

runState (m ≫= k) s = let (a, s′) = runStatem s
in runState (k a) s′)

It readsif you run return a in states, you get(a, s); and to run
m ≫= k in states, run m in s, obtaining a valuea and a new
states′ in which you runk a.

2.3 Deep copatterns in rewriting: Strong normalization for
corecursive definitions

In the following we argue that copatterns help to integrate infinite
objects into term rewriting, without having to change the standard
reduction semantics.

A popular example of programming with infinite objects is the
creation of the stream of Fibonacci numbers. It is conciselydefined
as

fib = cons 0 (cons 1 (zipWith _+_ fib (tail fib)))

Herein,cons is the stream constructor,head andtail the projection,
andzipWith _+_ yields a stream by applying addition pointwise
to a pair of streams (here:fib andtail fib).

Clearly, reading this equation as a rewrite rule, the computation
of fib does not terminate under the standard semantics, which is
rewrite when the left hand side matches. Using infinitary rewriting
[Kennaway and de Vries 2003],fib converges to the Fibonacci
stream

cons 0 (cons 1 (cons 1 (cons 2 (cons 3 (cons 5 . . .

However, we are interested in thestrong normalizationof a term
rewriting system since this yields a decision procedure forequality
(which then implies decidability for checking dependent types).

We can revert to a non-standard rewriting semantics: label the
definition offib ascorecursiveand only unfold it when its value is
demanded, e. g., by a projection. This solution, for instance taken in
Coq [Giménez 1996], does not help with our particular definition
of fib either, sincetail fib appears in its own unfolding, leading
to infinite reduction. A workaround exists: we could introduce a
mutually defined auxiliary streamfib′ which denotes the tail offib.

But copatterns provide a principled and scalable solution.Me-
chanically, transforming the definition offib into copatterns yields

head fib = 0
head (tail fib) = 1
tail (tail fib) = zipWith _+_ fib (tail fib).

These equations are actually fulfilled by our first equation for fib,
but now we take them asdefinition of fib. The rewrite system is
terminating; neitherfib nor tail fib can be reduced by itself because
none of the three defining copatterns matches.

Our syntax allows us to delay unfolding of corecursion until
the whole copatternis matched. Copatterns, in particular, deep
copatterns such as nested projectionstail (tail ·) give us greater
flexibility for corecursive definitions than non-standard semantics.

2.4 Copatterns in dependent type theory: Reclaiming subject
reduction

Following the lead of the functional programming language Haskell,
the dependently typed language Coq introduces both finite and in-
finite trees via constructors. However, this leads to fundamental
problems. For example, the Calculus of (Co)Inductive Construc-
tions, the core theory underlying Coq [INRIA 2010], lacks sub-
ject reduction. This issue is already described in Section 3.4 of
Giménez’ thesis [1996]. Oury [2008] brought it back to the at-
tention of the community. A detailed analysis has been givenby
McBride [2009].

Let us recapitulate Oury’s counterexample to subject reduction,
as reproduced in Fig. 1: Given a coinductive typeU with construc-
tor in that takes just an argument of typeU, the (extensionally) sole
inhabitantu of U can be constructed as the fixed point ofin. The
definitionsforce and eq seem “pointless” [Chlipala 2012, p. 91]



U a codata type
in : U → U its only (co)constructor

u : U an inhabitant ofU
u = cofix in infinite succession ofins

force : U → U extensionally, an identity
force = λx. case x of

in y ⇒ in y

eq : (x : U) → x ≡ force x
eq = λx. case x of

in y ⇒ refl

equ : u ≡ in u
equ = eq u

Figure 1. Oury’s counterexample.

but are in fact a major tool in Coq proofs about corecursive defi-
nitions such asu since they wrap a case-distinction around acofix
that triggers reduction: While unrestricted reduction ofcofix f to
f (cofix f) would diverge immediately, the following two rewrite
equations for matching coinductive data maintain strong normal-
ization:

case (in s) of in y ⇒ t = t[s/y]
case (cofix f) of in y ⇒ t = case (f (cofix f)) of in y ⇒ t

Now, the closed termeq u simplifies via

eq u = case u of in y ⇒ refl
= case (cofix in) of in y ⇒ refl
= case (in (cofix in)) of in y ⇒ refl
= refl

to the single constructorrefl of propositional equality _≡_ , which
means thatu and in u must be definitionally equal. Yet they are
not, sinceu does not reduce toin u unless under acase distinc-
tion. Subject reduction is lost! As Giménez notes, subject reduc-
tion holds only modulo an undecidable equality on types thatal-
lows unrestricted fixed-point unfolding, but this is not what can be
implemented in proof assistants for Intensional Type Theory with
decidable type checking.

The culprit is that the rule for dependent matching is also avail-
able for coinductive data, i. e., in case ofU we have the rule

Γ ⊢ u : U Γ, y : U ⊢ t : C(in y)

Γ ⊢ case u of in y ⇒ t : C(u)

The rule substitutes a constructed termin y for termu in typeC,
which may trigger reduction of case expressions inC that are not
possible without the substitution. For instance,force (in y) reduces
to in y, while force x does not reduce tox. This is exploited in the
typing1 of eq, which leads to the loss of subject reduction in the
end.

The deeper reason for this dilemma is that coinduction is just
understood as constructing infinite trees; coinductive structures are
just non-well-founded data structures in Coq. However, even in de-
pendent type theory, infinite objects are better understoodthrough
their elimination rules [Granström 2009; Setzer 2012], i. e., obser-
vations. Looking at Oury’s example, it seems wrong to regardin
as aconstructor. Rather, it should bedefinedin terms of the only

1 Since refl : in y ≡ force (in y), by dependent pattern matching
casex of in y ⇒ refl : x ≡ force x, thus,eq x : x ≡ force x.

observationout : U → U (same for the infinite structureu : U):

in : U → U
out (in y) = y

u : U
out u = u

The equations we have written are now exactly the reduction rules,
no restricted unfolding ofcofix has to be taken into consideration.
This makes definitional equality and, thus, type checking more per-
spicuous, for the user it is a what-you-see-is-what-you-get equa-
tional theory. Dependent pattern matching on coinductive typesU
is no longer available and subject reduction is restored. The “point-
less” tricks likeforce andeq, necessary to deal with edges of de-
pendent pattern matching, are also obsolete.

While we do not develop a dependently typed language with
copatterns in this article, we have illustrated the shortcomings of
uniformly modeling finite and infinite data via constructorsand
highlighted the potential of copatterns in the dependentlytyped
setting.

3. A Core Functional Language with Copatterns
In this section, we introduce a core language with recursivedata
types for modeling finite data and recursive record types2 for mod-
eling infinite data. The term language is redex-free, which allows
for acompletebidirectional type checking algorithm.

We then proceed to define patterns and copatterns which allow
us to define functions, records and programs—which can be type-
checked by an extension of the algorithm. Function definitions will
be modeled as sets of rewrite rules.

3.1 Types

We distinguish betweenpositivetypes,1, A × B, andµXD, and
negativetypes,A → B and νXR. This polarity assignment is
inspired by focusing proofs in intuitionistic linear logic[Andreoli
1992; Benton et al. 1993]. Our types1, ×, andµ correspond to
the positive connectives1, ⊗, and a combination of⊕ and least
fixed point, resp., and they classify finite data. The types→ andν
correspond to the negative⊸ and a combination of& and greatest
fixed point, resp., and classify infinite data. Linearity will show up
in the typing rules for patterns and copatterns, even thoughordinary
terms need not be linear.

In terms of categorical languages [Hagino 1987; Cockett and
Fukushima 1992], positive types areleft objectsor initial datatypes,
and negative types areright objectsor final datatypes.

A,B,C ::= X Type variable
| P Positive type
| N Negative type

P ::= 1 Unit type
| A×B Cartesian product
| µXD Data type

N ::= A → B Function type
| νXR Record type

D ::= 〈c1 A1 | · · · | cn An〉 Variant (labeled sum)
R ::= {d1 : A1, . . . , dn : An} Record (labeled product)

Figure 2. Types.

Figure 2 introduces positive typesP , negative typesN , and
typesA which can be either positive or negative. VariantsD serve

2 Our terminology should not be confused with recursive records in object-
oriented language foundations, e. g., by Abadi and Cardelli[1994].



to construct possibly recursive data typesµXD, and recordsR list
the fieldsdi of a possibly recursive record typeνXR.

In our non-polymorphic calculus, type variablesX only serve
to construct recursive data types and recursive record types. As
usual,µXD (νXR, resp.) binds type variableX in D (R, resp.).
Capture-avoiding substitution of typeC for variableX in typeA
is denoted byA[C/X]. The setFTV(A) of free type variables of
a type expressionA is defined in the standard way. A type iswell-
formedif it has no free type variables; in the following, we assume
that all types are well-formed.

Datatypes DatatypesC = µXD for D = 〈c1 A1 | · · · | cn An〉
are recursive variant types. They could be calledalgebraic types.
We writeDci for Ai. The constructorci of C takes an arguments
of typeAi[C/X], i. e.,Dci [C/X]. Non-recursive data types can
be represented by a voidµ-abstractionµ_D. Like in SML, a con-
structor that requires no argument formally takes an argument of
the unit type1. Examples:

List A = µX 〈nil 1 | cons (A×X)〉
Nat = µX 〈zero 1 | suc X〉
Maybe A = µ_〈nothing 1 | just A〉
0 = µ_〈〉 (positive empty type)

Record types Record typesC = νXR with R = {d1 :
A1, . . . , dn : An} are recursive labeled products. They could be
calledcoalgebraictypes. The destructordi, if applied to a record
of typeC, returns theith field which has typeAi[C/X], or, with
a “Rd” notation,Rdi [C/X]. The destructors are applied in postfix
notation to a termt ast.di. As for data, non-recursive record types
are encoded by a voidν-abstractionν_R. Examples:

Stream A = νX{head : A, tail : X}
Colist A = νX{out : µ_ 〈nil 1 | cons (A×X)〉}
Vector A = ν_{length : Nat, elems : List A}
⊤ = ν_{} (negative unit type)

Both D andR can be seen as finite maps from a set of labels
(constructors and destructors, resp.) to types, with application writ-
tenDc andRd. We writec ∈ D andd ∈ R to express that a label
is in the domain of the corresponding finite map.

In this article, bothµXD and νXR are justrecursive types
rather than inductive and coinductive types resp. SinceD andR
are not checked for functoriality and programs are not checked
for termination or productivity, resp., there are no conditions that
ensureµXD to be a least fixed-point inhabited only by finite data,
and νXR to be a greatest fixed-point that hosts infinite objects
which are productive. However, we keep the notational distinction
to allude to the intended interpretation as least and greatest fixed-
points in a total setting.

3.2 Terms and typing

Next we describe terms which constitute the targets of our rewrite
rules. Terms are given by the following grammar:

e, t, u ::= f Defined symbol (e.g. function)
| x Variable
| () Unit (empty tuple)
| (t1, t2) Pair
| c t Constructor application
| t1 t2 Application
| t.d Destructor application

Terms can be identifiers (variablex, defined symbolf ), introduc-
tions (tuple (), (t1, t2), constructed termc t) of positivetypes (1,
A×B,µXD), or eliminations(applicationt1 t2, projectiont.d) of
negativetypes (A → B, νXR). Constructor applications choose a
variant and fold the recursive type; destructor applications unfold
the recursive type and select a component of the record. Missing,

by intention, are eliminations for positive types like tuple projec-
tions andcase; these are replaced bypattern matching. Dually, we
omit introductions for negative types, such asλ-abstractions and
record values; instead we havedefinitions by copattern matching
(see 3.4).

∆ ⊢ t : A In context∆, termt can be assigned typeA.

∆(x) = A

∆ ⊢ x : A
TVar

∆ ⊢ f : Σ(f)
TFun

∆ ⊢ () : 1
TUnit

∆ ⊢ t : Dc[µXD/X]

∆ ⊢ c t : µXD
TConst

∆ ⊢ t : νXR
∆ ⊢ t.d : Rd[νXR/X]

TDest

∆ ⊢ t1 : A1 → A2 ∆ ⊢ t2 : A1

∆ ⊢ t1 t2 : A2

TApp

∆ ⊢ t1 : A1 ∆ ⊢ t2 : A2

∆ ⊢ (t1, t2) : A1 × A2

TPair

Figure 3. Typing rules for terms.

Typing ContextsΓ and∆ denote finite maps from term variables
to well-formed types. To ensure linearity in pattern typing, we
write ∆,∆′ for the disjoint unionof finite maps∆ and∆′, i. e.,
dom(∆)∩ dom(∆′) = ∅. We write· or simply nothing for a finite
map with empty domain, and we usually drop the braces when
giving a context explicitly as set of pairs{x1 : A1, . . . , xn : An}.
We assume a globalsignatureΣ which maps defined symbolsf to
their type.

The rules for the typing judgement∆ ⊢ t : A are given in
Figure 3. Note that, since we have no binder on the term level —no
λ, in particular—,∆ remains fixed in all the rules. Assumptions
in ∆ describe the type of pattern variables occurring on the left
hand side of a rule and are synthesized when analyzing copatterns.
For each term constructor there is exactly one typing rule, so we
trivially obtain the usual inversion lemmata.

In the following, whenever we have a judgementJ (e.g. a typing
judgement), we writeD :: J to indicate thatD is a derivation of
J using the rules forJ . Usually our proof proceeds by induction
on a derivation of our judgement and we write in this case “by
induction onD”. Some of our judgements are algorithmic, i. e.,
partial functional relations. Unless stated otherwise, all arguments
to these relations are inputs.

Bidirectional Type Checking Our language naturally supports
overloading of constructors and destructors, when employing a
bidirectional type checking algorithm [Pierce and Turner 1998].
Supporting overloading is convenient in practice and leadsto el-
egant, compact and readable code. With bidirectional checking,
overloading comes for free since a constructorc gets its meaning
in the context of a data type—to type check a constructed term
c t we push its typeµXD in. Dually, a destructord only has a
meaning in the context of a record typeνXR, which is inferred
from headt in the projection termt.d. Overloading projections is
standard in object-oriented programming (here, projections corre-
spond to method calls), and has contributed to the success ofthe
OO paradigm. Constructor overloading is also emerging, e. g., in
the dependently typed languages Agda [Norell 2007] and Epigram
[McBride and McKinna 2004].

Given a typing context∆, we infer the typeA of identifiers
and eliminations (judgement∆ ⊢ t ⇒ A), while we check
introductions against a given typeA (judgement∆ ⊢ t ⇐ A). The



∆ ⊢ t ⇒ A In context∆, the type of termt is inferred asA.

∆ ⊢ f ⇒ Σ(f)
TCFun

∆(x) = A

∆ ⊢ x ⇒ A
TCVar

∆ ⊢ t1 ⇒ A1 → A2 ∆ ⊢ t2 ⇐ A1

∆ ⊢ t1 t2 ⇒ A2

TCApp

∆ ⊢ t ⇒ νXR
∆ ⊢ t.d ⇒ Rd[νXR/X]

TCDest

∆ ⊢ t ⇐ A In context∆, termt checks against typeA.

∆ ⊢ t ⇒ A A = C
∆ ⊢ t ⇐ C

TCSwitch
∆ ⊢ t ⇐ Dc[µXD/X]

∆ ⊢ c t ⇐ µXD
TCConstr

∆ ⊢ () ⇐ 1
TCUnit

∆ ⊢ t1 ⇐ A1 ∆ ⊢ t2 ⇐ A2

∆ ⊢ (t1, t2) ⇐ A1 × A2

TCPair

Figure 4. Type-checking rules for terms.

rules are given in Figure 4. Type checking is trivially sound, but it is
also complete without the need for any additional type annotations.

THEOREM 1 (Soundness of type checking).

1. If D :: ∆ ⊢ t ⇒ A then∆ ⊢ t : A.
2. If D :: ∆ ⊢ t ⇐ A then∆ ⊢ t : A.

Proof. Simultaneously by induction on the derivationD. �

For simply-typed lambda-calculus, bidirectional type checking
is not complete and typically requires type annotations. Itfails for
redexes(λxt)u, since the type of aλ is not inferred. In our case,
since for a type we have either introduction or elimination,we
lack the usual redexes, thus, bidirectional type checking is actually
complete.

THEOREM 2 (Completeness of type checking).If D :: ∆ ⊢ t : A
then∆ ⊢ t ⇐ A, and ifA is a negative type, then∆ ⊢ t ⇒ A.

Proof. By induction onD. Note that a proof of∆ ⊢ t ⇒ A is
sufficient, since this trivially implies∆ ⊢ t ⇐ A by TCSwitch. �

3.3 Patterns and copatterns

The driving force behind computation in our language is pattern
and copattern matching. Pattern matching allows us to compensate
for the missing eliminations for positive types, while copattern
matching compensates for the missing introductions for negative
types. In the following, we present (co)patterns and their typing.

Patterns
p ::= x Variable pattern

| () Unit pattern
| (p1, p2) Pair pattern
| c p Constructor pattern

Copatterns

q ::= · Hole
| q p Application copattern
| q.d Destructor copattern

The postfix application of a projectiond in q.d corresponds to the
prefix applicationd q we used in the introduction, to conform with
Haskell and Agda syntax. Note that, in contrast to convention in
the ML dialects, projection doesnotbind stronger than application,
i. e.,f x .d is to be read(f x).d. Our style saves parentheses when
writing nested copatterns.

Pattern typing is defined in Figure 5. It computes a context∆
containing all the variables in the pattern. A (co)patternp (or q)
must be linear, that is, each variable in∆ appears exactly once in
p (or q, resp.). Again, there are two modes for pattern typing. The
checking mode, denoted by∆ ⊢ p ⇐ A, works on patternsp and
follows the checking mode for regular typing. The inferencemode,
denoted by∆ | A ⊢ q ⇒ C works on copatternsq and additionally
computes its typeC from the given typeA of the hole.

∆ ⊢ p ⇐ A Patternp checks against typeA, yielding∆.

x : A ⊢ x ⇐ A
PCVar

∆ ⊢ p ⇐ Dc[µXD/X]

∆ ⊢ c p ⇐ µXD
PCConst

⊢ () ⇐ 1
PCUnit

∆1 ⊢ p1 ⇐ A1 ∆2 ⊢ p2 ⇐ A2

∆1,∆2 ⊢ (p1, p2) ⇐ A1 × A2

PCPair

∆ | A ⊢ q ⇒ C
Copatternq eliminates given typeA into
inferred typeC, yielding context∆.

· | A ⊢ · ⇒ A
PCHead

∆ | A ⊢ q ⇒ νXR

∆ | A ⊢ q.d ⇒ Rd[νXR/X]
PCDest

∆1 | A ⊢ q ⇒ B → C ∆2 ⊢ p ⇐ B

∆1,∆2 | A ⊢ q p ⇒ C
PCApp

Figure 5. Type checking for patterns and rewrite rules.

Again, there is a one-to-one connection between pattern con-
structors and pattern typing rules. A standard inversion lemma
holds for all rules in Figure 5.

3.4 Programs

A programP ::= (Σ,Rules) consists of a signatureΣ mapping
defined symbolsf to their types and a collectionRules of rewrite
rules. For each symbolf defined in the signature,Rules(f) gives
the rewrite rules forf as a set of pairs(q 7→ e), calledobservations,
which define the behavior off . We require a dedicated symbol
main ∈ Σ, called theentry point, that determines the value of a
program. Execution of a program means rewritingmain with the
Rules until no more rewriting is possible.

The informal syntax used in the introduction can be mechani-
cally transformed into programs of formP . For instance, the def-
inition fib of the stream of Fibonacci numbers corresponds to the
following entries inΣ andRules.

Σ(fib) = νX{head : µY 〈zero 1 | suc Y 〉 , tail : X}

Rules(fib) =







· .head 7→ zero ()
· .tail .head 7→ suc (zero ())
· .tail .tail 7→ zipWith _+_ fib (fib .tail)







A complete program needs also entries forzipWith and _+_, and
a symbolmain. The type ofmain should be positive, otherwise the
result of the program is an unprintable infinite object. Here, main
could be a function listing the first 42 elements of the Fibonacci
stream—we leave the details to the imagination of the reader.

A programP is well-typed if ⊢ P as given in Figure 6, which
in essence says that any rule(q 7→ u) for any defined symbolf
must be well-typed. A first result, proven in the next section, is that
during the execution of a well-typed program we never encounter a
term which is ill-typed.

4. Evaluation and Type Preservation
In this section, we define program evaluation in terms of a small-
step reduction relation. To decide whether a rewrite rule can fire,



⊢ q[f ] 7→ u Check rewrite rule.

∆ | Σ(f) ⊢ q ⇒ C ∆ ⊢ u ⇐ C

⊢ q[f ] 7→ u
TCRule

⊢ P Check program.

main ∈ Σ ∀f ∈ Σ, (q 7→ u) ∈ Rules(f). ⊢ q[f ] 7→ u

⊢ (Σ,Rules)
TCPrg

Figure 6. Well-typed rules and programs.

we match evaluation contexts against copatterns. We prove that
reduction preserves types.

4.1 Evaluation contexts

Evaluation contextsE are elimination terms with a hole in head
position. They generalize copatternsq in that they allow arbitrary
termse instead of just patternsp in argument positions.

E ::= · Hole
| E e Application
| E.d Projection

The hole· can be considered as a special variable. We writeE[t]
as shorthand forE[t/·]. Typing ∆ | A ⊢ E : C for evaluation
contextE is defined in Figure 7. This judgement holds iff∆, x :
A ⊢ E[x] : C for a fresh variablex 6∈ ∆. Well-typed evaluation
contexts compose.

LEMMA 3 (Composition of contexts).If D :: Γ | A ⊢ E1 : B and
E :: Γ | B ⊢ E2 : C, thenΓ | A ⊢ E2[E1[·]] : C.

∆ | A ⊢ E : C
In context∆, evaluation contextE eliminates
typeA into typeC.

Γ | A ⊢ · : A
ETHead

Γ | A ⊢ E : νXR

Γ | A ⊢ E.d : Rd[νXR/X]
ETDest

Γ | A ⊢ E : B → C Γ ⊢ e : B

Γ | A ⊢ E e : C
ETApp

Figure 7. Typing rules for evaluation context.

4.2 Pattern matching

Matching a termt against a patternp, if successful, yields a sub-
stitutionσ such thatp[σ] = t. Pattern matching is defined in terms
of a judgementt =? p ց σ whose rules appear in Figure 8.
Herein, a substitutionσ is a finite map from variables to terms;
we write · for the empty map,t/x for the singleton mappingx to
t andσ, σ′ for the disjoint union of two mapsσ andσ′. Substitu-
tion typing Γ ⊢ σ : ∆ simply means that for allx ∈ ∆, we have
Γ ⊢ σ(x) : ∆(x).

While matching patternsp is standard, matching copatternsq
is straightforward as well. The hole· serves as “anchor” and in an
implementation it seems wise to match “inside-out”, i. e., start at
the hole and proceed outwards.

4.3 Reduction and type preservation

The only source of computation in our language is a defined func-
tion symbolf in an evaluation contextE that matches the copattern

t =? p ց σ Termt matches with patternp under substitutionσ.

t =? x ց t/x
PMVar

t =? p ց σ

c t =? c p ց σ
PMConstr

() =? () ց ·
PMUnit

t1 =? p1 ց σ1 t2 =? p2 ց σ2

(t1, t2) =
? (p1, p2) ց σ1, σ2

PMPair

E =? q ց σ
Evaluation contextE matches copatternq re-
turning substitutionσ.

· =? · ց ·
PMHead

E =? q ց σ

E.d =? q.d ց σ
PMDest

E =? q ց σ t =? p ց σ′

E t =? q p ց σ, σ′
PMApp

Figure 8. Rules for pattern matching.

q of one of the rules(q 7→ u) ∈ Rules(f). Such ane = E[f ] is
a redex which can becontractedto another expressione′, written

e 7→ e′ . The precise rule for contraction is:

E =? q ց σ

E[f ] 7→ u[σ]
(q 7→ u) ∈ Rules(f)

One step reductione −→ e′ is defined as the compatible closure
of contraction, i. e.,e reducesto e′ if e′ results from contraction
of one redex ine. We omit the standard inductive definition of
e −→ e′.

Our first major result is that reduction preserves types. We
assume a well-typed program, i. e. all rewrite rules are well-typed.

THEOREM4 (Subject reduction).If Γ ⊢ e : A ande −→ e′ then
Γ ⊢ e′ : A

Subject reduction is a consequence of the following statements:
Substitution preserves types, (co)pattern matching yields a well-
typed substitution, and contraction preserves types.

LEMMA 5 (Substitution).If D :: ∆ ⊢ u : C andE :: Γ ⊢ σ : ∆
thenF :: Γ ⊢ u[σ] : C for someF .

Proof. By induction onD. �

LEMMA 6 (Adequacy of pattern matching).If D :: ∆ ⊢ p ⇐ A
andE :: Γ ⊢ e : A andF :: e =? p ց σ thenΓ ⊢ σ : ∆.

Proof. By induction onF . �

LEMMA 7 (Adequacy of copattern matching).
If D :: ∆ | A ⊢ q ⇒ C and E :: Γ | A ⊢ E : B and
F :: E =? q ց σ thenC = B andΓ ⊢ σ : ∆.

Proof. By induction onF . �

LEMMA 8 (Correctness of contraction).If Γ | Σ(f) ⊢ E : C and
⊢ q[f ] 7→ u andE =? q ց σ thenΓ ⊢ u[σ] : C.

Proof. By assumption, we have

D ::

D1

∆ | Σ(f) ⊢ q ⇒ B
D2

∆ ⊢ u ⇐ B

⊢ q[f ] 7→ u

since it is the only rule that could have been used.



By Lemma 7, usingD1 and both assumptions we have that
C = B andΓ ⊢ σ : ∆. Then, by Substitution (Lemma 5) and
D2, we conclude thatΓ ⊢ u[σ] : C. �

Finally, the subject reduction theorem follows:
Proof of Theorem 4. By induction on the reduction relation, with
contraction being the only interesting case:

Γ ⊢ E[f ] : B and
E =? q ց σ

E[f ] 7→ u[σ]
(q 7→ u) ∈ Rules(f)

By well-typedness⊢ q[f ] 7→ u, we obtain from Lemma 8 that
Γ ⊢ u[σ] : B. �

5. Copattern Coverage and Progress
A fundamental property of strongly typed languages istype sound-
ness; in the words of Milner [1978] “well-typed programs do not
go wrong”. This means that well-typed programs either produce a
value or run forever, but never getstuckby encountering an invalid
operation, like adding a function to a string or calling a number as
one would call a function. For our language, there are three reasons
why a program is stuck, i. e., no reduction step is possible yet we
have not reached a printable value:

1. Missing rule. We might have defined a functionf : Nat → A
but only given a rewrite rulef zero 7→ . . . . In this case,
f (suc n) is stuck. In this section, we give rules forcopattern
coveragethat ensure no rewrite rules are forgotten.

2. Ill-typed term. The termf nil is stuck even if we have given a
complete implementation off : Nat → A. However, ill-typed
terms likef nil are already excluded by type checking and the
type preservation theorem.

3. Infinite object. The termf does not evaluate by itself; it is an un-
derapplied function. However, just as the typical interpreter, we
consider terms of negative types as values. As a consequence,
our notion of value is not syntactic, but type-dependent.

As main technical result of this section and the article, we
prove type soundness, syntactically [Wright and Felleisen1994],
by showing the progress theorem for a call-by-value strategy.

5.1 Values and evaluation contexts

Values are defined using a new judgment∆ ⊢v e : A to mean that
the expressione is a value of typeA under the context∆. We also
usev to denote an expression which acts as a value. Whether an
expression is considered a value or not depends also on its type,
in particular, each expression of negative typeN is considered a
value—the rules are given in Figure 9.

∆ ⊢v e : A In context∆, e is a value of typeA.

Γ ⊢ x : A
Γ ⊢v x : A

VVar
Γ ⊢v v : Dc[µXD/X]

Γ ⊢v c v : µXD
VConst

Γ ⊢v () : 1
VUnit

Γ ⊢v v1 : A1 Γ ⊢v v2 : A2

Γ ⊢v (v1, v2) : A1 × A2

VPair

Γ ⊢ e : N
Γ ⊢v e : N

VNeg

Figure 9. Rules for values.

LEMMA 9 (Inversion for values).The following hold forv 6= x.

1. If Γ ⊢v v : 1 thenv = ().

2. If Γ ⊢v v : A1 × A2 thenv = (v1, v2), Γ ⊢v v1 : A1 and
Γ ⊢v v2 : A2.

3. If Γ ⊢v v : µXD then v = c v′ for somec ∈ D and
Γ ⊢ v′ : Dc[µXD/X].

We dualize the notion of value for terms to evaluation contexts,
introducing a judgement∆ | A ⊢v E : C (see Figure 10). It
accepts those well-typed evaluation contextsE that have values in
all argument positions. The idea is that ifE is “long enough”, i. e.,
if C is a positive type, thenE[f ] is a redex because one of the
defining copatterns forf has to matchE. This would not necessary
be the case if the arguments inE were not values.

∆ | A ⊢v E : C
E is an evaluation context with only values in
application arguments.

Γ | A ⊢v · : A
EVHead

Γ | A ⊢v E : νXR

Γ | A ⊢v E.d : Rd[νXR/X]
EVDest

Γ | A ⊢v E : B → C Γ ⊢v v : B

Γ | A ⊢v E v : C
EVApp

Figure 10. Rules for value evaluation contexts.

The following two propositions enable us to analyze non-empty
value evaluation contexts from the inside out; they will be used in
Theorem 12.

LEMMA 10 (Splitting a function evaluation context).
If D :: Γ | B → C ⊢v E : A andE 6= · thenE = E′[· v] with
Γ ⊢v v : B andΓ | C ⊢v E′ : A.

Proof. By induction onD. �

LEMMA 11 (Splitting a record evaluation context).
If D :: Γ | νXR ⊢v E : A andE 6= · thenE = E′[·.d] with
Γ | Rd[νXR/X] ⊢v E′ : A.

Proof. By induction onD. �

5.2 Coverage

Figure 11 defines a judgment to indicate that a list of copatterns
covers all eliminations of a given typeA. The judgment isA ⊳
| (∆ ⊢ q ⇒ C) or, more generally,A ⊳ | ~Q where ~Q = (∆i ⊢
qi ⇒ Ci)i=1,...,n is a set of non-overlapping copatternsqi with
their typeCi and context∆i, each satisfying∆i | A ⊢ qi ⇒ Ci.

The rules to construct a covering set of copatterns are not
syntax-directed. To check whether a given set of copatterns~Q for a
typeA is complete, we non-deterministically guess the derivation
of A ⊳ | ~Q, if it exists. Although this NP-algorithm is not the best
we can do, we are confident that we can adopt existing efficient
coverage algorithms [Norell 2007] for our language.

The initial covering is given by the axiom CHole. We can refine
a covering~Q by focusing on one copatternQ and eithersplit the
resultof negative type or split one of its variables of positive type.
Result splitting at function typeB → C applies the copattern
q to a fresh variablex : B, at record typeνXR we take all
projections(q.d)d∈R. Splitting a variablex replaces it by unit(), a
pair (x1, x2) or all possible constructors(c x′)c∈D, in accordance
with the type1, A1 ×A2, orµXD of the variable.

Let us revisit the example of the functioncycleNats from the
introduction and walk through the rules for coverage. With the
following shorthands for types

Nat = µX 〈zero 1 | sucX〉
StreamNat = νX{head : Nat, tail : X},



A ⊳ | ~Q Typed copatterns~Q cover elimination of typeA.

Result splitting:

A ⊳ | (· ⊢ · ⇒ A)
CHole

A ⊳ | ~Q (∆ ⊢ q ⇒ B → C)

A ⊳ | ~Q (∆, x : B ⊢ q x ⇒ C)
CApp

A ⊳ | ~Q (∆ ⊢ q ⇒ νXR)

A ⊳ | ~Q (∆ ⊢ q.d ⇒ Rd[νXR/X])d∈R

CDest

Variable splitting:

A ⊳ | ~Q (∆, x : 1 ⊢ q ⇒ C)

A ⊳ | ~Q (∆ ⊢ q[()/x] ⇒ C)
CUnit

A ⊳ | ~Q (∆, x : A1 ×A2 ⊢ q ⇒ C)

A ⊳ | ~Q (∆, x1 : A1, x2 : A2 ⊢ q[(x1, x2)/x] ⇒ C)
CPair

A ⊳ | ~Q (∆, x : µXD ⊢ q ⇒ C)

A ⊳ | ~Q (∆, x′ : Dc[µXD/X] ⊢ q[c x′/x] ⇒ C)c∈D

CConst

Figure 11. Rules for copattern coverage.

the signature entries forcycleNats are the following:

Σ(cycleNats) = Nat → StreamNat

Rules(cycleNats) =







· x .head 7→ x
· (zero ()) .tail 7→ cycleNats N
· (suc x) .tail 7→ cycleNats x







To check coverage, we start with the trivial covering and succes-
sively apply the rules until we obtain the copatterns ofcycleNats.
SinceA = Nat → StreamNat stays fixed throughout the deriva-
tion, we omit it and just write the copattern list~Q. We start with
CHole.

(· ⊢ · ⇒ Nat → StreamNat)

We applyx to the hole by CApp.

(x : Nat ⊢ · x ⇒ StreamNat).

Then we split the result by CDest.

(x : Nat ⊢ · x .head⇒ Nat)
(x : Nat ⊢ · x .tail ⇒ StreamNat)

In the second copattern we splitx via CConst, reusing the variable
namex.

(x : Nat ⊢ · x .head⇒ Nat)
(x : 1 ⊢ · (zero x) .tail ⇒ StreamNat)
(x : Nat ⊢ · (suc x) .tail ⇒ StreamNat).

Finally, we apply CUnit, replacingx by ().

(x : Nat ⊢ · x .head ⇒ Nat)
(· ⊢ · (zero ()) .tail ⇒ StreamNat)
(x : Nat ⊢ · (suc x) .tail ⇒ StreamNat)

The lists of copatterns~q for typeA generated by the splitting
rules is complete in the sense that every closed value context E
eliminatingA into a positive typeP actually matches one of the
copatternsqi.

THEOREM 12 (Matching with a covering copattern).
If D :: · | A ⊢v E : P andE :: A ⊳ | (∆i ⊢ qi ⇒ Ci)i=1..n,

then there areE1, E2 such thatE = E1[E2[·]], E2 =? qi ց σ for
somei, · | A ⊢v E2 : Ci and · | Ci ⊢v E1 : P .

To prove this theorem, we use the following statements.

LEMMA 13 (Splitting a pattern variable).
Let D :: ∆, x : A | B ⊢ q ⇒ C and E :: | B ⊢v E : C and
F :: E =? q ց σ.

1. AssumeA = A1 × A2 and let q′ = q[(x1, x2)/x]. Then
∆, x1 : A1, x2 : A2 | B ⊢ q′ ⇒ C and E =? q′ ց σ′

with σ = σ′[x 7→ (σ′(x1), σ
′(x2))].

2. AssumeA = µXD and letq′ = q[c x′/x] for somec ∈ D.
Then∆, x′ : Dc[µXD/X] ⊢ q′ ⇒ C andE =? q′ ց σ′ with
σ = σ′[x 7→ c σ′(x′)].

3. AssumeA = 1 and letq′ = q[()/x]. Then∆ ⊢ q′ ⇐ C and
E =? q′ ց σ′ with σ = σ′[x 7→ ()].

Proof. First, prove an adaptation of these statements for patterns
p and valuesv instead of copatternsq and evaluation contextsE.
Then, prove this lemma by induction onF . �

Proof of Theorem 12. The theorem is proved by induction on
the coverage derivationE . The variable splitting cases CPair, CConst,
and CUnit follow from Lemma 13. We consider the rules for result
splitting.

CaseE ::
A ⊳ | ~Q (∆ ⊢ q ⇒ B → C)

A ⊳ | ~Q (∆, x : B ⊢ q x ⇒ C)i=1,...,n

By induction hypothesis, the statement holds for one of the patterns
in ~Q (∆ ⊢ q ⇒ B → C). If the pattern has been chosen from
~Q, we are done. Thus, without loss of generality,E = E1[E2[·]]
and · | A ⊢v E2 : B → C and · | B → C ⊢v E1 : P and
E2 =? q ց σ.

If E1 = · thenP = B → C, which is a contradiction sinceP
is a positive type. IfE1 6= ·, thenE1 = E′

1[· v] with · ⊢v v : B
and· | C ⊢v E′

1 : P by Lemma 10.
Thus, letE′

2 = E2 v and · | A ⊢v E′
2 : C by EVApp, and

E′
2 =? q x ց σ, v/x by PMApp.

CaseE ::
A ⊳ | ~Q (∆ ⊢ q ⇒ νXR)

A ⊳ | ~Q (∆ ⊢ q.d ⇒ Rd[νXR/X])d∈R

Analogously, using Lemma 11. �

5.3 Progress

We are ready to show that evaluation of a well-typed program does
not get stuck, provided that all definitions come with a complete set
of observations. First we note that closed terms are either values or
eliminations of a defined symbols. Such an elimination is either a
value evaluation context or contains a closed non-value.

LEMMA 14 (Decomposition).If · ⊢ e : A then either

1. e = (), A = 1,
2. e = (e1, e2), A = A1 ×A2,
3. e = c e′, A = µXD,
4. e = E2[E1[f ] e

′] where · | Σ(f) ⊢v E1 : B → C and
· | C ⊢ E2 : A and 6⊢v e′ : B for somef , some evaluation
contextsE1, E2, some terme′ and some typesB,C.

5. e = E[f ] for somef , E with · | Σ(f) ⊢v E : A.

Proof. By induction one. We only show the casese = e1 e2 and
e = e′.d. The other cases are trivial.

Case⊢ e1 e2 : A. Then by inversion⊢ e1 : B → A and
⊢ e2 : B. By induction hypothesise1 = E[f ] with · | Σ(f) ⊢v E :
B → A for somef, E or e1 = E2[E1[f ] e

′] for somef,E1, E2,



ande′ where· | Σ(f) ⊢v E1 : B′ → C′, · | C′ ⊢ E2 : B → A
and 6⊢v e′ : B′, as the 3 other cases are impossible. In the former
case, if6⊢v e2 : B, we can obtain case 4 by lettingE2 = ·,E = E1

and e2 = e′. This gives use1 e2 = ·[E[f ] e2]. If ⊢v e2 : B,
then, by EVApp, · | Σ(f) ⊢v E[f ] e2 : A andE′ = E e2. In
the latter case, we haveE2[E1[f ] e

′] e2 = E′
2[E1[f ] e

′] by setting
E′

2 = E2 e2.
Case⊢ e.d : A. Then by inversion,⊢ e : νXR for someR.

By induction hypothesis,e = E[f ] and · | Σ(f) ⊢v E : νXR,
or e = E2[E1[f ] e

′] wheree′ is not a value. In the former case,
e.d = E[f ].d = E′[f ] and · | Σ(f) ⊢v E.d : Rd[νXR/X] by
EVDest. Otherwise,e.d = E2[E1[f ] e

′].d = E′
2[E1[f ] e

′]. �

Finally we prove progress under the assumption that every def-
inition f is complete, writtenΣ(f) ⊳ | Rules(f).

THEOREM 15 (Progress).If D :: ⊢ e : A then either⊢v e : A or
e −→ e′ for somee′.

Proof. The proof is done by induction one. By Lemma 14, we
have five possible cases. Since the four first cases follow by a
simple induction argument, we only present the last case.

Here e = E[f ] and · | Σ(f) ⊢v E : A. If A is negative,
thene is already considered a value and we are done. Otherwise,
since by assumptionΣ(f) ⊳ | Rules(f), we can apply Theorem 12
and obtainE1, E2 such thatE = E1[E2[·]], E2 =? qi ց σ
for someqi ∈ Rules(f), plus · | Σ(f) ⊢ E2 : Ci and · |
Ci ⊢v E1 : A. Thus, by our reduction rulesE2[f ] 7→ ui[σ]
where(qi, ui) ∈ Rules(f) and soE2[f ] → ui[σ]. We conclude
thatE1[E2[f ]] → E1[ui[σ]]. �

6. Extensions and Implementations
Our core language misses introduction rules for functions and ob-
jects, thus, we do not have lambda abstractions or record expres-
sions. However, we can embed sets of behaviors{~q 7→ ~u} into
the expression syntax and obtainanonymous objectsthat subsume
λ abstractions, SML’s anonymous functions defined by pattern
matching, and record expressions:

λxt = {·x 7→ t}

fn nil ⇒ false
| cons x xs ⇒ true

=

{

· nil 7→ false
· (cons x xs) 7→ true

}

record{fst = t1; snd = t2} =

{

·.fst 7→ t1
·.snd 7→ t2

}

Of course, bidirectional type checking is no longer complete since
anonymous objects can only be checked against a given type, but
can appear in elimination position.

Copatterns have been added to the development version3 of
Agda [Agda team 2012]. Currently, projection copatterns are not
part of the core of Agda, they are parsed but then translated into
record expressions. This does not give the full flexibility of copat-
terns, but allows us to experiment with them. Full copatterns in the
core would allow us to exploit the benefits of deep projectionco-
patterns and mixed projection/application copatterns, but for that,
Agda’s coverage checker has to be extended to copatterns. Toac-
complish this, further research is required, because dependent pat-
tern matching is a far from trivial enterprise [Coquand 1992; Schür-
mann and Pfenning 2003; Goguen et al. 2006; Norell 2007; Dun-
field and Pientka 2009].

Another prototypical implementation of copatterns existsin
MiniAgda [Abel 2012]. In MiniAgda, one can certify termination
and productivity using sized types [Hughes et al. 1996; Barthe et al.
2004; Abel 2007]. Copatterns provide the right syntax to decorate
corecursive definitions with size variables that witness productivity.

3 Available from the darcs repositoryhttp://
ode.haskell.org/Agda.

7. Related Work
Our work builds on the insight that finite datatypes correspond
to initial algebras and infinite datatypes correspond to final co-
algebras. This was first observed by Hagino [1989] and was theba-
sis of categorical programming languages such as symML [Hagino
1987] and Charity [Cockett and Fukushima 1992]. Categorical pro-
gramming languages typically support programming with themor-
phisms of category theory; while they do provide iteration,they do
not support general recursion and pattern matching. In Charity, sup-
port for pattern matching on data types was added [Tuckey 1997],
but it lacks support for copattern matching.

Our type theoretic development of copatterns exploits the dual-
ity of positive and negative types which is well known in focused
proofs [Andreoli 1992]. Previously, focusing has been applied to
pattern matching [Zeilberger 2008a; Krishnaswami 2009] and eval-
uation order [Zeilberger 2009; Curien and Herbelin 2000]. Clos-
est to our work from a theoretical point of view is the work by
Licata, Zeilberger and Harper [2008] where a language basedon
the sequent calculus is described which supports mixing LF types
with computation-level types. The weak representational function
space of LF is classified as a positive connective and admits pat-
tern matching using constructor patterns; the strong computation
level function space is classified as negative connective which is
defined by destructor patterns. The accompanying technicalreport
also describes briefly how to addν-formulas to the proposed sys-
tem. However, in their work, (co)pattern matching happens at the
meta level; this is like replacing induction by anω-rule. Our work
provides anobject-levelsyntax for copatterns and analgorithm for
copattern coverage.

Kimura and Tatsuta [2009] extend Wadler’s [2003] Dual Cal-
culus to inductive and coinductive types, treating the constructor
for inductive data as value constructor and the destructor for coin-
ductive data as continuation constructor. However, they donot in-
troduce recursive values or recursive continuations nor pattern and
copattern matching, but allow only iteration over finite data and
coiteration into infinite data.

Agda, in its currently released version 2.3.0, already avoids
Coq’s subject reduction problem. Infinite objects are created via
delay ♯ and analyzed viaforce ♭, the corresponding operation on
types islifting ∞. In spirit, this approach mimics the standard trick
in call-by-value languages such as ML and Scheme to encode lazy
values bysuspensions, i. e., functions over the unit type. The two-
edged dependent pattern matching on infinite objects is ruled out,
since one cannot match on functions.

Agda’s coinduction is informally described by Danielsson and
Altenkirch [2010], but it lacks solid theoretical backing.Indeed,
compositionality is lost, because any data type that uses lifting
is coinductive [Altenkirch and Danielsson 2010]. For instance, a
data type of trees with infinite branching realized via streams host
automatically infinitelydeep trees, even if that is not expressed
by the data type definition. Our work reinterpretes lifting as the
generation of a mutual recursive record type that contributes the
coinductive part to the data type. Forcing is interpreted asdestructor
and delaying as a mutual definition by destructor pattern. This
way, we provide a standard semantics for coinduction in Agdaand
recover compositional construction of data types.

8. Conclusion
In this paper, we have presented a type-safe foundation for pro-
gramming with infinite structures via observations. We model finite
data using variant types and infinite data via record types. Pattern
matching of finite data is extended with its dual notion of copattern
matching on infinite data. While we do not consider termination



and productivity in this paper, we guarantee that the functions are
covering, i.e., they are defined on all possible inputs.

Copatterns lay a foundation for finitary rewriting with infinite
objects. They are also an excellent candidate for representing core-
cursive definitions in type-theoretic proof assistants such as Coq
and dependently typed languages like Agda.

In the future, we plan to extend the presented work to full
dependent types. There are two main theoretical issues we need
to tackle: first, extension of copattern coverage to dependent types,
and secondly, checking termination and productivity of functions
to guarantee strong normalization. A candidate for the latter task
are sized types [Hughes et al. 1996; Barthe et al. 2004; Abel
2007] as already implemented in MiniAgda [Abel 2012]. Further,
we aim at developing a denotational model for languages with
copatterns. It seems that semantics based on orthogonality[Parigot
1997; Vouillon and Melliès 2004] provides a good starting point for
this investigation.

From a practical point of view, we plan to fully integrate copat-
terns into Agda for a perspicuous and robust foundation of coin-
duction.
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A. Agda Examples
The development version of Agda has experimental support for
copatterns which can be turned on by option--
opatterns. In
the following we present a few examples for copatterns in Agda
syntax.

Colists Colists have a coinductive type with an embedded variant
type. In Agda this is represented as mutual recursion between a
coinductive record type and a data type.mutualdata μColist (A : Set) : Set where

[ ] : μColist A_::_ : (x : A) (xs : νColist A) → μColist Are
ord νColist (A : Set) : Set where
oindu
tive�eld out : μColist Aopen νColist
Our first function lets usappend aνColist to aList. It is defined by
recursion on the list.

open import Data.List using (List; [ ];_::_;map; 
on
atMap)append : {A : Set} → List A → νColist A → νColist Aout (append [ ] ys) = out ysout (append (x :: xs) ys) = x :: append xs ys
Note the overloading of constructor_::_ for lists and colists.

We can also define azipWith function for colists defined as a
pair of mutually recursive functions. One is acting onνColist, the
other acting onμColist.mutualzipWith : {A B C : Set} → (A → B → C) →

νColist A → νColist B → νColist Cout (zipWith f xs ys) = zipWithμ f (out xs) (out ys)zipWithμ : {A B C : Set} → (A → B → C) →
μColist A → μColist B → μColist CzipWithμ f [ ] ys = [ ]zipWithμ f (x :: xs) [ ] = [ ]zipWithμ f (x :: xs) (y :: ys) = (f x y) :: (zipWith f xs ys)

Another example is anunfold function. Suppose we have a set
of statesS and a set of valuesA corresponding to the observation
we do at some particular state. Then, given a function takinga
current state and outputting a new state and its value, or no state
at all if it is a terminal state, and given an initial state, wecan build
a colist of values of all states visited.open import Data.Maybe using (Maybe; nothing; just)open import Data.Produ
t using (_×_; , )mutualunfold : {A S : Set} → (S → Maybe (A × S)) → S →

νColist Aout (unfold f s) = unfoldμ f (f s)unfoldμ : {A S : Set} → (S → Maybe (A × S)) →Maybe (A × S) → μColist Aunfoldμ f (just (a, s)) = a :: unfold f sunfoldμ f nothing = [ ]

Breadth-first traversal of non-wellfounded treeFinitely branch-
ing but potentially infinite deep trees can be represented bya coin-
ductive record with two fields, alabel and a listsubs of subtrees.re
ord νTree (A : Set) : Set where
oindu
tive�eld label : Asubs : List (νTree A)open νTree
If we have a forestList (νTree A), we can extract the labels in a
breadth-first manner by first taking all the roots, then concatenating
all the subtrees and recurse. To ensure productivity, we distinguish
the empty forest from the non-empty forest.bf : {A : Set} → List (νTree A) → νColist Aout (bf [ ]) = [ ]out (bf (t :: ts)) = label t ::append (map label ts)

(bf (
on
atMap subs (t :: ts)))bf is productive since it is guarded-by-constructors [Coquand
1993]: it directly outputs either the empty colist or the non-empty
colist, and sinceappend xs ys only adds elements in front ofys.
The latter is not yet tracked by Agda’s termination and productivity
checker, thus, the termination checker rejects this code. Productiv-
ity checking using sized types, as realized in MiniAgda, does work
for bf, and it is our goal to bring coinduction in Agda to the same
level of expressiveness as in MiniAgda.


