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Abstract

Inductive datatypes provide mechanisms to define finite slath
as finite lists and trees via constructors and allow prograram
to analyze and manipulate finite data via pattern matching. |
this paper, we develop a dual approach for working with itgini
data structures such as streams. Infinite data inhabitslectine
datatypes which denote greatest fixpoints. Unlike finita aetich
is defined by constructors we define infinite data by obsemati
Dual to pattern matching, a tool for analyzing finite data, dee
velop the concept of copattern matching, which allows usyte s
thesize infinite data. This leads to a symmetric languagégudes
where pattern matching on finite and infinite data can be mixed
We present a core language for programming with infinitecstru
tures by observations together with its operational seitmbased
on (co)pattern matching and describe coverage of copatt@ur
language naturally supports both call-by-name and calidiye
interpretations and can be seamlessly integrated intdirxik&n-
guages like Haskell and ML. We prove type soundness for aur la
guage and sketch how copatterns open new directions foingolv
problems in the interaction of coinductive and dependgue:gy
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1. Introduction

Representing and reasoning about infinite computatiorspaayru-
cial role in our quest for designing and implementing saft-so
ware systems, since we often want to establish behaviooglepr
ties about our programs, reason about I/O interaction amcegses,
and establish liveness properties that eventually somgthood
will happen. While finite structures such as natural numberfs-
nite lists are modelled by inductive types, infinite struesisuch
as streams or processes are elegantly characterized lhuctire
types. Inductive types are now very well understood and cupg
by functional languages and proof assistants, wherea$ doedti-
cal foundations and practical tools for coinductive tyasiiehind.

For example, in the Calculus of (Co)Inductive Construction
the core theory underlying Coq [INRIA 2010], coinductiorbi®-
ken, since computation does not preserve types [Giméne&; 199
Oury 2008]. In Agda [2012], a dependently typed proof and pro
gramming environment based on Martin L6f type theory, itiec
and coinductive types cannot be mixed in a compositional #ay
instance, one can encode the property “infinitely oftentrfriem-
poral logic, but not its dual “eventually forever” [Altenkh and
Danielsson 2010].

Over the past decade there has been growing consensus [Set-

guage§ Language Constructs and Features—Data types and struc-,¢; 501 2: McBride 2009; Granstrom 2009] that one shouldrdist

tures, Patterns, Recursion; F.3[3fics and Meanings of Pro-
gramg: Studies of Program Constructs—Program and recursion
schemes, Type structure
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guish between finite, inductive data defined by constru@ndsin-
finite, coinductive data which is better describeddiservations
This view was pioneered by Hagino [1987] who modeled finite ob
jects via initial algebras and infinite objects via final gediras

in category theory. His development culminated in the desify
symML, a version of ML where one can declaredatatypevia a

list of their destructors [Hagino 1989]. For example, thdatatype

of streams is defined via the destructaead andtail which de-
scribe the observations we can make about streams. Cockktt a
Fukushima [1992] took up his work and designed a lang @G-

ity where one programs directly with the morphisms of category
theory. But while Charity was later extended with patterrtaha
ing on (initial) data types [Tuckey 1997], no correspondihgl
concept was developed for codatatypes (called final datstyp
Charity).

In this paper, we take a first step towards building a type-
theoretic foundation for programming with infinite struets via
observations. Dual to pattern matching for analyzing fiuitea,
we introducecopatternmatching for manipulating infinite data and
describe coverage for copatterns. In order to focus on tha ma
concepts and avoid the additional complexities that coni wi
dependent types, for instance, the need to guarantee tgfomn
or productivity, we confine ourselves to simple types in trticle.



Our theoretical treatment of patterns and copatterns takes
spiration from the growing body of work which relates classi

and linear logic to programming language theory via the Gurr

Howard-Isomorphism; more precisely, we build on the dyddi-
tween (finite) values as right-hand side proof terms andicoat
tions or evaluation contexts as left-hand side terms of esetjcel-

culus [Curien and Herbelin 2000; Wadler 2005; Kimura and Tat

suta 2009]. Following Zeilberger's [2008b] deep analysidm
cused proofs in linear sequent calculus [Andreoli 1992] @ad
relationship to pattern matching and evaluation order ogpm-
ming languages, we distinguish between positive typeswttiar-
acterize finite data and negative types which describe iaftata.
While values are matched against patterns, evaluatiorextnare
matched against copatterns. Our notion of copatterns @xtere-
vious work by Licata, Zeilberger, and Harper [2008] to trieatst
fixed-points as positive types and greatest fixed-point gathe
types, and we recognize copatterns akefinition scheméor infi-
nite objects.

More precisely, we regard copatternseaperimenton black-
box infinite objects such as functions, streams and prosebsée
nite objects can be defined by a finite, covering set of obtiensg
which are pairs of experiment (copattern) together witbitcome
(defining term). We take the distinction between the finiteitial
/ positive and the infinite / final / negative serious and givieo-
duction rules and patterns for the former and eliminatidagand
copatterns for the latter. This leads to a core functionadjleage
based on natural deduction instead of the sequent calcoromsuf
lation explored in by Zeilberger [2008b] et al. [Licata et2008].

Our contributions are the following:

2.1 From function definition to copatterns

We introduce copatterns in the scenario of interactive i@nog
construction by refining the left hand side of a function débtin
step by step. As we will see, copatterns arise naturally as th
generalization of definition by pattern matching.

As an example, we construct the infinite stream N —
1,...,1,00N,N — 1,...,1,0,... of natural numbers via an
auxiliary functioncycleNats : Nat — Stream Nat such that
cycleNatsn =n,n—1,...,1,0,N,N —1,...,1,0,....

Before we begin, let us defirftream Nat as a recursive record
type containing the possible observations we can make about
streams. These observations are also referred to as desstuc
since they allow us to take apart streams.

record Stream A = { head : A,
tail :Stream A}

Now we will constructcycleNats step-by-step, similar to the
interactive editing in Agda [Norell 2007] and Epigram [Md&e
and McKinna 2004]. The starting point is the template:

cycleNats Nat — Stream Nat
cycleNats = 7

Since a function is an infinite object, we define it dyservation
rather than giving its value (a-abstraction) directly. However,
we cannot give a value afycleNats n for every natural number
n, instead, we applyycleNats to a genericnatural number, the
pattern variabler.

cycleNatsx = 7

1. We show how copatterns complement the syntax of existing Application tox, which we write as =, is our first instance of a
functional languages and enable a style of programming with copattern, ampplicative copatternlt is, in this case, a generax-

infinite objects by observations (Section 2.2). There is e&dn

perimenton cycleNats. The observation of its outcome determines

to move to a different programming paradigm such as classi- cycleNats.

cal logic [Curien and Herbelin 2000; Wadler 2003] or the mor-

phisms of category theory (Charity).

2. We describe a non-deterministic algorithm for checkiopat-
tern coverage and prove thaell-typedand complet@rograms

do not go wrong(Section 5). The construction of a covering

set of copatterns corresponds to the interactive congtruof
a program as in Agda and Epigram (Section 2.1).

3. We explain how copatterns can be a fruitful paradigm irritew
ing and dependent type theory. fiewriting, definition by ob-
servations lead naturally tstrongly normalizing rewrite rules

We are left with the task of constructingSaream of natural
numbers. We can make two principal experiments on a stream:
we can observe its head and its tail, and the outcome of these t
experiments determines the stream. These experimentagiveo
new copatternsiead - andtail -, calleddestructor copatternsand
lead to the next refinement of our definitionaykleNats:

?
?

head (cycleNats z)
tail (cycleNats )

The observedhead of cycleNats x is justz. To determine theail,
we need to split on the pattern variahle

and a semantics without infinitary rewriting [Kennaway and
de Vries 2003] (Section 2.3). In dependent type theory, they
overcome the subject reduction problem of the Calculus of

x
?

head (cycleNats z)
tail (cycleNats 0)

(Co)inductive Constructions [Giménez 1996] (Section 2.4)

The remainder of this article is structured as follows: Werin
mally describe copatterns in Section 2 and explain in déteilr
benefits in programming, rewriting and type theory. In Set®,
we define formally our core language with copatterns andaics
semantics. We then describe its operational semanticti@geith
copattern matching in Section 4. Coverage of copatternstheg
with the type safety proof is presented in Section 5. We lyrigd-
scribe a prototype implementation of copatterns for Agd&éa-
tion 6, before we conclude with a discussion of related w&ct
tion 7) and an outlook to further work (Section 8).

2. Copatterns and Their Applications

In this section we explain copatterns (Section 2.1) and ftagh
the arguments started in the introduction. We illustrate bopat-
terns impact functional programming (Section 2.2), rewgi{Sec-
tion 2.3), and dependent type theory (Section 2.4).

tail (cycleNats (1 +z')) ?

This generalizes the applicative copattern formto - p wherep

is apattern as usual, a term built from constructors, literals, and
uniquely occurring variables only. We finally can fill the raiming
two holes and complete our definition ofcleNats:

head (cycleNats z)
tail (cycleNats 0)
tail (cycleNats (1 +2)) =

x
cycleNats V
cycleNats 2’

The infinite objectcycleNats, a function yielding streams, is de-
fined via the complete set of copatterfisead (- z), tail (- 0),
tail (- (1+z"))} where-, the hole, is a placeholder for the function
cycleNats. It is determined by the following set of observations,
i. e., experiments mapped to their results:

head (- z) —x
tail (- 0) — cycleNats N
tail (- (1 +2)) — cycleNats 2’



2.2 Copatterns in functional programming: Restoring a
missing symmetry

Destructor copatterns are a useful addition to functiomadlages
even if no coinduction is involved. In the following we evelan
implementation of the state monad typical for Haskell to dam
strate why the absence of general copatterns breaks syynicuedr
how copatterns restore it.

A first implementation defines the tyjseate S A of a stateful
computation with result just as a synonym fof — (A x S).
The monadic operationgturn and >>= (“bind”) are given in an
applicative style.

StateSA =S—>AxS

return A — State S A

returnas = (a, s)

>= State S A — (A — State S B) — State S B
(m>=k)s = let(a, s') =msinkas’

Returninga in states yields the pair(a, s) of result and unchanged
state, and executing the sequence>= k in states first executes
m : State S A in states, resulting in a valuer : A and a new
states’, in which we run the continuatioh applied toa. The code
explains itself nicely if the application teis read asn states.
There are reasons to move away from type synofyate S A
to a bhijection between the monadic tyfeate S A and its im-
plementation a®’ — A x S. For instance, in Haskell, type syn-
onyms interact badly with type-class based overloading, ian
steadState S A is implemented as a single-field record type with
projectionrunState and constructostate.

record State S A = state{runState: S — A x S}

State SA—+ S - Ax S
(S— AxS)—State S A

runState
state

As we update our implementation of the monad operations,reve a
in for an unpleasant surprise: We can only partially keephe t
applicative style, more precisely, only on the right handesof

=, the expression side. Here, we only have to prefix the manadi
valuesm and k a with the projectionrunState. But on the left
hand side, the pattern side, we cannot do the same change, sin
projections are not allowed there. Instead we have to tuem.ths.
application tos to a r.h.s.\-abstraction oves, and prefix it with
constructostate.

return A — State S A

returna = state (As. (a, $))

>=_ State S A — (A — State S B) — State S B
m >>=k = state (\s. let (a, s’) = runState m s

inrunState (k a) s’)

The projection bits are still nice to read, e.gnState m s reads
asrun m in states, however, the definition ofn >= k£ asthe
stateful computation, that if you pass it state .. is a bit bumpy.
The symmetry is broken.

Copatterns, which allow projections also on the |.h.stpreshe
symmetry and allow a smooth definition of the monad operation
again.

return A — State S A
runState (returna) s = (a, s)
>=_ State S A
— (A — State S B)
— State S B

runState (m >=k) s let (a, s') = runState m s

inrunState (k a) s')

It readsif you runreturn a in states, you get(a, s); andto run
m >= k in states, run m in s, obtaining a valuez and a new
states’ in which you runk a.

2.3 Deep copatterns in rewriting: Strong normalization for
corecursive definitions

In the following we argue that copatterns help to integrafaite
objects into term rewriting, without having to change themstard
reduction semantics.

A popular example of programming with infinite objects is the
creation of the stream of Fibonacci numbers. It is concidefined
as

fib = cons 0 (cons 1 (zipWith _+_ fib (tail fib)))

Herein,cons is the stream constructdread andtail the projection,
andzipWith _+_ yields a stream by applying addition pointwise
to a pair of streams (heréb andtail fib).

Clearly, reading this equation as a rewrite rule, the comtnn
of fib does not terminate under the standard semantics, which is
rewrite when the left hand side matché&ksing infinitary rewriting
[Kennaway and de Vries 2003fib converges to the Fibonacci
stream

cons 0 (cons 1 (cons 1 (cons 2 (cons 3 (cons 5 ...

However, we are interested in tis&rong normalizatiorof a term
rewriting system since this yields a decision proceduretprality
(which then implies decidability for checking dependemtey).

We can revert to a non-standard rewriting semantics: ldteel t
definition offib ascorecursiveand only unfold it when its value is
demanded, e. g., by a projection. This solution, for insteaken in
Coqg [Giménez 1996], does not help with our particular deénit
of fib either, sincetail fib appears in its own unfolding, leading
to infinite reduction. A workaround exists: we could intredua
mutually defined auxiliary streafib” which denotes the tail dfb.

But copatterns provide a principled and scalable solufidex-
chanically, transforming the definition €b into copatterns yields

head fib = 0
head (tail fib) = 1
tail (tail fib) = zipWith _+_ fib (tail fib).

These equations are actually fulfilled by our first equatianfib,
but now we take them adefinition of fib. The rewrite system is
terminating; neithefib nortail fib can be reduced by itself because
none of the three defining copatterns matches.

Our syntax allows us to delay unfolding of corecursion until
the whole copatternis matched. Copatterns, in particular, deep
copatterns such as nested projectioais (tail -) give us greater
flexibility for corecursive definitions than non-standasir&ntics.

2.4 Copatterns in dependent type theory: Reclaiming subjec
reduction

Following the lead of the functional programming languagekell,
the dependently typed language Coq introduces both finderan
finite trees via constructors. However, this leads to funetata
problems. For example, the Calculus of (Co)Inductive Quiest
tions, the core theory underlying Coq [INRIA 2010], lackdsu
ject reduction. This issue is already described in Sectidnc3
Giménez’' thesis [1996]. Oury [2008] brought it back to the at
tention of the community. A detailed analysis has been glwen
McBride [2009].

Let us recapitulate Oury’s counterexample to subject reoluc
as reproduced in Fig. 1: Given a coinductive typwith construc-
tor in that takes just an argument of typethe (extensionally) sole
inhabitantu of U can be constructed as the fixed pointiaf The
definitionsforce and eq seem “pointless” [Chlipala 2012, p. 91]



u a codata type

in :U—=U its only (co)constructor
u : U an inhabitant otJ

u = cofix in infinite succession ahs

force : U — U
force = A\x. case x of
iny =iny

extensionally, an identity

eq : (z:U)—ax=forcex
eq = Arx.casexof
iny = refl
equ :u=inu
equ =equ

Figure 1. Oury’s counterexample.

but are in fact a major tool in Coq proofs about corecursiviée- de
nitions such as since they wrap a case-distinction arouncbéix
that triggers reduction: While unrestricted reductiorcofix f to
f (cofix f) would diverge immediately, the following two rewrite
equations for matching coinductive data maintain strongad-
ization:

case(ins) ofiny=t

= tls/y]
case (cofix f)of iny =t =

case (f (cofix f))of iny = ¢
Now, the closed termq u simplifies via

equ case uof iny = refl
case (cofix in) of in y = refl
case (in (cofix in)) of in y = refl

refl

to the single constructoefl of propositional equality =_, which
means that andin u must be definitionally equal. Yet they are
not, sinceu does not reduce tm u unless under aase distinc-
tion. Subject reduction is lost! As Giménez notes, subjeduc-
tion holds only modulo an undecidable equality on types #hat
lows unrestricted fixed-point unfolding, but this is not whan be
implemented in proof assistants for Intensional Type Thedth
decidable type checking.

The culprit is that the rule for dependent matching is alsslav
able for coinductive data, i. e., in caselbfve have the rule

'Fu:U I,y:Ukt:C(ny)
I' Fcaseuof iny =t : C(u)

The rule substitutes a constructed termy for termw in type C,
which may trigger reduction of case expressiong’ithat are not
possible without the substitution. For instanece (in y) reduces

to in y, while force x does not reduce to. This is exploited in the
typing' of eq, which leads to the loss of subject reduction in the
end.

The deeper reason for this dilemma is that coinduction is jus
understood as constructing infinite trees; coinductivacstires are
just non-well-founded data structures in Coq. Howevemeéneale-
pendent type theory, infinite objects are better understomigh
their elimination rules [Granstrdm 2009; Setzer 2012],,iobser-
vations. Looking at Oury's example, it seems wrong to regard
as aconstructor Rather, it should beefinedin terms of the only

ISincerefl : in y = force (in y), by dependent pattern matching
casex of in y = refl : x = force z, thus,eq z : © = force .

observatiorout : U — U (same for the infinite structune: U):

in : U=U u : U
out (iny) = y outu = u

The equations we have written are now exactly the reductitasy
no restricted unfolding ofofix has to be taken into consideration.
This makes definitional equality and, thus, type checkingeper-
spicuous, for the user it is a what-you-see-is-what-yadueggia-
tional theory. Dependent pattern matching on coinductiypesU

is no longer available and subject reduction is restored.“phint-
less” tricks likeforce andeq, necessary to deal with edges of de-
pendent pattern matching, are also obsolete.

While we do not develop a dependently typed language with
copatterns in this article, we have illustrated the shaniogs of
uniformly modeling finite and infinite data via constructasd
highlighted the potential of copatterns in the dependetyphed
setting.

3. A Core Functional Language with Copatterns

In this section, we introduce a core language with recurdata
types for modeling finite data and recursive record tyfesmod-
eling infinite data. The term language is redex-free, whitdwes
for acompletebidirectional type checking algorithm.

We then proceed to define patterns and copatterns which allow
us to define functions, records and programs—which can k& typ
checked by an extension of the algorithm. Function defingiwill
be modeled as sets of rewrite rules.

3.1 Types

We distinguish betweepositivetypes,1, A x B, anduX D, and
negativetypes,A — B andvXR. This polarity assignment is
inspired by focusing proofs in intuitionistic linear logiandreoli
1992; Benton et al. 1993]. Our typds x, andx correspond to
the positive connectives$, ®, and a combination ofs and least
fixed point, resp., and they classify finite data. The typeandv
correspond to the negative and a combination of and greatest
fixed point, resp., and classify infinite data. Linearitylsthow up
in the typing rules for patterns and copatterns, even thoudjnary
terms need not be linear.

In terms of categorical languages [Hagino 1987; Cockett and
Fukushima 1992], positive types dedt objectsorinitial datatypes
and negative types arght objectsor final datatypes

A, B,C:=X Type variable
| P Positive type
| N Negative type
P =1 Unit type
|Ax B Cartesian product
| uX D Data type
N =A—B Function type
|vXR Record type
D w={(c1 A1 |- - | cn An)  Variant (labeled sum)
R w={d1: Ay,...,dn: Ay} Record (labeled product)

Figure 2. Types.

Figure 2 introduces positive type3, negative typesV, and
types A which can be either positive or negative. Variahtserve

20ur terminology should not be confused with recursive résan object-
oriented language foundations, e. g., by Abadi and Carfd€84].



to construct possibly recursive data types D, and recordsR list
the fieldsd; of a possibly recursive record typeX R.

In our non-polymorphic calculus, type variabl&sonly serve
to construct recursive data types and recursive recordstyps
usual,uX D (vX R, resp.) binds type variabl& in D (R, resp.).
Capture-avoiding substitution of type for variable X in type A
is denoted byA[C'/X]. The seF TV (A) of free type variables of
a type expressionl is defined in the standard way. A typeviell-
formedif it has no free type variables; in the following, we assume
that all types are well-formed.

Datatypes Datatypes” = uXD for D = (c1 A1 |-+ | cn An)
are recursive variant types. They could be cabdgkbraictypes.
We write D.., for A;. The constructor; of C' takes an arguments
of type A;[C/X], i.e., D.,[C/X]. Non-recursive data types can
be represented by a vojdabstractionu_D. Like in SML, a con-
structor that requires no argument formally takes an argurog
the unit typel. Examples:

List A = uX (nil 1] cons (A x X))

Nat = uX (zerol |suc X)

Maybe A = p_(nothing 1 | just A)

0 = () (positive empty type)

Record types Record typesC = vXR with R {d1 :
Aq,...,d, : A} are recursive labeled products. They could be
called coalgebraictypes. The destructat;, if applied to a record

of type C, returns theith field which has typed;[C/X], or, with
a“R4" notation, R4, [C'//X]. The destructors are applied in postfix
notation to a termt ast.d;. As for data, non-recursive record types
are encoded by a voigtabstraction_R. Examples:

Stream A = wvX{head: A, tail : X}

Colist A = wvX{out:pu_(nill]|cons(Ax X))}
Vector A = v_{length : Nat, elems : List A}

T = v {} (negative unit type)

Both D and R can be seen as finite maps from a set of labels
(constructors and destructors, resp.) to types, with eafdin writ-
tenD. andR,. We writec € D andd € R to express that a label
is in the domain of the corresponding finite map.

In this article, bothuX D and v X R are justrecursive types
rather than inductive and coinductive types resp. SiRcand R
are not checked for functoriality and programs are not check
for termination or productivity, resp., there are no coiodis that
ensureu X D to be a least fixed-point inhabited only by finite data,
and v X R to be a greatest fixed-point that hosts infinite objects
which are productive. However, we keep the notational miisiton
to allude to the intended interpretation as least and gsetiied-
points in a total setting.

3.2 Terms and typing

Next we describe terms which constitute the targets of ourite
rules. Terms are given by the following grammar:

e, t,u == f Defined symbol (e.g. function)
| = Variable
[ 0 Unit (empty tuple)
| (2517 tz) Pair
| ct Constructor application
| t1t2 Application
| td Destructor application

Terms can be identifiers (variable defined symbolf), introduc-
tions (tuple (), (¢1,t2), constructed term t) of positivetypes (.,

A x B, pX D), oreliminations(applicationt; ¢, projectiont.d) of
negativetypes A — B, v X R). Constructor applications choose a
variant and fold the recursive type; destructor applicatianfold
the recursive type and select a component of the record.indiss

by intention, are eliminations for positive types like tegirojec-
tions andcase these are replaced Ipattern matchingDually, we
omit introductions for negative types, such asbstractions and
record values; instead we hadefinitions by copattern matching
(see 3.4).

A Ft: Al IncontextA, term¢ can be assigned typé.

Ae)=4 T Ton
Arz: A ™ AFf:x(f) ™ Ar(:1 "™
At t:D[uXD/X] AFt:vXR __ ©
Const Dest

Atct:puXD AFtd: RivXR/X]

AFti: A — Ay AthIAlT
AFt1t2:A2 App
AFti: Al AFty: Ao
TPair

A (t17t2) : A1 X Az

Figure 3. Typing rules for terms.

Typing Contextd" andA denote finite maps from term variables
to well-formed types. To ensure linearity in pattern typinge
write A, A’ for the disjoint unionof finite mapsA and A, i.e.,
dom(A) Ndom(A") = 0. We write- or simply nothing for a finite
map with empty domain, and we usually drop the braces when
giving a context explicitly as set of paifg:1 : A1,...,xn : An}.

We assume a globaignatureX which maps defined symbojsto

their type.

The rules for the typing judgement + ¢ : A are given in
Figure 3. Note that, since we have no binder on the term leved —
A, in particular—, A remains fixed in all the rules. Assumptions
in A describe the type of pattern variables occurring on the left
hand side of a rule and are synthesized when analyzing eopsitt
For each term constructor there is exactly one typing rueys
trivially obtain the usual inversion lemmata.

In the following, whenever we have a judgemdr(e.g. a typing

judgement), we writ to indicate thafD is a derivation of

J using the rules forJ. Usually our proof proceeds by induction
on a derivation of our judgement and we write in this case “by
induction onD”. Some of our judgements are algorithmic, i.e.,
partial functional relations. Unless stated otherwiska@uments

to these relations are inputs.

Bidirectional Type Checking Our language naturally supports
overloading of constructors and destructors, when empipy
bidirectional type checking algorithm [Pierce and Turn8gd].
Supporting overloading is convenient in practice and leadsl-
egant, compact and readable code. With bidirectional ¢hgck
overloading comes for free since a construct@ets its meaning
in the context of a data type—to type check a constructed term
¢ t we push its typeuX D in. Dually, a destructor only has a
meaning in the context of a record typeX R, which is inferred
from headt in the projection ternt.d. Overloading projections is
standard in object-oriented programming (here, projesticorre-
spond to method calls), and has contributed to the succete of
OO paradigm. Constructor overloading is also emerging,, éng
the dependently typed languages Agda [Norell 2007] andr&pig
[McBride and McKinna 2004].

Given a typing contextA, we infer the typeA of identifiers
and eliminations (judgememh + t = A), while we check
introductions against a given type(judgementA ¢ <= A). The



In contextA, the type of ternt is inferred asA.

A(z)=A
AF f=X(f) AFz=A

AFti = A =5 Ay Aty <= A
AFt1t2:>A2

AFt=vXR
At t.d= RivXR/X]

A Ft < A| IncontextA, termt checks against typ4d.

AFt=A A=C At <= De[pXD/X]

TCFun TC\/ar

TCapp

TCDest

AFt<=C TCsuich — X7 = uXD TCeonstr
AFt1<:A1 AFtQCAz
—  TCun TCrai
AF() <=1 "™ TTAF (t,t2) = A1 x Ay Par

Figure 4. Type-checking rules for terms.

rules are given in Figure 4. Type checking is trivially sopinat it is
also complete without the need for any additional type aatimis.

THEOREM1 (Soundness of type checking).

1. fD:: A Ft= AthenA Ft: A.
2.fD: A Ft<« AthenA Ht: A.

Proof. Simultaneously by induction on the derivatidn a

For simply-typed lambda-calculus, bidirectional type atieg
is not complete and typically requires type annotationfail$ for
redexeg Axt) u, since the type of a is not inferred. In our case,
since for a type we have either introduction or eliminatiarg
lack the usual redexes, thus, bidirectional type checlsragtually
complete.

THEOREM2 (Completeness of type checking).D :: A H¢: A
thenA ¢t < A, and if A is a negative type, theA ¢ = A.

Proof. By induction onD. Note that a proof oA + ¢t = Ais
sufficient, since this trivially implieg\ + ¢ < A by TCswitch. [

3.3 Patterns and copatterns

The driving force behind computation in our language isgatt
and copattern matching. Pattern matching allows us to cosgte
for the missing eliminations for positive types, while ctipen

matching compensates for the missing introductions foratieg

types. In the following, we present (co)patterns and thyging.

Patterns
p = Variable pattern
[0 Unit pattern
| (p1,p2) Pair pattern
| ¢p Constructor pattern
Copatterns
q = Hole
| gp Application copattern
| q.d Destructor copattern

The postfix application of a projectiahin ¢.d corresponds to the
prefix applicationd ¢ we used in the introduction, to conform with
Haskell and Agda syntax. Note that, in contrast to convenitio
the ML dialects, projection doa®tbind stronger than application,
i.e., fz.distobereadf x).d. Our style saves parentheses when
writing nested copatterns.

Pattern typing is defined in Figure 5. It computes a context
containing all the variables in the pattern. A (co)pattgr(or q)
must be linear, that is, each variable/fnappears exactly once in
p (or ¢, resp.). Again, there are two modes for pattern typing. The
checking mode, denoted ki - p < A, works on patterng and
follows the checking mode for regular typing. The inferenuade,
denoted byA | A + ¢ = C works on copatterngand additionally
computes its typ€' from the given typeA of the hole.

Patternp checks against typd, yielding A.

At p< DpXD/X)]

71’A}—1’<:A Pc\/ar Al—cp<:,uXD PCConst
A1Fp1<:A1 AQF[)QCAQ
P01 TN AL () A x A L
Copatterng eliminates given typeA into
AlArge=C inferred typeC, yielding contextA.
PG, A|AFg=vXR PG,
JAF - = A T ATAF qd= RavXR/X] O
A1 |AFg=B—-C AskFp<B
1] q 2Fp PGaop

A, A |Abgp=C

Figure 5. Type checking for patterns and rewrite rules.

Again, there is a one-to-one connection between pattern con
structors and pattern typing rules. A standard inversionni@
holds for all rules in Figure 5.

3.4 Programs

A programP ::= (X, Rules) consists of a signaturE mapping
defined symbolg to their types and a collectioRules of rewrite
rules. For each symbd! defined in the signatur&ules(f) gives
the rewrite rules foy as a set of pair§; — ¢), calledobservations
which define the behavior of. We require a dedicated symbol
main € X, called theentry point that determines the value of a
program. Execution of a program means rewritingin with the
Rules until no more rewriting is possible.

The informal syntax used in the introduction can be mechani-
cally transformed into programs of forfA. For instance, the def-
inition fib of the stream of Fibonacci numbers corresponds to the
following entries inX andRules.

Y(fib)  =wvX{head: uY (zerol|sucY), tail : X}
- .head — zero ()
Rules(fib) = ¢ - .tail .head > suc (zero ())
. tail .tail s zipWith _+ _ fib (fib .tail)

A complete program needs also entriesAi@With and +_, and
a symbolmain. The type ofmain should be positive, otherwise the
result of the program is an unprintable infinite object. Hefiein
could be a function listing the first 42 elements of the Filmmna
stream—we leave the details to the imagination of the reader

A programP is well-typed if - P as given in Figure 6, which
in essence says that any ryle — ) for any defined symbof
must be well-typed. A first result, proven in the next sectisithat
during the execution of a well-typed program we never entzyum
term which is ill-typed.

4. Evaluation and Type Preservation

In this section, we define program evaluation in terms of allsma
step reduction relation. To decide whether a rewrite rule foe,



F q[f] — u | Check rewrite rule.

A|S(fH)Fg=C Aru<C
Falfl = u

Check program.

main € ¥ Vf €X, (¢ u) € Rules(f). Fq[f] = u
F (2, Rules)

TCRuIe

TCPrg

Figure 6. Well-typed rules and programs.

we match evaluation contexts against copatterns. We piwaie t
reduction preserves types.

4.1 Evaluation contexts

Evaluation contextd” are elimination terms with a hole in head
position. They generalize copatterqsn that they allow arbitrary
termse instead of just patternsin argument positions.

E = - Hole
| Ee Application
| Ed Projection

The hole- can be considered as a special variable. We wrifig
as shorthand foE[t/-]. Typing A | A + E : C for evaluation
contextE is defined in Figure 7. This judgement holds Af, = :
A b Elz] : C for a fresh variable: ¢ A. Well-typed evaluation
contexts compose.

LEMMA 3 (Composition of contexts)f D :: T' | A+ E; : Band
E:T|BFEy:C,thenl’ | AF Ex[Eq[]] : C.

In contextA, evaluation contexf’ eliminates
AlAFE:C type A into typeC.

I'|AFE:vXR

ET,
Ml T AF BE.d: RJvXR/X)]

- ET
T|AF-: A pest

'ArE:B—C TtFe:B
P|AFFEe:C

ETapp

Figure 7. Typing rules for evaluation context.

4.2 Pattern matching

Matching a termt against a patterp, if successful, yields a sub-
stitutiono such thap[o] = ¢. Pattern matching is defined in terms
of a judgement =" p \, o whose rules appear in Figure 8.
Herein, a substitutiow is a finite map from variables to terms;
we write - for the empty map¢/z for the singleton mapping to

t ando, o’ for the disjoint union of two maps ando’. Substitu-
tion typing simply means that for alt € A, we have
T'ko(x): Az).

While matching patterng is standard, matching copatteras
is straightforward as well. The holeserves as “anchor” and in an
implementation it seems wise to match “inside-out”, i. ¢artsat
the hole and proceed outwards.

4.3 Reduction and type preservation

The only source of computation in our language is a defined-fun
tion symbolf in an evaluation context that matches the copattern

Term¢ matches with patterp under substitutiow.

t="p\ o
< ., PMvar - - . PMconstr
="z \t/z ct="cp\ o
t1 :?p1 Neo1 o :?pz N\ 02
PMunit PMgair

0="0\" (tr,t2) =" (p1,p2) \ 01,02

Evaluation contextZ matches copattern re-
~ 9 9 turning substitution.

E=' o
———— PMyead ,,—q\ PMpest
E :? t :? /
a\0 pN\o PMapo

Et="qp\ 0,0

Figure 8. Rules for pattern matching.

q of one of the rulegq — ) € Rules(f). Such are = E[f] is
a redex which can beontractedto another expressio#f, written

. The precise rule for contraction is:

="q\o
E[f] = ulo]

One step reductio is defined as the compatible closure

of contraction, i.e.¢ reducesto ¢’ if ¢’ results from contraction
of one redex ine. We omit the standard inductive definition of
e—¢€.

Our first major result is that reduction preserves types. We
assume a well-typed program, i. e. all rewrite rules are-tygiéd.

(¢ — u) € Rules(f)

THEOREM4 (Subject reduction)lf I' - e : A ande — ¢’ then
T'kHe: A

Subject reduction is a consequence of the following statésne
Substitution preserves types, (co)pattern matching yieldvell-
typed substitution, and contraction preserves types.

LEMMA 5 (Substitution)lf D :: AFwu:Cand€ =T Fo: A
thenF :: T' - ufo] : C for someF.

Proof. By induction onD. a

LEMMA 6 (Adequacy of pattern matchinglf. D :: A+ p < A
and€ :The:AandF e="p\, othenl'o: A.

Proof. By induction onF. O

LEMMA 7 (Adequacy of copattern matching).
fD:2A| Ak g¢g=Candé =T | A+ E : Band
FuE="¢g\,octhenC =Bandl'Fo:A.

Proof. By induction onF. |

LEMMA 8 (Correctness of contractionlf.I" | ¥(f) - E : C and
Fqlf] = wandE =7 ¢ \, o thenl' - u[o] : C.
Proof. By assumption, we have

D1 Do
D-AIS(f)Fg=B AFu<B

Faqlf] =
since it is the only rule that could have been used.




By Lemma 7, usingD; and both assumptions we have that
C = BandTl o : A. Then, by Substitution (Lemma 5) and
D», we conclude thal F ufo] : C. O
Finally, the subject reduction theorem follows:
Proof of Theorem 4. By induction on the reduction relation, with
contraction being the only interesting case:

E="g\ 0o
E[f] = u[o]

By well-typedness- ¢[f] — u, we obtain from Lemma 8 that
't ufo] : B. O

I' HE[f]: B and (¢ — u) € Rules(f)

5. Copattern Coverage and Progress

A fundamental property of strongly typed languagetyj® sound-
ness in the words of Milner [1978] “well-typed programs do not
go wrong”. This means that well-typed programs either pcedai
value or run forever, but never gatickby encountering an invalid
operation, like adding a function to a string or calling a @mas
one would call a function. For our language, there are treasans
why a program is stuck, i. e., no reduction step is possiblevwe
have not reached a printable value:

1. Missing rule. We might have defined a functipn Nat — A
but only given a rewrite rulef zero +— .... In this case,
f (suc m) is stuck. In this section, we give rules foopattern
coveragethat ensure no rewrite rules are forgotten.

2. lll-typed term. The terny nil is stuck even if we have given a
complete implementation of : Nat — A. However, ill-typed
terms like f nil are already excluded by type checking and the
type preservation theorem.

3. Infinite object. The ternf does not evaluate by itself; it is an un-
derapplied function. However, just as the typical interpreve

consider terms of negative types as values. As a consequence

our notion of value is not syntactic, but type-dependent.

As main technical result of this section and the article, we
prove type soundness, syntactically [Wright and Felleis@®4],
by showing the progress theorem for a call-by-value styateg

5.1 Values and evaluation contexts

Values are defined using a new judgmént-,, ¢ : A to mean that
the expression is a value of typed under the contexf\. We also

2.fT Fy v Ay x Az thenv = (v1,v2), ' by v1 ¢ Ay and
I FU Vg Az.
3T Fy v @ puXD thenv = ¢ o for somec € D and

'+ : D[uXD/X].

We dualize the notion of value for terms to evaluation coistex
introducing a judgemen\ | A +, E : C (see Figure 10). It
accepts those well-typed evaluation conte¥tthat have values in
all argument positions. The idea is thafifis “long enough”, i. e.,
if C is a positive type, ther[f] is a redex because one of the
defining copatterns fof has to matct. This would not necessary
be the case if the argumentsihwere not values.

A|lA+, E:C

EVhead

FE is an evaluation context with only values in
application arguments.

T'|Ab, E:vXR
T'|Ab, E.d: RivXR/X]

- EV.
T|AF, : A Dest

I''ArF,E:B—C Thky,v:B
I'Aky Ev:C

EVApp

Figure 10. Rules for value evaluation contexts.

The following two propositions enable us to analyze non#gmp
value evaluation contexts from the inside out; they will Isediin
Theorem 12.

LEMMA 10 (Splitting a function evaluation context).
fD:T|B—Ct, E: AandE # - thenE = E'[- v] with
F'tyv:Bandl | Ck, E' : A,

Proof. By induction onD. O

LEMMA 11 (Splitting a record evaluation context).
fD:T |vXRb, E: AandE # - thenE = E'[-.d] with
I'| RivXR/X]F, E': A.

Proof. By induction onD. a

5.2 Coverage

Figure 11 defines a judgment to indicate that a list of copadte
covers all eliminations of a given typé. The judgment isA «

usev to denote an expression which acts as a value. Whether an| (A + ¢ = C) or, more generallyd < | @ where@ = (A, +

expression is considered a value or not depends also orpis ty
in particular, each expression of negative tyeis considered a
value—the rules are given in Figure 9.

In contextA, e is a value of typeA.

Pha:A Ly v: De[pXD/X]

Thryz:A ™ Thyco:puXD Const
Vi FF/lelAl FFU’UQIAQV )

Ty O:1 "™ "Th, (vn,00): Ap x Ay 0"

I'Fe: N

Th e N VN

Figure 9. Rules for values.

LEMMA 9 (Inversion for values)The following hold forw # .
1. fT Fy v:1thenv = ().

qgi = Ci)i=1,...,n IS @ set of non-overlapping copattergswith
their typeC; and context\;, each satisfying\; | A + ¢; = C;.

The rules to construct a covering set of copatterns are not
syntax-directed. To check whether a given set of copattérfm a
type A is complete, we non-deterministically guess the derivatio
of A < @, if it exists. Although this NP-algorithm is not the best
we can do, we are confident that we can adopt existing efficient
coverage algorithms [Norell 2007] for our language.

The initial covering is given by the axiomuge. We can refine
a covering(j by focusing on one copatte® and eithersplit the
resultof negative type or split one of its variables of positiveeyp
Result splitting at function type3 — C' applies the copattern
q to a fresh variabler : B, at record typev X R we take all
projections(q.d)4c r- Splitting a variabler replaces it by unif), a
pair (x1, z2) or all possible constructor z’).c p, in accordance
with the typel, A1 x As, or uX D of the variable.

Let us revisit the example of the functiagcleNats from the
introduction and walk through the rules for coverage. Whkb t
following shorthands for types

Nat uX (zero 1 | suc X)
StreamNat vX{head : Nat, tail : X},



Typed copatterné} cover elimination of typed.

Result splitting:
A<d|Q(A+g=B—0C)
A<|@(Az:BFqz=C)

CHole CApp

A<|(-F-=A4)

A<|@ (At q=vXR)
A<4|Q (At qd= RivXR/X))acr

CDest

Variable splitting:
Aq|G(Az:1Fqg=C)
A <@ (AFql()/2]=0)

Unit

AQ|Q(Az: A x Ay b qg=C)
A <|Q(A7x1 s Ar o Ao b ogl(z, z2) /2] = C)
A<|@(Az:pXDFqg=C)
A <|@ (A2 DJuXD/X] F glea’ /2] = C)eep

Pair

Const

Figure 11. Rules for copattern coverage.

the signature entries fagcleNats are the following:

Y(cycleNats) = Nat — StreamNat
-T .head — =
Rules(cycleNats) = - (zero ()) .tail +— cycleNats N
- (sucx) .tail ~ cycleNats x

To check coverage, we start with the trivial covering andcese
sively apply the rules until we obtain the copatternzyfleNats.
SinceA = Nat — StreamNat stays fixed throughout the deriva-
tion, we omit it and just write the copattern li€t. We start with
CHole-

(- F - = Nat — StreamNat)
We applyz to the hole by Gpp.

(z : Nat - & = StreamNat).
Then we split the result by #zst.

(z : Nat - - = .head = Nat)
(z : NatF -z .tail = StreamNat)

In the second copattern we splitvia Cconss, reusing the variable

namez.
(z:Natk -z
(x:1 F - (zerox) tail
(z : NatF - (sucz) .tail

.head = Nat)
= StreamNat)
= StreamNat).

Finally, we apply Gni, replacingz by ().

(z:Natk -z .head = Nat)
(- F - (zero ()) .tail = StreamNat)
(z : Natt - (sucx) .tail = StreamNat)

The lists of copatterng for type A generated by the splitting
rules is complete in the sense that every closed value doftex
eliminating A into a positive typeP actually matches one of the
copatterngy;.

THEOREM12 (Matching with a covering copattern).
fD:-|Aby, E:Pand€ : A <| (A b ¢o = Ci)i=1..m,

then there areld; , E» such thatt) = E1[Es[]], B2 =7 ¢; \ o for
somei, - | Ay, B2 : Ciand- | C; Fy Er ¢ P.

To prove this theorem, we use the following statements.

LEMMA 13 (Splitting a pattern variable).

LetD :: Ajx: A| BFg= Candf ::| B+, E: C and

FaE="q\ 0.

1. Assumed = A; x As and letq = g[(z1,22)/x]. Then
Azt Aj,oa 0 Ay | B¢ = CandE =" N\, o
witho = o'[z — (o' (z1), 0" (z2))].

2. Assumed = XD and letq’ = q[c 2’/z] for somec € D.
ThenA,z' : DJuXD/X]F ¢ = CandE =" ¢’ \, o’ with
o=0o'[t— co'(z)).

3. Assumed = 1 and letq’ = ¢[()/=z]. ThenA + ¢ < C and
E="¢ \ o' witho =o'[z — ()].

Proof. First, prove an adaptation of these statements for patterns

p and valuew instead of copatterng and evaluation contexts'.
Then, prove this lemma by induction of O

Proof of Theorem 12. The theorem is proved by induction on
the coverage derivatiofi. The variable splitting cases&, Cconss
and Gynit follow from Lemma 13. We consider the rules for result
splitting.

A4|Q(A+qg=B—0C)
A <« Q (Ayz:BFgx=C)i=1,..n
By ij]duction hypothesis, the statement holds for one of #itepns

in@ (A + g = B — (). If the pattern has been chosen from

Q, we are done. Thus, without loss of generality,= E1[F-][]]
and- | A+, E2 : B— Cand- | B— C+tF, E; : Pand
Ey="¢\, o.

If 1 = -thenP = B — C, which is a contradiction sincg
is a positive type. IfE, # -, thenE; = Ei[- v] with- +, v : B
and- | C't, Ef : P by Lemma 10.

Thus, letE; = Ex vand- | A+, E5 : C by EVapp, and
By =" g\ 0,v/x by PMapp.

A<|@ (At q=vXR)
A 4| Q(AF qd= RivXR/X))acr
Analogously, using Lemma 11. a

Casef ::

Casef ::

5.3 Progress

We are ready to show that evaluation of a well-typed prograesd
not get stuck, provided that all definitions come with a caeteket
of observations. First we note that closed terms are eitllees or
eliminations of a defined symbols. Such an elimination ikezia
value evaluation context or contains a closed non-value.

LEMMA 14 (Decomposition)If - - ¢ : A then either

l.e=(),A=1,

2.e = (61,62),A = A1 X AQ,

3.e=ce,A=puXD,

4.e = Ex|E1[f] €'] where- | 3(f) +» E1 : B — C and
- | CF Ey: Aand¥/, ¢ : B for somef, some evaluation
contextsE:, E», some terne’ and some types, C'.

5. e = E[f] for somef, E with- | 2(f) F, E : A.

Proof. By induction one. We only show the cases= e; e; and
e = ¢’.d. The other cases are trivial.

Casel e; ez : A. Then by inversiort- e; : B — A and
F ez : B. Byinduction hypothesis, = E[f]with- | 2(f) b, E:
B — Afor somef, E orex = Es[E1[f] €'] for somef, E1, Es,



ande’ where- | S(f) Fy E1: B’ = C',- |C'FEy: B — A 7. Related Work

and/, ¢’ : B’, as the 3 other cases are impossible. In the former Our work builds on the insight that finite datatypes correspo
case, if/, e> : B, we can obtain case 4 by lettiig, = -, &' = to initial algebras and infinite datatypes correspond tol fiaua
ande; = ¢'. This gives use; e; = -[E[f] e2]. h: Fo ez @ B, algebras. This was first observed by Hagino [1989] and walsahe
then, by EVapp, - | 3(f) o E[f] e2 : Aand E" = E es. In sis of categorical programming languages such as symMLiftgag
tEh/e IattEer case, we have;[E, [f] e'] ez = Ez[E1[f] €'] by setting 1987] and Charity [Cockett and Fukushima 1992]. Categbypica
2 = L2 ez, . ) gramming languages typically support programming withrtioe-
Caset- e.d : A. Then by inversioni- ¢ : v.X R for someR. phisms of category theory; while they do provide iteratitey do
By induction hypothesis; = E[f] and- | X(f) Fv B : vXR, not support general recursion and pattern matching. IniGhsup-
ore = E»[F[f] '] wheree' is not a value. In the former case, o4 for hattern matching on data types was added [Tuckey]199
e.d = E[f].d = E'[f| and- | 3(f) Fv E.d : RavXR/X] by but it lacks support for copattern matching.

H ’ / ’

EVoes:. Otherwisee.d = Ea[Ex[f] €'].d = E5[En[f] €']. . Our type theoretic development of copatterns exploits trad-d
__Finally we prove progress under the assumption that every de . of positive and negative types which is well known in feed
inition f is complete, writter:(f) <[ Rules(f). proofs [Andreoli 1992]. Previously, focusing has been mapto
THEOREM15 (Progress)lf D :: I e : A then either, ¢ : A or pattern matching [Zeilberger 2008a; Krishnaswami 2008]eral-

e —> ¢’ for somee’. uation order [Zeilberger 2009; Curien and Herbelin 2000psc
est to our work from a theoretical point of view is the work by
Licata, Zeilberger and Harper [2008] where a language based
the sequent calculus is described which supports mixingybEg
with computation-level types. The weak representationattion

h i< alread idered | d d herwi space of LF is classified as a positive connective and adraits p
thene is already considered a value and we are done. Otherwise, jon matching using constructor patterns: the strong ctatipn

since by assumptiol(f) <[ Rules(f), we can apply?Theorem 12 \evel function space is classified as negative connectiviehwis
and obtainEs, B> such thatll = Ei[E:z[]], B2 = g \( o defined by destructor patterns. The accompanying techrépalt

Proof. The proof is done by induction on By Lemma 14, we
have five possible cases. Since the four first cases follow by a
simple induction argument, we only present the last case.

Heree = FE[f] and- | X(f) F» E : A.If A is negative,

for someg; € Rules(f), plus- | %(f) = Ez : C;and- | also describes briefly how to addformulas to the proposed sys-

Ci ko Ei : A Thus, by our reduction rulegz[f] — wio] tem. However, in their work, (co)pattern matching happerthe

where (gi,u;) € Rules(f) and sOE:[f] — ui[o]. We conclude meta levelthis is like replacing induction by an-rule. Our work

that B, [Ex[f]] — Ex[us[o]]. U provides arobject-levekyntax for copatterns and ahgorithmfor
copattern coverage.

6. Extensions and Implementations Kimura and Tatsuta [2009] extend Wadler’s [2003] Dual Cal-

culus to inductive and coinductive types, treating the troicsor
for inductive data as value constructor and the destructocdin-
ductive data as continuation constructor. However, thepatan-
troduce recursive values or recursive continuations ntiepaand
copattern matching, but allow only iteration over finite alaind
coiteration into infinite data.

Agda, in its currently released version 2.3.0, already dwoi
Azt = {z—t} Coqg's subject reduction problem. Infinite objects are @eatia
delay and analyzed vidorce b, the corresponding operation on
types iglifting oo. In spirit, this approach mimics the standard trick
in call-by-value languages such as ML and Scheme to encage la
fst — 1 P ; ;

record{fst = t1;snd = t2} = } values bysuspensiond. e., functions over the unit type. The two-

~snd — B2 edged dependent pattern matching on infinite objects isl rou,
Of course, bidirectional type checking is no longer congpkince since one cannot match on functions.
anonymous objects can only be checked against a given type, b~ Agda’s coinduction is informally described by Danielssorl a

Our core language misses introduction rules for functiors @b-
jects, thus, we do not have lambda abstractions or reconggxp
sions. However, we can embed sets of behav{gts— «} into

the expression syntax and obt@nonymous objecthat subsume

A abstractions, SML's anonymous functions defined by pattern
matching, and record expressions:

fn nil = false _ - nil — false
| cons z zs = true - (cons x zs) > true

can appear in elimination position. Altenkirch [2010], but it lacks solid theoretical backiniqdeed,

Copatterns have been added to the development vérsion ~ compositionality is lost, because any data type that uggsgi
Agda [Agda team 2012]. Currently, projection copatterres ot is coinductive [Altenkirch and Danielsson 2010]. For im&te, a
part of the core of Agda, they are parsed but then translaied i ~ data type of trees with infinite branching realized via stigdost
record expressions. This does not give the full flexibilitycopat- automatically infinitelydeeptrees, even if that is not expressed
terns, but allows us to experiment with them. Full copaténthe by the data type definition. Our work reinterpretes lifting the
core would allow us to exploit the benefits of deep projection generation of a mutual recursive record type that contebtbe
patterns and mixed projection/application copatterns fanuthat, coinductive part to the data type. Forcing is interpretediessructor
Agda’s coverage checker has to be extended to copatterrac-To ~ and delaying as a mutual definition by destructor patterris Th
complish this, further research is required, because digmempat-  Way, we provide a standard semantics for coinduction in Ayt
tern matching is a far from trivial enterprise [Coquand 1.99¢hiir- recover compositional construction of data types.

mann and Pfenning 2003; Goguen et al. 2006; Norell 2007; Dun-
field and Pientka 2009].
Another prototypical implementation of copatterns exists

MiniAgda [Abel 2012]. In MiniAgda, one can certify terminan 8. Conclusion

and productivity using sized types [Hughes et al. 1996; izaet al. In this paper, we have presented a type-safe foundationrter p
2004; Abel 2007]. Copatterns provide the right syntax tocodaie gramming with infinite structures via observations. We nididée
corecursive definitions with size variables that witnesslpctivity. data using variant types and infinite data via record typagefh

matching of finite data is extended with its dual notion ofaibgrn
3 Available from the darcs repositonttp: //code .haskell.org/Agda. matching on infinite data. While we do not consider termunati




and productivity in this paper, we guarantee that the fonctiare
covering, i.e., they are defined on all possible inputs.

Copatterns lay a foundation for finitary rewriting with irifi
objects. They are also an excellent candidate for repriegecre-
cursive definitions in type-theoretic proof assistantshsas Coq
and dependently typed languages like Agda.

In the future, we plan to extend the presented work to full T.
dependent types. There are two main theoretical issues e@ ne

to tackle: first, extension of copattern coverage to deperigpes,
and secondly, checking termination and productivity ofctions
to guarantee strong normalization. A candidate for thefdatisk

are sized types [Hughes et al. 1996; Barthe et al. 2004; Abel

2007] as already implemented in MiniAgda [Abel 2012]. Ferth

we aim at developing a denotational model for languages with

copatterns. It seems that semantics based on orthogofirRditigot
1997; Vouillon and Mellies 2004] provides a good startingpéor
this investigation.

From a practical point of view, we plan to fully integrate ebp
terns into Agda for a perspicuous and robust foundation of-co
duction.
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out (unfold fs) = unfoldu f (fs)

unfoldu : {AS : Set} — (S — Maybe (A x S)) —
Maybe (A x S) — pColist A

unfoldu f (just (a,s)) = a::unfoldfs

unfoldu f nothing =[]

Breadth-first traversal of non-wellfounded tree Finitely branch-
ing but potentially infinite deep trees can be representeal dxyin-
ductive record with two fields, bel and a listsubs of subtrees.

N. Zeilberger. On the unity of dualityAnn. Pure Appl. Logic153(1-3):
66-96, 2008b.

N. Zeilberger. The Logical Basis of Evaluation Order and Pattern-
Matching PhD thesis, Carnegie Mellon University, 2009. record vTree (A : Set) : Set where
coinductive
field label : A
A. Agda Examples subs : List (vTree A)
The development version of Agda has experimental support fo open vTree

copatterns which can be turned on by optiorcopatterns. In If we have a forestist (vTree A), we can extract the labels in a
the following we present a few examples for copatterns in&gd  preaqth-first manner by first taking all the roots, then ceemating

syntax. all the subtrees and recurse. To ensure productivity, visdisish

Colists Colists have a coinductive type with an embedded variant the empty forest from the non-empty forest.
type. In Agda this is represented as mutual recursion betveee bf : {A : Set} — List (vTree A) — vColist A
coinductive record type and a data type. out (bf []) =

out (bf (t::ts)) = labelt :
append (map label ts)
(bf (concatMap subs (t :: ts)))

bf is productive since it is guarded-by-constructors [Coguan
1993]: it directly outputs either the empty colist or the rampty
colist, and sinceppend xs ys only adds elements in front gk.
The latter is not yet tracked by Agda’s termination and pobihity
checker, thus, the termination checker rejects this coamluRtiv-

ity checking using sized types, as realized in MiniAgda,sdeerk

for bf, and it is our goal to bring coinduction in Agda to the same
level of expressiveness as in MiniAgda.

mutual
data pColist (A : Set) : Set where
[ : pColist A
it (x : A)(xs : vColist A) — pColist A
record vColist (A : Set) : Set where
coinductive
field out :

open vColist

pColist A

Our first function lets uappend avColist to aList. It is defined by
recursion on the list.



