
To appear in EPTCS.
c©M. Boespflug & B. Pientka

This work is licensed under the
Creative Commons Attribution License.

Multi-level Contextual Type Theory

Mathieu Boespflug Brigitte Pientka
Mcgill University
Montreal, Canada

{mboes,bpientka}@cs.mcgill.ca

Contextual type theory distinguishes between bound variables and meta-variables to write potentially
incomplete terms in the presence of binders. It has found good use as a framework for concise
explanations of higher-order unification, characterize holes in proofs, and in developing a foundation
for programming with higher-order abstract syntax, as embodied by the programming and reasoning
environment Beluga. However, to reason about these applications, we need to introduce meta2-
variables to characterize the dependency on meta-variables and bound variables. In other words, we
must go beyond a two-level system granting only bound variables and meta-variables.

In this paper we generalize contextual type theory to n levels for arbitrary n, so as to obtain a
formal system offering bound variables, meta-variables and so on all the way to metan-variables. We
obtain a uniform account by collapsing all these different kinds of variables into a single notion of
variabe indexed by some level k. We give a decidable bi-directional type system which characterizes
βη-normal forms together with a generalized substitution operation.

1 Introduction

A core problem when describing computations and proofs is the need to model unknown entities. The
standard approach is to introduce meta-variables that one can use in place of concrete evidence that might
not yet be available. Consider for example the development of the proof for ∀x.∃y.P (x, x) ∧Q(x, x) ⊃
Q(y, x) ∧ P (x, y) in a proof assistant. Working from the goal formula, we first introduce a parameter
a and subsequently introduce a meta-variable Y for y which may depend on a. We can describe the
intermediate subgoal we must now solve as: P (a, a) ∧ Q(a, a) ⊃ Q(Y a, a) ∧ P (Y a, a). At a later
point in the proof, we may realize through (higher-order) unification that a is a good instantiation for Y
giving us an trivially provable goal. The question we address in this paper is how to describe formally the
incomplete proof state we are in prior to finding instantiations for Y . Clearly, the missing proof term we
want to construct depends on the meta-variable Y and the parameter a bound in the context. We hence
need to introduce meta2-variables to describe it.

A similar situation arises in the Beluga programming and reasoning environment [16; 17]. Recursive
programs in Beluga analyze and manipulate meta-objects of typeA[Ψ], i.e. objects which have typeA in
a bound variable context Ψ. For example, [x:i] allI λy. andI (F x y) (F y x) describes the derivation
of the formula ∀y.P (y, x)∧P (x, y) where F itself stands in lieu of a description of the derivation which
ends in P (y, x) in the context [x:i,y:i]. Note that the meta-variable F is bound: if we pattern match on
the LF object, then F is introduced and bound in the branch or it is bound explicitely at the outside by
an abstraction. We hence have two different kinds of bound variables in the LF object. In Beluga, we
can write underscores anywhere in an LF object and let type-reconstruction find the correct instantiation.
For example, to describe an incomplete derivation where we omit the second argument to andI, we may
write [x:i] allI λy. andI (F x y) _ . During type reconstruction, the underscore will be replaced by a
meta2-variable to express the fact that we may use the meta-variable F or the bound variables x and y.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Multi-level Contextual Type Theory

Contextual type theory [14] provides both bound variables and meta-variables, complete with a log-
ical foundation for reasoning about them. Up to now it has been used to explain higher-order unification
[18; 2], characterize concisely holes in proofs, and develop a foundation for programming with higher-
order abstract syntax as found in the Beluga programming and reasoning environment [16; 17]. This
paper generalizes and extends contextual type theory [14] to an arbitrary number of levels of variables.
Bound variables are of level 0, meta-variables are of level 1, meta2-variables are of level 2, and so on and
so forth. This leaves us with a uniform treatment of contexts, variables and their associated substitution
operations. Unlike earlier work sketched by Pfenning [15] for the simply typed case, we enforce that the
context is ordered, i.e. if n > m, then variables of level n occur to the left of variables of level m. This
will naturally enforce the correct dependency: variables of the higher level n cannot depend on the vari-
ables of lower level m. We give a bi-directional type system to characterize β-η-long normal forms and
generalize the hereditary substitution operation to variables of arbitrary level. We prove the hereditary
substitution to be terminating, prove that typing preserves the well-formedness of ordered contexts, and
show bi-directional typing to be decidable for the multi-level system.

This work is one step of the way towards streamlining and simplifying the implementation of Bel-
uga, where we currently distinguish between bound variables, meta-variables, and meta2-variables. But
more generally, this work can be used to formalize incomplete proofs that manipulate open proof objects
containing meta-variables. This is important to scale tactic languages such as VeriML [20] where we
manipulate meta-objects that may contain bound variables, or to reason about the tactics themselves.
We envision down the line a multi-level Beluga, which would allow us to reason about and manipu-
late Beluga programs within Beluga itself. This will provide a uniform framework where the proofs,
the development of proofs using tactics, and the reasoning about tactics all share a common basis and
supporting implementation.

2 Language definition

2.1 Syntax

Contextual type theory was introduced by Nanevski et al [14] and extended the logical framework LF [13]
with first-class meta-variables. Our work is a natural continuation of this work generalizing contextual
types to multiple levels. Following Watkins et al [21], the syntax is limited to expressing terms in β-
normal forms, which are sufficient for encoding the types and expressions of some logic or programming
language as well as judgements and derivations pertaining to those types and expressions. We leave the
development of a non-canonical version to future work. While the grammar below only enforces that
objects are β-normal, the typing rules will also ensure objects are moreover in η-long form.

Sorts s ::= type | kind
Atomic Types/Kinds P,Q ::= s | a | P (Γ̂.N)
Normal Types/Kinds A,B,K ::= P | Πxn:A[Ψn]. B

Atomic Terms R ::= xn[σ] | c | R (Γ̂.N)
Normal Terms M,N ::= R | λxn.M
Substitutions σ, τ ::= · | σ, Γ̂n.M | σ,4xn
Contexts Ψ,Φ,Γ ::= · | Ψ, xn:A[Φn]
Signature Σ ::= · | Σ,a:K | Σ, c:A

Normal objects may contain variables xn which are bound by λ-abstraction or declared in a context
Ψ. Variables are associated with a level n. The level n of a context Ψ is an upper bound on {k + 1|xk ∈
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dom(Ψ)}. In other words, we write Ψn when we know that all variables in Ψ are at levels strictly
smaller than n. Unlike the superscript on variables, the superscript on contexts is purely a mnemonic
convenience as this annotation can normally be inferred from information elsewhere wherever relevant,
just as lambda-abstractions are not annotated with the domain type because that information is usually
already available somewhere else.

A variable xn has type A[Ψn], i.e. it has type A in the context Ψ of variables at levels lower than n.
To put it differently, xn may refer to the (local) variables in Ψn and may also contain (global) variables
of a higher level. If n = 0, we recover our ordinary bound variables of type A. The context will be
dropped, because there is no context of level 0. Yet, A may refer to meta-variables or more generally,
to variables at a higher level. Similarly, we can recover meta-variables which are of level 1 and have
type A[Ψ1]. The context Ψ1 contains only variables of level 0, i.e. ordinary bound variables. Hence,
locally meta-variables depend on ordinary bound variables, but they may also contain (global) variables
of higher level (for example, meta2-variables). A variable xn of type A[Ψn] stands for an object Ψ̂n.M
where Ψ̂ lists the bound variables that may occur inM and again, the level n indicates that it may contain
locally bound variables only up to level n. This is important information when the need arises to rename
the locally bound variables occurring in M , to avoid captures for instance.

As we navigate under binders, it may be necessary to substitute the bound variable for another one
or for a term. Such substitutions get “stuck” at the level of meta-variables because there is no term
to substitute in until the meta-variable is instantiated. In the core syntax we impose the invariant that
all meta-variables standing for a term in a context Ψ be associated with a (simultaneous) substitution
σ such that the domain of σ matches that of Ψ. As such, given Ψ, it is not necessary to make the
domain of substitutions explicit, as that information would be redundant. Intuitively, the i-th element in
σ corresponds to the i-th assumption in Ψ. A postponed substitution σ is applied as soon as we know
what xn stands for and applying σ with domain Ψ to a term M is written [σ]ΨM .

A substitution maps (canonical) terms for variables. But as we push this substitution under binders,
the size of the context grows and so must that of the substitution. A term of the form (λx.M)[σ] can
be rewritten to (λx.M [σ′]), where σ′ extends σ by mapping the variable x to itself. However, recall
that x by itself is not a meaningful term in our grammar — all variables are systematically paired with
a simultaneous substitution. Without knowing the type for x, we cannot infer the appropriate identity
substitution which would allow us to replace x by x[id]. Even if x[id] was made a valid syntactic object
in our grammar, it is not guaranteed that x[id] is a canonical form at higher type (canonical forms are
η-long). Moreover, the property that a given term M inhabits a certain type is an extrinsic property of
M and types should play no role when propagating substitutions. Since the type of a term and its free
variables might not be known in general, it is thus not always possible to put x in βη-long normal form.
We therefore allow extending substitutions with renamings of variables, such as in σ′ = σ,4x, which
maps x to itself.

Applications resemble the way substitutions are built. Using the typing rules as a guide, notice that
being able to apply some atomic term R to some other term must mean the type of R denotes a function
whose type must be of the shape Πxn:A[Ψn]. B. The function R then, expects an argument of type
A[Ψn], which can therefore only be of the shape Ψ̂n.M . It would make little sense to simply write M
here, since M may contain “free” variables from Ψ̂n. Recall that all occurrences of the variables xn in
M are associated with a postponed substitution σ which will provide instantiations for the variables in
Ψn. To further bring home the connection to substitutions, consider β-reduction. Eliminating a redex
(λxn. N) (Ψ̂n.M) means substituting Ψ̂n.M for xn in N , i.e. [Ψ̂n.M/xn]N .
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2.2 Context operations

Before moving to the typing rules, we explain the two necessary context manipulating operations: merg-
ing and chopping. When checking the domain of a dependent function Πxn:A[Φn]. B in context Ψ, it
will be necessary to drop some of the assumptions in Ψ and extend Ψ with Φn. To chop off all variables
below level n from the context Ψ, we write Ψ|n. To merge two contexts Ψ and Φ we write Ψ ++ Φ.

As mentioned earlier, contexts must be sorted according to the level of assumptions xn:A[Ψn]. One
should conceptualize this ordered context as a stack of subcontexts, one for each level of variables.
Let Ψ(k) be the subcontext of Ψn with only assumptions of level k. Then, Ψn = Ψ(n − 1),Ψ(n −
2), . . . ,Ψ(1). We opt here for a flattened presentation of this stack of contexts in order to simplify
merging and chopping of stacks.

However, keeping the context sorted comes at a cost: inserting new assumptions xk:A[Φk] must
respect the invariant that contexts are always sorted. The flipside is that guaranteeing that merging two
contexts respects well-formedness is much easier and chopping contexts is more efficient. With merging
defined, insertion of a new assumption into a context is a special case, so we dispense with defining a
separate operation. Merging and chopping contexts are defined inductively as follows:

Merging contexts:Ψ ++ Φ = Γ
· ++ Φ = Φ
Ψ ++ · = Ψ

Ψ, xn:A[Γn] ++ Φ, yk:B[Γ′k] = (Ψ, xn:A[Γn] ++ Φ), yk:B[Γ′k] if k ≤ n
Ψ, xn:A[Γn] ++ Φ, yk:B[Γ′k] = (Ψ ++ Φ, yk:B[Γ′k]), xn:A[Γn] otherwise

Chopping contexts: Ψ|n = Φ
·|n = ·
(Ψ, xk:A[Φk])|n = Ψ|n if k < n
(Ψ, xk:A[Φk])|n = Ψ, xk:A[Φk] otherwise

Merging of two independent contexts is akin to the merge step of the mergesort algorithm and there-
fore inherits many of its properties. In particular, the merge of two sorted independent contexts is again
a sorted context. It is also stable, in the sense that the relative positions of any two assumptions in Ψn or
in Φk is preserved in Ψn ++ Φk.

The chopping operation allows us to drop all variable assumptions below a given index from a con-
text. If k ≤ n, then Ψk|n = ·. Similar to the chopping and merging operation on contexts, we will need
chopping and merging on the level of simultanous substitutions, written σ|Γn and σ ++ ρ respectively.
These operations will be defined in Section 2.5 on page 13.

2.3 Typing rules

We present in this section a bi-directional type system, capable of checking normal terms (resp. normal
types) against a type (resp. sorts) and synthesizing types (resp. sorts) for atomic entities. The rules are
given in Figure 1. When reading the rules bottom-up, assumptions are accumulated into the context Ψ
at the left of the turnstile as we descend into multi-level objects, but it is sometimes necessary to restrict
it using the previously defined operations. All typing judgments have access to a well-typed signature
Σ where we store constants together with their types and kinds. However, signatures declare global
constants and never change in the course of a typing derivation. Therefore the parameterization of the
typing rules by the signature Σ for constants is kept implicit.
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Ψ `M ⇐ A Normal term M checks against type A
Ψ ` R⇒ A Neutral term R synthesizes type A
Ψ ` σ ⇐ Φn Substitution σ has domain Φn and range Ψ.

The bi-directional rules can be understood as determining two mutually defined algorithms for in-
ferring the type of an object and checking an object against a type. We always assume that Ψ and the
subject (M , R, or σ) are given, and that the contexts Ψ contains only canonical types and is well-formed.
For checking M ⇐ A we also assume A is given and canonical, and similarly for checking σ ⇐ Φ we
assume Φ is given and is well-formed. For synthesis R ⇒ A we assume R is given and we generate a
canonical A. Similarly, at the level of types and contexts we have

Ψ ` A⇐ s Type/Kind A is well-formed
Ψ ` A⇒ K Type A synthesizes kind K
Ψ ` Φ ctx Context Φ is well-formed in the context Ψ

with corresponding assumptions on the constituents.
As in Pure Type Systems, a type is well formed if its type is a sort. Whereas signatures might contain

term-level and type-level constant declarations, we only allow declarations of sort type in contexts since
abstractions and dependent function types may only abstract over terms, not types.

Checking that types are well-kinded is bi-directional. To check that Πxn:A[Φn]. B is a well-formed
type in the context Ψ, we check first that the context Φn is well-formed in Ψ. We note that the assump-
tions in Φn should only have access to assumptions greater than or equal to n and checking that Φn is
well-formed in the context Ψ will amount to checking that Φn only depends on assumptions Ψ|n. Next,
we verify that A is well-kinded. Because of the dependency of types on terms, Φn scopes over the type
A. Consider for instance

(Γ̂.cons n x xs) : (vec n)[Γ]

where Γ = n:nat, x:bool, xs:vec n. The type of this instantiation for a meta-variable depends on the
variable n bound in Γ. A may refer to the variables in Φn, but also to variables m where m ≥ n from
Ψ. Hence, we drop from Ψ all assumptions below n and merge the resulting context with Φn. Finally,
we check that B is well-kinded in the context Ψ extended with the assumption xn:A[Φn]. We rely on the
previously defined merging operation on contexts, to insert the assumption xn:A[Φn] at the appropriate
position in Ψ.

To check that atomic types are well-kinded, we synthesize their kind. For type constants, we simply
look up their type in the signature Σ. The interesting case is the application rule. To synthesize the kind
for P (Φ̂n.N), we first synthesize the kind for P as Πxn:A[Φn].K. Subsequently, we check that N
has type A. We again must be careful regarding the context. First, some renaming may be necessary to
bring the locally bound variables described in Φ̂n in sync with the context. Moreover, we observe that all
variables below nwhich occur inN andA refer to binding sites in Φn. All variables equal or greater than
n which occur inN andA refer to binding sites in Ψ|n, i.e. the context Ψ where we drop all assumptions
below n. Finally, we must be careful to substitute Φ̂n.N for xn in K in the resulting kind we return.
Because our grammar only recognizes β-normal objects as syntactically well-formed, we must rely on
hereditary substitution to hereditarily eliminate any redices as we instantiate variables in the target of the
substitution. We annotate here the substitution with the type of A[Φn]. This is only strictly necessary to
ensure that hereditary substitutions terminate. We postpone the definition and discussion on hereditary
substitutions for now and will revisit it in Section 2.5.

In the lambda-abstraction rule, we check that λxn.M has type Πxn:A[Φn]. B by inserting the new
assumption xn:A[Φn] at the appropriate position in Ψ and continuing to check that M has type B. Note
that, without loss of generality, we implicitly assume here and everywhere else that xn /∈ Ψ. This can
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Atomic Types/Kinds Ψ ` P ⇒ K

Σ(a) = K

Ψ ` a⇒ K

Ψ ` P ⇒ Πxn:A[Φn].K Ψ|n ++ Φn ` N ⇐ A

Ψ ` P (Φ̂n.N)⇒ [Φ̂n.N/xn]A[Φn]K

Normal Types/Kinds Ψ ` A⇐ s

Ψ ` type⇐ kind

Ψ ` P ⇒ type

Ψ ` P ⇐ type

Ψ|n ++ Φn ` A⇐ type Ψ ` Φn ctx Ψ ++ xn:A[Φn] ` B ⇐ s

Ψ ` Πxn:A[Φn]. B ⇐ s

Atomic Terms Ψ `M ⇒ A

Ψ(xn) = A[Φn] Ψ ` σ ⇐ Φn

Ψ ` xn[σ]⇒ [σ]ΦnA

Σ(c) = A

Ψ ` c⇒ A

Ψ ` R⇒ Πxn:A[Φn]. B Ψ|n ++ Φn ` N ⇐ A

Ψ ` R (Φ̂n.N)⇒ [Φ̂n.N/xn]A[Φn]B

Normal Terms Ψ `M ⇐ A

Ψ ` R⇒ P P = Q

Ψ ` R⇐ Q

Ψ ++ xn:A[Φn] `M ⇐ B

Ψ ` λxn.M ⇐ Πxn:A[Φn]. B

Substitutions Ψ ` σ ⇐ Φn

Ψ ` · ⇐ ·

Ψ ` σ ⇐ Φn Ψ|k ++ [σ]Φn(Γk) `M ⇐ [σ′](Φn|k ++ Γk)A

Ψ ` σ, Γ̂k.M ⇐ Φn, xk:A[Γk]
where σ′ = σ|k ++ id(Γ̂k)

Ψ ` σ ⇐ Φn Ψ(yk) = [σ]Φn(A[Γk])

Ψ ` σ,4yk ⇐ Φn, xk:A[Γk]

Context well-formedness Ψ ` Φn ctx

Ψ ` · ctx
Ψ ` Φn ctx Ψ|n ++ Φn|k ++ Γk ` A⇐ type Ψ|n ++ Φn|k ` Γk ctx

Ψ ` Φn, xk:A[Γk] ctx
k < n

Figure 1: Typing rules for LF with contextual variables and context variables
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always be achieved by α-renaming. When we reach a normal object of atomic type, we synthesize a type
Q and compare Q to the expected type P . Comparing two types reduces to checking structural equality
between Q and P modulo renaming, since all types and terms are always in canonical form. The only
minor complication arises when checking that two substitutions are equivalent. Because we may simply
write xn for a variable of type A[Ψ̂n] or its expanded form, comparing two substitutions must take into
account η-contraction.

To synthesize the type of a constant, we simply look up its type in the signature Σ. Term-level
application R (Φ̂n.N) follows the same ideas as type-level applications. The most interesting rule is
the one for variables. To synthesize the type of a variable xn we retrieve its type A[Φn] from Ψ. Next,
we check that the substitution σ which is associated with xn maps variables from Φn to Ψ. Finally, we
return the type of xn[σ] which is [σ]ΦnA.

A substitution σ, Γ̂k.M checks against domain Φn, xk:A[Γk], if σ checks against Φn and in addition
M is well-typed. As in the rules for applications, we must be a little careful about where variables in
M are bound. M contains locally bound variables from Γ̂k as well as global variables from Ψ|k. We
again restrict Ψ to only contain variables above k, since all variables below k are bound in Γ. Next, we
inspect the type dependencies. We note that Γk is a well-formed context in Φn, although the typing rules
will ensure Γk only accesses declarations from Φn|k. Similarly, when applying σ to Γk, we will ensure
that σ will be appropriately restricted (see the definition in the appendix) to only substitute for variables
of level k and higher. Therfore, [σ]Φn(Γk) yields a well-formed context in Ψn|k. On the other hand, A
is well-typed in the context Φn|k ++ Γk, however σ has domain Φn. Simply applying σ to A would be
incorrect; instead, we restrict σ to contain only the mappings for the variables in Φn|k and map all the
variables from Γk to themselves. This is written as [σ|k ++ id(Γ̂k)](Φn|k ++ Γk).

Checking the extension σ,4xk of a substitution by a variable involves looking up the declared type
of xk in Ψ and compare it to the expected type. Because the expected type A[Γk] was well-typed in Φn,
we must verify that Ψ(xk) = [σ]Φn(A[Γk]). Note that [σ]Φn(A[Γk]) = ([σ|Γk ](Φn|k ++ Γk)A)[[σ]ΦnΓk].

Finally, we consider the rules that characterize well-formed contexts. In the typing rules discussed
above, we are often given contexts Φ that are not closed but rather whose assumptions might depend on
the ambient context Ψ. Since Ψ is already assumed well-formed, we keep it to the left of the turnstile
and write Ψ ` Φn ctx to mean Φ is a well-formed context at level n in context Ψ. An alternative
would have been to have judgements of the form ` Γn ctx only and state that Φn in Ψ is well-formed
as ` Ψ|n ++ Φn. A context Φn, xk:A[Γk] is well-formed if Φn is well-formed and A[Φk] is well-typed.
Again we must be careful about the dependency structure. The context Γk can refer to variables from
Φn, but only at levels k ≤ n. Moreover, any variable xm where n ≤ m is declared in Φ.

2.4 Properties

We begin by proving some properties about contexts and context merging and chopping. We first show
that we can always increase the upper bound of a context.

Lemma 1 (Cumulativity). If Ψ ` Φn ctx and n < k then Ψ ` Φk ctx.

Proof. By induction on the derivation of Ψ ` Φn ctx.

Next, we show that merging produces well-formed contexts, if both contexts are independent.

Lemma 2 (Closure under independent context merging).
If · ` Ψn ctx and · ` Φk ctx then · ` (Ψn ++ Φk)max(n,k) ctx.
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Proof. Since they are well-formed, assumptions in Ψn,Φk are well-ordered with respect to variable
levels in the domains. This lemma follows from the invariants respected by the merge step in the merge-
sort algorithm. The merge of two sorted lists is a sorted list and merging is stable. Moreover, again
since Ψn,Φk well-formed, for all xm ∈ dom(Ψk) and ym

′ ∈ dom(Φk), m < n and m′ < k. Therefore
Ψn ++ Φk is well-formed at level max(n, k).

More importantly, if we extend a context Ψn with a context Φk where Ψn ` Φk ctx, the resulting
context Ψn ++ Φk is well-formed. This lemma is crucial to ensure that we work with well-formed
contexts during typing.

Lemma 3 (Well-formed context extension).
If ` Ψn ctx and Ψn ` Φk ctx then · ` (Ψn ++ Φk)max(n,k) ctx.

Proof. By lexicographic induction on the structure of Φn and Ψk.

Case 1 Φk = ·
` Ψn ctx by assumption
Ψn ` · ctx by assumption
Ψn ++ · = Ψn by definition
Subcase 1.1:k > n
` Ψk by cumulativity
Subcase 1.2: k ≤ n
` Ψn ctx by assumption

Case 2 Φk = Φ′k, xl:A[Γl]
Subcase 2.1: Ψn = ·
·n ` Φ′k, xl:A[Γl] ctx by assumption
·n ++ Φk = Φk by definition
Subcase 2.1.1:k > n
` Φk by assumption
Subcase 2.1.2: k ≤ n
` Ψn ctx by cumulativity

Subcase 2.2: Ψn = Ψ′n, ym:C[Γ′m]
Ψn ` Φ′k, xl:A[Γl] ctx by assumption
Ψn ` Φ′k ctx by inversion
Subcase 2.2.1:m < l
(Ψ′n, ym:C[Γ′m]) ++ Φ′k, xl:A[Γl] = (Ψ′n ++ (Φ′k, xl:A[Γl])), ym:C[Γ′m] by definition
` Ψ′n ++ (Φ′k, xl:A[Γl)] ctx by i.h.
` Ψ′n, ym:C[Γ′m] ctx by assumption
` Ψ′n ctx
Ψ′n ` Γ′m ctx
Ψ′n|m ++ Γ′m ` C ⇐ type by inversion
Ψ′n ++ Φk ` Γ′m ctx by weakening
(Ψ′n ++ Φk)|m ++ Γ′m ` C ⇐ type by weakening
` (Ψ′n ++ Φk), ym:C[Γ′m] ctx

Subcase 2.2.2:m ≥ l
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(Ψ′n, ym:C[Γ′m]) ++ Φ′k, xl:A[Γl] = (Ψ′n, , ym:C[Γ′m] ++ Φ′k), xl:A[Γl] by definition
` Ψn ++ Φ′k ctx by i.h.
` Φ′k, xl:A[Γl] ctx by assumption
` Φ′k ctx
Φ′k ` Γl ctx
Φ′k|l ++ Γl ` A⇐ type by inversion
Ψn ++ Φ′k ` Γl ctx by weakening
(Ψn ++ Φ′k)|l ++ Γl ` A⇐ type by weakening
` (Ψ′n ++ Φ′k), xl:A[Γl] ctx

Lemma 4 (Closure under chopping). If · ` Ψk ctx then · ` (Ψ|n)k ctx.

Proof. By induction on the derivation of · ` Ψk ctx.

Lemma 5 (Weakening, Identity).

1. If Ψ ` J then Ψ ++ xn:A[Φn] ` J .

2. Let Ψ(n) =
−−−−−−→
xn:A[Φn] denote the subcontext Ψ(n) ⊆ Ψ of assumptions at level n. We have that

Ψ ` Ψ(n).

Proof. By induction on the derivation of Ψ ` J and closure of well-formed contexts under merging.

Lemma 6 (Well-formedness of contexts at level k). Ψ ` Φk ctx iff Ψ|k ` Φk ctx.

Proof. For a context Φ at level n in Ψ, by induction on the derivation of the well-formation judgement
Ψ ` Φn ctx, remarking that chopping is idempotent: Φ|n|n = Φ|n.

2.5 Hereditary Substitution

Normal terms are not closed under vanilla substitution, a rather problematic matter of fact given that our
syntax can only express normal forms. For example, when replacing naively x by λy.c y in the object
x z, we would obtain (λy.c y) z. It is essential therefore to iron out as we go any redices we might create
as a result of substituting terms for variables. We hence follow [21] in defining a hereditary substitution,
which does just that. That hereditary substitutions always terminate on well-typed normal terms is crucial
to ensuring that our typing rules are decidable. In the above example, hereditary substitutions continue
to substitute z for y in c y to obtain c z as a final result. This idea scales to our setting, but we must be
careful to observe the scope of variables.

Hereditary substitution are defined structurally considering the term to which the substitution opera-
tion is applied and the type of the object which is being substituted. The type is only needed to construct
evidence of termination. We define the hereditary substitution operations for types, normal object, neutral
objects, substitutions, and contexts.

In the formal development it is simpler if we can stick to the structure of the example above and
use only non-dependent types in hereditary substitutions. This suffices because we only need to know
whether we have encountered a function which can be reduced further or whether we have reached
an object of base type and reduction will terminate. We therefore first define type approximations α
and an erasure operation ()− that removes dependencies. Before applying any hereditary substitution
[Φ̂n.N/xn]A[Φn](M) we first erase dependencies to obtain α[φ] = (A[Φ])− and then carry out the
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hereditary substitution proper as [Φ̂n.N/xn]α[φ]B. A similar convention applies to the other forms of
hereditary substitutions.

Type approximation α, β ::= a | α[γ]⇒ β
Context approximation γ, ψ ::= · | γ, xn:α[φ] | γ, xn:

The last form of context approximation, xn: is needed when the approximate type of xn is not available.1

It does not arise directly from erasure.
Types and contexts are related to type and context approximations via an erasure operation ()− which

we overload to work on types and contexts.

(a)− = a

(P (Ψ̂.N))
−

= P−

(Πxn::A[Ψn]. B)− = (A)−[(Ψn)−]⇒ (B)−

(·)− = ·
(Ψn, xk:A[Φk])

−
= (Ψn)−, xk:(A)−[(Φk)

−
]

Herediatary substitution is given by the following equations. We overload the substitution operation
to work on normal terms, neutral terms, substitutions, and contexts.

[Φ̂n.N/xn]α[φ](N) = N ′ Hereditary substitution into N
[Φ̂n.N/xn]α[φ](R) = R′ or M ′ : α′ Hereditary substitution into R
[Φ̂n.N/xn]α[φ](σ) = σ′ Hereditary substitution composition
[Φ̂n.N/xn]α[φ](Ψ) = Ψ′ Hereditary substitution into Ψ

Applying a substitution to a neutral term, may yield either a neutral term or a normal term together
with a type approximation. In the latter case, we can simply drop the type approximation, since it is only
necessary for guaranteeing that any reductions triggered when applying the substitution to a neutral term
will terminate.

Substitution into normal and neutral terms We present hereditary substitution for normal terms and
neutral terms, substitutions and context. The definitions for types can be found in the appendix.

We define [Φ̂n.N/xn]α[φ](M) and [Φ̂n.N/xn]α[φ](R) by nested induction, first on the structure of the
type approximation α[φ] and second on the structure of the objectsN andR. In other words, we either go
to a smaller type approximation (in which case the objects can become larger), or the type approximation
remains the same and the objects become smaller. We write α ≤ β and α < β if α occurs in β (as a
proper subexpression in the latter case). Such occurrences can be inside a context approximation ψ in
the function approximation β1[ψ] ⇒ β2, so we also write α < ψ if α ≤ β for some yk:β[γ] in ψ, and
we write α < β[ψ] if α ≤ β or α < ψ.

When defining substitutions, we must be careful to take into account where multi-level variables are
bound. For example, when applying [Φ̂n.N/xn] to a lambda-abstraction λxk.M , we must check for
possible capture, if k ≥ n. Recall that Φ̂n.N only binds variables up to level n locally and N can still
refer to variables greater or equal to n which have from N ’s perspective a global status. Therefore, if
k ≥ n, we must ensure that yk does not occur in the free variables of Φ̂n.N , written as FV(Φ̂n.N). If
k < n, then yk can in fact not appear in Φ̂n.N because all variables of level k are bound in Φ̂n. Recall
that all variables xn[σ] exist as closures, and hence all variables in Φ̂n will be substituted for using σ.

1See the definition of [σ]ψn(λyn.M) in the electronic appendix.
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Substitution into normal terms

[Φ̂n.N/xn]α[φ](λy
k.M) = λyk.M ′ where [Φ̂n.N/xn]α[φ](M) = M ′ if k < n

[Φ̂n.N/xn]α[φ](λy
k.M) = λyk.M ′ where [Φ̂n.N/xn]α[φ](M) = M ′

if yk 6∈ FV(Φ̂n.N) and k ≥ n
[Φ̂n.N/xn]α[φ](R) = M if [Φ̂n.N/xn]α[φ](R) = M ′ : α′

[Φ̂n.N/xn]α[φ](R) = R′ if [Φ̂n.N/xn]α[φ](R) = R′

[Φ̂n.N/xn]α[φ](N) fails otherwise

Substitution into neutral terms

[Φ̂n.N/xn]α[φ](c) = c

[Φ̂n.N/xn]α[φ](x
n[σ]) = N ′ : α where [Φ̂n.N/xn]α[φ](σ) = σ′

and [σ′]φ(N) = N ′

[Φ̂n.N/xn]α[φ](y
k[σ]) = yk[σ′] where [Φ̂n.N/xn]α[φ](σ) = σ′ if yk 6= xn

[Φ̂n.N/xn]α[φ](R (Ψ̂k.M)) = R′ (Ψ̂k.M ′) where [Φ̂n.N/xn]α[φ](R) = R′

and [Φ̂n.N/xn]α[φ](M) = M ′ if k ≤ n
[Φ̂n.N/xn]α[φ](R (Ψ̂k.M)) = R′ (Ψ̂k.M) where [Φ̂n.N/xn]α[φ](R) = R′ if k > n

[Φ̂n.N/xn]α[φ](R (Ψ̂k.M)) = N ′′ : β where [Φ̂n.N/xn]α[φ](R)=λyk. N ′:γ[ψ]→ β

and M ′ = [Φ̂n.N/xn]α[φ](M)

and N ′′ = [Ψ̂k.M ′/yk]γ[ψ](N
′)

if γ[ψ]→ β ≤ α[φ] and k ≤ n
[Φ̂n.N/xn]α[φ](R (Ψ̂k.M)) = N ′′ : β where [Φ̂n.N/xn]α[φ](R)=λyk. N ′:γ[ψ]→ β

and N ′′ = [Ψ̂k.M/yk]γ[ψ](N
′)

if γ[ψ]→ β ≤ α[φ] and k > n

[Φ̂n.N/xn]α[φ](R) fails otherwise

Figure 2: Hereditary substitution on normal terms and neutral terms

When considering the substitution operation on neutral terms, two cases are interesting, applying the
substitution to a variable and to an application. When we apply Φ̂n.N/xn to a variable yk[σ], we apply
it to σ obtaining σ′ as a result. If yk 6= xn, we simply return yk[σ′]. If yk = xn, i.e. n = k and y = x,
then we must continue to apply σ′ to N obtaining N ′. We then return N ′ : α, because yk[σ] may have
occurred in a functional position, and we must trigger a β-reduction step, if it is applied.

Propagating the hereditary substitution [Φ̂n.N/xn] through an application R (Ψ̂k.M) is split into
multiple cases considering the level and the possible elimination of created redices. If k ≤ n, we need to
apply the substitution not only to R but also to (Φ̂k.M), because M may refer to xn; otherwise, we only
need to apply the substitution to R, because all occurrences of xn in M are bound locally by Φ̂k.

If applying the substitution toR produces a normal term λyk.N ′, then we must continue to substitute
and replace yk with (Ψ̂k.M) inN ′. The approximate type annotations on the substitution guarantees that
the approximate type of the lambda-abstraction is smaller than the approximate type of xn, and hence
this hereditary substitution will terminate.
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Single substitution into simultaneous substitutions Applying Φ̂n.N/xn to a substitution σ is done
recursively and is straightforward, when we keep in mind the fact that all variables below k are bound
within M when we encounter Ψ̂k.M . If k ≥ n, then applying the substitution Φ̂n.N/xn to Ψ̂k.M will
leave it unchanged. Only if k ≤ n, we push the substitution Φ̂n.N/xn through M . When we encounter
σ′,4yk where yk 6= xn, we simply apply the substitution to σ′. If we encounter σ′,4xn, then we must
replace xn by Φ̂n.N .

[Φ̂n.N/xn]α[φ](·) = ·
[Φ̂n.N/xn]α[φ](σ, Ψ̂

k.M) = σ′, Ψ̂k.M ′ where [Φ̂n.N/xn]α[φ](M) = M ′

and [Φ̂n.N/xn]α[φ](σ) = σ′ if k ≤ n
[Φ̂n.N/xn]α[φ](σ, Ψ̂

k.M) = σ′, Ψ̂k.M where [Φ̂n.N/xn]α[φ](σ) = σ′ if k > n

[Φ̂n.N/xn]α[φ](σ,4x
n) = σ′, Φ̂n.N where [Φ̂n.N/xn]α[φ](σ) = σ′

[Φ̂n.N/xn]α[φ](σ,4y
k) = σ′,4yk where [Φ̂n.N/xn]α[φ](σ) = σ′ if yk 6= xn

Substitution into contexts Applying Φ̂n.N/xn to a context proceeds recursively on the structure of
the context until we encounter a declaration xk where k > n. Because our contexts are ordered, we
know that the remaining context cannot contain an occurrence of xn.

[Φ̂n.N/xn]α[φ](·) = ·
[Φ̂n.N/xn]α[φ](Ψ, y

k:A[Γk]) = Ψ′, yk:A′[Γ′k] where [Φ̂n.N/xn]α[φ](Ψ) = Ψ′

and [Φ̂n.N/xn]α[φ](A[Γk]) = A′[Γ′k] if k ≤ n
[Φ̂n.N/xn]α[φ](Ψ, y

k:A[Γk]) = Ψ, yk:A[Γk] if k > n

Simultaneous substitutions Similar to the single substitution operation, the simultanous substitution
operation is indexed with the domain of σ described by the approximate context φ. To define simulta-
neous substitutions it is worth recalling how they arise: A simultaneous substitution σ is associated with
a variable xn which has type A[Φn]. As a consequence, σ provides instantiations for variables declared
in Φn, i.e. variables up to level n. Any variable at level n or above is bound in the ambient context and
σ will not provide any substitutions for such variables. It thus makes sense to write any upper bound on
a simultaneous substitution explicitly as in σn, just as for contexts, but we generally choose to omit it.
Defining the simultaneous substitution we must be careful to ensure that the usual substitution properties
for simultaneous substitution holds — if Φ ` σ ⇐ Ψn and Γ|n ++ Ψn ` J then Γ|n ++ Φ ` [σ]ψJ .
Γ|n is the ambient context which remains untouched by the simultanous substitution σ.

The typing rules act again as a guide in our definitions. For lambda-abstractions for instance, pushing
a simultanous substition σn through λyk.M we need to distinguish cases based on the level: if k < n,
then we must extend the substitution σ with the identity mapping for yk. From the typing rule for lambda-
abstractions, we see that contexts are ordered and we insert the new declaration yk at its correct position
using context merging. Similarly, we need to define substitution merging operation which will extend σ
and insert yk at its correct position. If k ≥ n, then σ does not need to be extended as we push σn through
the λ-abstraction because the substituion σn has no effect on variables above level n.

For applications for instance, applying a simultaneous substitution σ where Γ ` σ ⇐ Ψn ctx should
take R (Φ̂m.N) from the context Ψ to the context Γ. This is justified in a straightforward manner by
appealing to the induction hypothesis on the premises of the typing rule. However, we cannot directly
appeal to the induction hypothesis in the second premise since the assumptions do not match the domain
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of σ. If we want the substitution property to hold, we must define substitution chopping operation similar
the context chopping operation together with an identity substitution for mapping the variables in Φn to
themselves. We therefore define chopping as (σ/ψ)|n inductively on the structure of σ and its domain ψ.
Both for chopping off parts of a substitution and merging substitutions, we will resurrect the domain of
the substitution to have access to the level of each variable for which the substitution provides a mapping.
For convenience, we omit writing out the resurrected contexts during merging and chopping when they
are understood. We also write F for 4xn and Ψ̂n.N .

Merging substitutions:σ/ψ ++ τ/φ = ρ
·/ · ++ τ/φ = τ
σ/ψ ++ ·/· = σ
(σ/ψ, F/xn) ++ (τ/φ, F ′/yk) = ((σ/ψ, F/xn) ++ τ/φ), F ′ if k ≤ n
(σ/ψ, F/xn) ++ (τ/φ, F ′/yk) = (σ/ψ ++ (τ/φ, F ′/yk)), F otherwise

Chopping substitutions: (σ/ψ)|n = τ
· |n = ·
(σ/ψ, F/yk)|n = (σ/ψ)|n if k < n
(σ/ψ, F/yk)|n = σ, F if k ≥ n

The identity substitution, written as id(Φ̂) is the simple unrolling of Φ̂ into a substitution: id(·) = ·
and id(Φ̂, xl) = id(Φ̂),4xl. Due to lack of space we omit the definition of simultanous substitution here
(see appendix for the full definition).

Properties of substitutions If the original term is not well-typed, a hereditary substitution, though
terminating, cannot always return a meaningful term. In that case, we simply fail to return a result. Later
we show that on well-typed terms, hereditary substitution always returns well-typed terms.

Applying the substitution to an object will terminate because either we apply the substitution to a
sub-expression or the objects we substitute are smaller. The following substitution property holds for
types, terms, substitutions and contexts.

Lemma 7 (Termination).

1. If [Ψ̂n.N/xn]α[ψ](R) = M ′ : β then β ≤ α[ψ].

2. [Ψ̂n.N/xn]α[ψ]( ) terminates, either by returning a result or failing after a finite number of steps.

Lemma 8. For any term, type or kind F ,

1. [[σ]φρ]φ′([σ
′]φ′F ) = [σ]φ([ρ]γF ) where σ′ = σ|m ++ id(Γ̂m) and Φ′ = (φ|m ++ Γm);

2. [σ]φ([ρ]γF ) = [ σ|m ++ [σ]φρ]φ′(F ) where Φ′ = (φ|m ++ Γm);

3. [σ]φ([Γ̂.N/xn]F ) = [σ ++ [σ]φ(Γ̂.N)/xn]F ;

4. [σ]φ([Γ̂n.N/xn]F ) = [Γ̂n.N/xn]([σ]φF ) if level(φ) < n.

Proof. By induction on F .

Lemma 9 (Identity extension).

1. If Ψ ` σ ⇐ Φ then Ψ ++ xk:[σ]Φ(A[Γk]) ` ρ⇐ Φ ++ xk:A[Γk] where ρ = σ/φ ++ 4xk/xk.
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2. If Ψ ` σ ⇐ Φ then Ψ ++ [σ]φΓ ` ρ⇐ Φ ++ Γ where ρ = σ/φ ++ id(γ).

Proof. 1. By induction on the derivation of Ψ ` σ ⇐ Φ. Let Ψ′ = Ψ ++ xk:[σ]Φ(A[Γk]). Ψ′ is a
well-formed context by Lemma 13.

Case: Ψ ` · ⇐ ·: σ = · so Ψ′ = Ψ ++ xk:A[Γk] by definition. Noting that ρ = 4xk by
definition of merging of substitutions and · is the neutral element of merging, we then obtain the
result by the following derivation:

Ψ′ ` · ⇐ · Ψ′(xk) = [·]·A[Γk]

Ψ′ ` ·,4xk ⇐ ·, xk:A[Γk]

Case: Ψ ` σ, Γ̂n.M ⇐ Φ, yn:B[Γn]:

Ψ ` σ ⇐ Φ Ψ|n ++ [σ]φ(Γ′n) `M ⇐ [σ′]φ′(B)

Ψ ` σ, Γ̂n.M ⇐ Φ, yn:B[Γ′n]

where σ′ = σ|n ++ id(Γn) and Φ′ = Φ|n ++ Γ
let σw = σ ++ 4xk and Φw = Φ ++ xk:A[Γk]

and similarly, σ′w = σ′ ++ 4xk and Φ′w = Φ′ ++ xk:A[Γk].
Ψ|n ++ [σw]φwΓ′n `M ⇐ [σ′w]φ′wB by substitution weakening
Ψ ++ xk:[σ]Φ(A[Γk]) ` σw ⇐ Φw by I.H.
Ψ ++ xk:[σ,Γ′k.M ]Φw(A[Γk]) ` σw ⇐ Φw by substitution weakening

Sub-case 1: n ≤ k
Ψ|n ++ [σ]φ(Γ′n) `M ⇐ [σ′]φ′(B) derived previously
(Ψ ++ xk:A[Γk])|n ++ [σ]φ(Γ′n) `M ⇐ [σ′]φ′(B) be weakening
(Ψ ++ xk:A[Γk])|n ++ [σw]φw(Γ′n) `M ⇐ [σ′w]φ′w(B) by substitution weakening
Ψ ++ xk:A[Γk] ` σw, Γ̂′n.M ⇐ Φw, yn:B[Γ′] by typing rule
Ψ ++ xk:A[Γk] ` (σ, Γ̂′.M) ++ 4xk ⇐ (Φ, yn:B[Γ′]) ++ xk:A[Γ]

by definition since n ≤ k.

Sub-case 2: n > k,
We note weakening the premise Ψ|n ++ [σ]φ(Γ′n) ` M ⇐ [σ′]φ′(B) has no effect. We use
directly the typing rule on the I.H. and the premise to derive
Ψ ++ xk:A[Γk] ` σw, Γ̂′n.M ⇐ Φw, yn:B[Γ′]
Ψ ++ xk:A[Γk] ` (σ, Γ̂′.M) ++ 4xk ⇐ (Φ, yn:B[Γ′]) ++ xk:A[Γ]

by definition since n ≤ k.

Case ∆ ` σ′,4yn ⇐ Ψ′, yn:B[Γ′n]:

Ψ ` σ ⇐ Φ Ψ(yn) = [σ]φ(B[Γ′])

Ψ ` σ, yn ⇐ Φ, yn:B[Γ′n]
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let σw = σ ++ 4xk and Φw = Φ ++ xk:A[Γk]

Ψ ++ xk:[σ]A[Γk] ` σw ⇐ Φw by I.H.
Ψ ++ xk:[σw]A[Γk] ` σw ⇐ Φw by substitution weakening
(Ψ ++ xk:[σw]A[Γk])(yn) = [σ]φ(B[Γ′]) since Ψ(yn) = [σ]φ(B[Γ′])
[σ]φ(B[Γ′]) = [σw]φw(B[Γ′]) by properties of substitution
Ψ ++ xk:[σw]A[Γk] ` σw, yn ⇐ Φw, y

n:B[Γ′] by typing rule
Ψ ++ xk:[σw]A[Γk] ` (σ, yn) ++ xk ⇐ (Φ, yn:B[Γ′]) ++ xk:A[Γ] by definition

2. By induction on Γ, using part 1.

Lemma 10 (Substitution property).
1. If ∆|n ++ Ψn ` σ ⇐ Φn and ∆|n ++ Φn ` J then ∆|n ++ Ψn ` [σ]φ(J).

2. If Ψ|n ++ Φn ` N ⇐ A and Ψ, xn:A[Φn] ` J then Ψ ` [Φ̂n.N/xn]α[φ](J).

Note that in the case of type synthesis of terms, the conclusion of the statements depend on the result of
the substitution, e.g.:

(a) ∆|n ++ Ψn ` R′ ⇒ [σ]φC if [σ]φR = R′.

(b) ∆|n ++ Ψn `M ⇐ [σ]φC if [σ]φR = M : α where α = ([σ]φC)−.

Proof. We prove the two parts simultaneously, by lexicographic induction on the length of the derivation
of the second judgement, the level, the type approximation α, the judgement approximation φ. We detail
the proof for checking judgements J = M ⇐ C and synthesizing judgements J = R ⇒ C only, and
even then only for the non-trivial cases; the proofs for types and substitutions are similar.

1.

Case:
(∆|n ++ Φn)(xm) = A[Γm] ∆|n ++ Φn ` ρ⇐ Γm

∆|n ++ Φn ` xm[ρ]⇒ [ρ]γA
∆|n ++ Ψn ` σ ⇐ Φn by assumption
∆|n ++ Ψn ` [σ]φρ⇐ [σ]φΓm by I.H.

Sub-case 1: xm ∈ ∆|n and m ≥ n
(∆|n)(xm) = A[Γm] by assumption
(∆|n ++ Ψn)(xm) = A[Γm] by definition since n ≤ m
[σ]φ(Γm) = Γ since m ≥ n =level(φ)
∆|n ++ Ψn ` [σ]φρ⇐ Γm by rewriting in the I.H.
∆|n ++ Ψn ` xm[[σ]φρ]⇒ [[σ]φρ]γA by typing rule
∆|n ++ Ψn ` [σ]φ(xm[ρ])⇒ [σ]φ([ρ]γA) by definition

Sub-case 2: xm ∈ Φn and m < n
(Φn)(xm) = A[Γm] by assumption
Φn = Φ1, x

m:A[Γm], Φ2 by previous line
∆|n ++ Ψn ` σ ⇐ Φn recall by assumption
∆|n ++ Ψn ` σ1 ⇐ Φ1 for some σ1/φ1 ⊆ σ/φ by typing rule for σ
Either [σ]φ(xm[ρ]) = ym[[σ]φρ] or [σ]φ(xm[ρ]) = [[σ]φρ]φM : α′.
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Sub-case 2.1: [σ]φ(xm[ρ]) = ym[[σ]φρ]
(Ψn)(ym) = [σ1]φ1(A[Γm]) by typing rules
(Ψn)(ym) = [σ]φ(A[Γm]) by substitution weakening
(Ψn)(ym) = ([σ′]φ′A)[[σ]φnΓm] by definition

where σ′ = σ|m ++ id(Γ̂m) and Φ′ = (Φ|m ++ Γm)
∆|n ++ Ψn ` [σ]φρ⇐ [σ]φΓm recall the I.H.
∆|n ++ Ψn ` ym[[σ]φρ]⇒ [[σ]φρ]γ([σ′]φ′A) by typing rule
∆|n ++ Ψn ` (ym[[σ]φρ])⇒ [σ]φ([ρ]γA) by lemma 8

Sub-case 2.2: [σ]φ(xm[ρ]) = [[σ]φρ]φM : α′

(∆|n ++ Ψn)|m ++ [σ1]φ1Γm `M ⇐ [σ′1]φ′1A for some σ1/φ1 ⊆ σ/φ by typing rule for σ
where σ′1 = σ1|m ++ id(Γ̂m) and Φ′1 = (Φ1|m ++ Γm)

(∆|n ++ Ψn)|m ++ [σ]φΓm `M ⇐ [σ′]φ′A by substitution weakening
where σ′ = σ|m ++ id(Γ̂m) and Φ′ = (Φ|m ++ Γm)

∆|n ++ Ψn ` [σ]φρ⇐ [σ]φΓm recall previously derived by I.H.
(∆|n ++ Ψn)|m ` [[σ]φρ]γM ⇐ [[σ]φρ]γ([σ′]φ′A) by I.H. since level(Γ) = m < n
(∆|n ++ Ψn)|m ` [[σ]φρ]γM ⇐ [σ]φ([ρ]γA) by lemma 8

Case:
∆|n ++ Φn ` R⇒ Πxm:A[Γm]. B ∆|n ++ Φn|m ++ Γm ` N ⇐ A

∆|n ++ Φn ` R (Γ̂m.N)⇒ [Γ̂m.N/xm]A[Γm]B

Sub-case 1: [σ]φR = R′ is atomic
∆|n ++ Ψn ` R′ ⇒ [σ]φ(Πxm:A[Γm]. B) by I.H.

Sub-case 1.1: m < n
∆|n ++ Ψn ` R′ ⇒ Πxm:[σ]φ(A[Γm]). [σ′]φ′B by definition

where σ′ = σ ++ 4xm and φ′ = φ ++ xm:α[γ]
∆|n ++ Ψn ` σ|m ⇐ Φn|m by typing rule
∆|n ++ Ψn|m ++ [σ]φ(Γm) ` τ ⇐ Φn

0 by Lemma 9
where τ = σ|m ++ id(Γm) and Φn

0 = Φn|m ++ Γm

and noting that [σ]φ(Γm) = [σ|m]φ|m(Γm).
∆|n ++ Ψn|m ++ [σ]φ(Γm) ` [τ ]φ0N ⇐ [τ ]φ0A by I.H.
∆|n ++ Ψn ` R′ (Γ̂m.[τ ]φ0N)⇒ [Γ̂m.[τ ]φ0N/x

m]α[γ]([σ
′]φ,xm:α[γ]B) by typing rule

∆|n ++ Ψn ` R′ (Γ̂m.[τ ]φ0N)⇒ [σ]φ([Γ̂m.N/xm]α[γ]B by Lemma 8
∆|n ++ Ψn ` [σ]φ(R (Γ̂m.N)⇒ [σ]φ([Γ̂m.N/xm]α[γ]B by definition of substitution

Sub-case 1.2: m ≥ n
∆|n ++ Ψn ` R′ ⇒ Πxm:(A[Γm]). [σ]φB by definition
∆|n ++ Ψn ` R′ (Γ̂m.N)⇒ [Γ̂m.N/xm]α[γ]([σ]φB by typing rule
∆|n ++ Ψn ` [σ]φ(R (Γ̂m.N))⇒ ([σ]φ([Γ̂m.N/xm]α[γ]B) by definition and Lemma 8
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Sub-case 2: [σ]φR = λyk.M : α[γ]⇒ β is normal
∆|n ++ Ψn ` λyk.M ⇐ [σ]φ(Πxm:A[Γm]. B) by I.H.

Sub-case 2.1: m < n
∆|n ++ Ψn ` λyk.M ⇐ Πxm:[σ]φ(A[Γm]). [σ′]φ′B by definition

where σ′ = σ ++ 4xm and φ′ = φ ++ xm:α[γ]
∆|n ++ Ψn ` σ|m ⇐ Φn|m by typing rule
∆|n ++ Ψn ++ ym:A[Γm] `M ⇐ [σ′]φ′B and k = m by inversion on typing
∆|n ++ Ψn|m ++ [σ]φ(Γm) ` τ ⇐ Φ′n by Lemma 9

where τ = σ|m ++ id(Γm) and Φn
0 = Φn|m ++ Γm

and noting that [σ]φ(Γm) = [σ|m]φ|m(Γm).
∆|n ++ Ψn|m ++ [σ]φ(Γm) ` [τ ]φ′N ⇐ [τ ]φ0A by I.H.
∆|n ++ Ψn ` [Γ̂m.[τ ]φ′N/x

m]α[γ]M ⇐ [Γ̂m.[τ ]φ′N/x
m]α[γ]([σ

′]φ′B) by I.H. (since α[γ] < φ)
and noting that Ψn does not depend on ym

∆|n ++ Ψn ` [Γ̂m.[τ ]φ′N/x
m]α[γ]M ⇐ [σ]φ([Γ̂m.N/xm]α[γ]B) by Lemma 8

∆|n ++ Ψn ` [σ]φ(R (Γ̂m.N))⇐ [σ]φ([Γ̂m.N/xm]α[γ]B) by definition

Sub-case 2.2: m ≥ n
∆|n ++ Ψn ` λyk.M ⇐ Πxm:(A[Γm]). [σ]φB by definition of substitution
∆|n ++ Ψn ++ xm:A[Γm] `M ⇐ [σ]φB and k = m by inversion
∆|n ++ Ψn ` [Γ̂.N/xm]α[γ]M ⇐ [Γ̂.N/xm]α[γ]([σ]φB) by I.H. (since α[γ] < φ)
∆|n ++ Ψn ` [Γ̂.N/xm]α[γ]M ⇐ [σ]φ([Γ̂.N/xm]α[γ]B) by Lemma 8
∆|n ++ Ψn ` [σ]φ(R (Γ̂m.N))⇐ [σ]φ([Γ̂m.N/xm]α[γ]B) by definition

Case
∆|n ++ Φn ++ xm:A[Γm] `M ⇐ B

∆|n ++ Φn ` λxm.M ⇐ Πxm:A[Γm]. B
:

∆|n ++ Ψn ++ xm:[σ]φ(A[Γm]) ` σ′ ⇐ Φ′n by Lemma 9
where σ′ = σ ++ 4xm and Φ′n = Φn ++ xm:A[Γm]

∆|n ++ Ψn ++ xm:[σ]φ(A[Γm]) ` [σ′]φ′M ⇐ [σ′]φ′B by I.H.
∆|n ++ Ψn ` λxm. [σ]φM ⇐ Πxm:[σ]φA[Γm]. [σ]φB by typing rule
∆|n ++ Ψn ` [σ]φλx

m.M ⇐ [σ]φΠxm:A[Γm]. B by definition

2. Similarly as for simultaneous substitutions.

The typing judgments are syntax-directed and therefore clearly decidable. Hereditary substitution
always terminates, giving us a decision procedure for dependent typing.

Theorem 11 (Decidability of Type Checking).
All judgments in the dependent contextual modal type theory are decidable.

Proof. The typing judgments are syntax-directed and therefore clearly decidable. Hereditary substitution
always terminates, giving us a decision procedure for dependent typing.
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3 Properties

3.1 Well-formed contexts

The following properties hold for well-formed contexts.

Lemma 12 (Cumulativity). If Ψ ` Φn ctx and n < k then Ψ ` Φk ctx.

Proof. By induction on the derivation of Ψ ` Φn ctx.

Lemma 13 (Closure under merging). If · ` Ψn ctx and · ` Φk ctx then · ` Ψn ++ Φk ctx.

Proof. Since they are well-formed, assumptions in Ψn,Φk are well-ordered with respect to variable lev-
els in the domains. This lemma follows from the invariants respected by the merge step in the mergesort
algorithm. The merge of two sorted lists is a sorted list. Moreover, merging is stable, in the sense that the
relative positions of any two assumptions in Ψn or in Φk is preserved in Ψn ++ Φk. Therefore Ψn ++ Φn

is well-formed.

Lemma 14 (Closure under chopping). If · ` Ψk ctx then · ` (Ψk|n)n.

Proof. By induction on the derivation of · ` Ψk.

Lemma 15 (Raising and lowering). Ψ ` Φ ctx if and only if · ` Ψ ++ Φ ctx.

Proof. By induction on the derivation of Ψ ` Φ ctx.

Lemma 16 (Weakening). If Ψ ` Φn ctx and Ψ′ ` Φ′k ctx then Ψ ++ Ψ′ ` Φn ++ Φ′k ctx.

3.2 Typing judgements

In this section, we implicitly assume all contexts are well-formed, by appeal to the properties of Sec-
tion 3.1 if needed.

Lemma 17 (Weakening).

1. If Ψ ` A⇐ s then Ψ ++ Φ ` A⇐ s.

2. If Ψ `M ⇐ A then Ψ ++ Φ `M ⇐ A.

3.3 Decidability of type checking

We finally state that type checking for multi-level contextual objects is decidable.

Theorem 18 (Decidability of type checking for multi-level contextual objects).
All typing judgments for multi-level contextual terms, types, substitutions, and contexts are decidable.

Proof. The typing judgments are syntax-directed and therefore clearly decidable. Hereditary substitution
operation is terminating, so are context merging and context chopping and both operations produce well-
formed contexts.
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4 Related Work

Multi-level logics of contexts Contextual reasoning has been extensively studied for various applica-
tions in AI. For example, Giunchiglia et al have explored contextual reasoning [9] and have investigated
a multi-language hierarchical logic where we have an infinite level of multiple distinct languages.

In [10] they introduce a class of multi-language systems which use a hierarchy of first-order lan-
guages, each language containing names of the language below. Any two adjacent languages in the
hierarchy are linked only by two bridge rules. The hierarchy is understood as an alternative to extend-
ing modal logics with new modalities. Their goal is to provide a foundation to the implementation of
“intelligent” reasoning systems. As the authors observe, we may use a different system to reason about
a object logic (which may rely on induction) vs reasoning within a given object logic. Indexes encode
information of the “locality of the reasoning”, where the reasoning take place. This is similar in spirit to
our use of level annotations on variables.

Multi-level meta-variables We motivated the multi-level system in the introduction with the need to
model the dependency of holes on bound variables as well as meta-variables. This naturally leads to a
multi-level system. This idea has played an important role in Sato et al [19] where the authors develop
a multi-level calculus for meta-variables. As in our work, variables carry an index to indicate whether
they are a bound variable, meta-variable, or a meta2-variable, etc. The main difference compared to our
work is that the authors define a “textual” substitution which allows capture. This is unlike our capture-
avoiding substitution operation. There are two main obstacles with textual substitutions. First, we will
lose confluence. The second problem is that some reductions may get stuck. To address these problems
the authors suggest to define reductions in such a way that it takes into account the different levels and
keep track of arities of functions. This leads to a carefully engineered system which is confluent and
strongly normalizing, although not very intuitive. We believe our framework is simpler.

Gabbay and Lengrand [6; 7] propose a multi-level calculus for meta-variables called the Lambda
Context Calculus where variables are modeled via nominals. They also define two different kinds of
substitutions: one, a capture-allowing substitution, i.e. a meta-variable of level n is allowed to capture
names below n and two, a captrue-avoiding substitution for variables greater than n. This inherently
leads to difficulaties regarding confluence. Our work has one uniform capture-avoiding substitution
operation leading to a more elegant calculus.

Finally, we mention the work by Geuvers and Jogjov (see for example [8]). Open terms are rep-
resented via a kind of meta-level Skolem function. However, in general reduction and instantiation of
meta-variables (or holes) do not commute. This problem also arises in Bognar and de Vrijer [3]. Our
work resolves many of these aforementioned problems, since reduction and instantiation naturally com-
mute and require no special treatment.

Functional multi-level staged computation The division of programs into two stages has been studied
intensively in partial evaluation and staged functional computation. Davies and Pfenning [4] proposed
the use of the modal necessity operator to provide a type-theoretic foundation for staged computation and
more specifically, run-time code generation. Abstractly, values of type �A stand for an (unevaluated)
source expression. To avoid generating closures, contextual types may be used to generate “open” (un-
evaluated) source expressions [14]. An open source expression would then have type A[Ψ] to describe
code of type A in a context Ψ.

However, this two-level framework does not allow us to specify multi-level transition points (e.g.
dynamic until stage n). For example, Glück and Jørgensen [12; 11] propose a multi-level specialization
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to allow an accurate and fast multi-level binding-time analysis. This means that a given program can be
optimized with respect to some inputs at an earlier stage, and others at later stages. Glück and Jørgensen
generalized two-level program generators into multi-level ones, called multi-level generating extensions.
By this generalization, a generated code fragment can be used for different levels. Subsequently, Yuse
and Igarashi [22] proposed a logical foundation for multi-level generating extensions based on linear
time temporal logics. We believe that our framework of multi-level contextual types may be used as an
alternative to generate open code which can be used at different levels and manage its dependency on
previous levels cleanly.

5 Conclusion

We generalized and extended the original contextual type theory of Nanevski et al [14], where we dis-
tinguish between meta-variables and bound variables, to multiple levels. This streamlines the original
presentation with fewer typing rules, syntax and operations but with many of the same properties. Sub-
stitutions are defined, checked applied and manipulated in exactly the same way as meta-substitutions,
for instance. We believe our framework provides already a suitable foundation for formalizing contexts
in theorem proving and functional programming. Unlike other attempts to provide a multi-level calculus,
we believe our work which is based on contextual modal types avoids and simplifies many of the issues
which arise such as capture-avoiding substitution and the related issues of confluence.

While we have used a named calculus for expository purposes, the system also generalizes nicely a
calculus based on de Bruijn indices and suspensions more typical of an implementation, such as that of
Abel and Pientka [1]. Variables are then pairs of indexes into a substitution inside a stack of substitutions.

We have shown that it is possible to express metak-terms in this generalized contextual type theory but
have left largely untouched the question of how to attach a computational behaviour to such objects and
compute with them. A first step towards representing computations is to move to a non-canonical calculus
that permits arbitrary (typed) terms, to which we could attach arbitrary rewrite rules as in deduction
modulo [5]. We could then add meaningful recursors to some of the layers to write proofs by induction,
or add more computational effects for a layer acting as a tactic layer for a programming and reasoning
system such as Beluga. We would obtain a uniform framework for all of representations of syntax, proofs
over these representations and tactics over these proofs. And indeed, such a system would be useful for
implementing Beluga within Beluga itself.
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Appendix

We give here the full definition of hereditary substitutions.

[Φ̂n.N/xn]α[φ](Πy
k:A[Ψk].B) = Πyk:A′[Ψ′k].B′ where [Φ̂n.N/xn]α[φ](B) = B′ and

[Φ̂n.N/xn]α[φ](A[Ψ]) = A′[Ψ′k] and k ≤ n
[Φ̂n.N/xn]α[φ](Πy

k:A[Ψk].B) = Πyk:A[Ψk].B′ where [Φ̂n.N/xn]α[φ](B) = B′ and k = n

and [Φ̂n.N/xn]α[φ](A[Ψk]) = A′[Ψ′k]

and yk 6∈ FV(Φ̂n.N).
[Φ̂n.N/xn]α[φ](Πy

k:A[Ψk].B) = Πyk:A[Ψk].B′ where [Φ̂n.N/xn]α[φ](B) = B′ and k > n

and yk 6∈ FV(Φ̂n.N).

[Φ̂n.N/xn]α[φ](P (Ψ̂k.M)) = P ′ (Ψ̂k.M ′) where [Φ̂n.N/xn]α[φ](P ) = P ′ and k ≤ n and
[Φ̂n.N/xn]α[φ](M) = M ′

[Φ̂n.N/xn]α[φ](P (Ψ̂k.M)) = P ′ (Ψ̂k.M) where [Φ̂n.N/xn]α[φ](P ) = P ′ and k > n and

[Φ̂n.N/xn]α[φ](P (Ψ̂k.M)) = N ′′ : β if [Φ̂n.N/xn]α[φ](P )=λyk. N ′:γ[ψ]→ β
where γ[ψ]→ β ≤ α[φ] and k ≤ n
and M ′ = [Φ̂n.N/xn]α[φ](M)

and N ′′ = [Ψ̂k.M ′/yk]γ[ψ](N
′)

[Φ̂n.N/xn]α[φ](P (Ψ̂k.M)) = N ′′ : β if [Φ̂n.N/xn]α[φ](P )=λyk. N ′:γ[ψ]→ β
where γ[ψ]→ β ≤ α[φ] and k > n

and N ′′ = [Ψ̂k.M/yk]γ[ψ](N
′)

[Φ̂n.N/xn]α[φ](a) = a

Figure 3: Single substitutions for types
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[Φ̂n.N/xn]α[φ](λy
k.M) = λyk.M ′ where [Φ̂n.N/xn]α[φ](M) = M ′ where k < n

[Φ̂n.N/xn]α[φ](λy
k.M) = λyk.M ′ where [Φ̂n.N/xn]α[φ](M) = M ′ where k ≥ n

and yk 6∈ FV(Φ̂n.N)

[Φ̂n.N/xn]α[φ](x
n[σ]) = N ′ : α where [Φ̂n.N/xn]α[φ](σ) = σ′ and

and [σ′]φ(N) = N ′

[Φ̂n.N/xn]α[φ](y
k[σ]) = yk[σ′] where yk 6= xn and [Φ̂n.N/xn]α[φ](σ) = σ′

[Φ̂n.N/xn]α[φ](R (Ψ̂k.M)) = R′ (Ψ̂k.M ′) where [Φ̂n.N/xn]α[φ](R) = R′ and k ≤ n and
[Φ̂n.N/xn]α[φ](M) = M ′

[Φ̂n.N/xn]α[φ](R (Ψ̂k.M)) = R′ (Ψ̂k.M) where [Φ̂n.N/xn]α[φ](R) = R′ and k > n and

[Φ̂n.N/xn]α[φ](R (Ψ̂k.M)) = N ′′ : β if [Φ̂n.N/xn]α[φ](R)=λyk. N ′:γ[ψ]→ β
where γ[ψ]→ β ≤ α[φ] and k ≤ n
and M ′ = [Φ̂n.N/xn]α[φ](M)

and N ′′ = [Ψ̂k.M ′/yk]γ[ψ](N
′)

[Φ̂n.N/xn]α[φ](R (Ψ̂k.M)) = N ′′ : β if [Φ̂n.N/xn]α[φ](R)=λyk. N ′:γ[ψ]→ β
where γ[ψ]→ β ≤ α[φ] and k > n

and N ′′ = [Ψ̂k.M/yk]γ[ψ](N
′)

[Φ̂n.N/xn]α[φ](c) = c

Figure 4: Single substitution for terms

[Φ̂n.N/xn]α[φ](·) = ·
[Φ̂n.N/xn]α[φ](σ, Ψ̂

k.M) = σ′, Ψ̂k.M ′ where [Φ̂n.N/xn]α[φ](σ) = σ′ and
[Φ̂n.N/xn]α[φ](M) = M ′ if k ≤ n

[Φ̂n.N/xn]α[φ](σ, Ψ̂
k.M) = σ′, Ψ̂k.M where [Φ̂n.N/xn]α[φ](σ) = σ′ if k > n

[Φ̂n.N/xn]α[φ](σ,4y
k) = σ′,4yk where [Φ̂n.N/xn]α[φ](σ) = σ′ and yk 6= xn

[Φ̂n.N/xn]α[φ](σ,4x
n) = σ′, Φ̂n.N where [Φ̂n.N/xn]α[φ](σ) = σ′

[Φ̂n.N/xn]α[φ](·) = ·
[Φ̂n.N/xn]α[φ](Ψ, y

k:A[Γk]) = Ψ′, yk:A′[Γ′k] where [Φ̂n.N/xn]α[φ](Ψ) = Ψ′

and [Φ̂n.N/xn]α[φ](A[Γk]) = A′[Γ′k]
if k ≤ n

Figure 5: Single substitution into simultanous substitutions
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[Φ̂n.N/xn]α[φ](·) = ·
[Φ̂n.N/xn]α[φ](Ψ, y

k:A[Γk]) = Ψ′, yk:A′[Γ′k] where [Φ̂n.N/xn]α[φ](Ψ) = Ψ′

and [Φ̂n.N/xn]α[φ](A[Γk]) = A′[Γ′k]
if k ≤ n

[Φ̂n.N/xn]α[φ](Ψ, y
k:A[Γk]) = Ψ, yk:A[Γk] if k > n.

[Φ̂n.N/xn]α[φ](Ψ, y
k:A[Γk]) = Ψ, yk:A[Γk] if k > n

Figure 6: Single Substitution for contexts
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Simultanous substitution into neutral terms

[σ]ψ(xn[τ ]) = yn[τ ′] if level(ψ) = m, m ≤ n, and τ ′ = [σ]ψ(τ)

[σ]ψ(xn[τ ]) = M ′ : α if level(ψ) = m, m > n, Φ̂n.M/xn ∈ σ/ψ,
xn:α[φ] ∈ ψ, τ ′ = [σ]ψ(τ) and M ′ = [τ ′]φ(M)

[σ]ψ(xn[τ ]) = yn[τ ′] if level(ψ) = m, m > n, 4yn/xn ∈ σ/ψ
and τ ′ = [σ]ψ(τ)

[σ]ψ(R (Φ̂n.N)) = R′ (Φ̂n.N) if level(ψ) = m, m ≤ n, [σ]ψ(R) = R′

[σ]ψ(R (Φ̂n.N)) = R′ (Φ̂n.N ′) if level(ψ) = m, m > n, [σ]ψ(R) = R′ and
[ σ|n ++ id(Φ̂n) ](ψ|n ++ φ)(N) = N ′

[σ]ψ(R (Φ̂n.N)) = M2 : α if level(ψ) = m, m > n,
[σ]ψ(R) = λyn.M ′ : β[φ]⇒ α for β[φ]⇒ α ≤ ψ
with N ′ = [ σ|n ++ id(Φ̂n) ](ψ|n ++ φ)(N)

and M2 = [Φ̂n.N ′/yn]β[φ](M
′)

[σ]ψ(R) fails otherwise

Simultanous substitution into normal terms

[σ]ψ(λyn. N) = λyn. N ′ if level(ψ) = m, m ≤ n, N ′ = [σ]ψ(N)
choosing y 6∈ FV(σ)

[σ]ψ(λyn. N) = λyn. N ′ if level(ψ) = m, m > n, N ′ = [σ,4yn]ψ ++ yn: (N)

choosing y 6∈ FV(σ) and y 6∈ ψ
[σ]ψ(R) = M if [σ]ψ(R) = M : α
[σ]ψ(R) = R′ if [σ]ψ(R) = R′

[σ]ψ(N) fails otherwise

Simultanous substitution into substitutions

[σ]ψ(·) = ·
[σ]ψ(τ, Φ̂n.N) = τ ′, Φ̂n.N if level(ψ) = m, m ≤ n, τ ′ = [σ]ψ(τ)

[σ]ψ(τ, Φ̂n.N) = τ ′, Φ̂n.N ′ if level(ψ) = m, m > n, τ ′ = [σ]ψ(τ)

and N ′ = [ σ|n ++ id(Φ̂) ](ψ|n ++ φ)(N)
[σ]ψ(τ,4xn) = τ ′,4xn if level(ψ) = m, m ≤ n, τ ′ = [σ]ψ(τ)

[σ]ψ(τ,4xn) = τ ′,4yn if level(ψ) = m, m > n, yn/xn ∈ σ/ψ
with τ ′ = [σ]ψ(τ)

[σ]ψ(τ,4xn) = τ ′, Φ̂n.N if level(ψ) = m, m > n, Φ̂n.N/xn ∈ σ/ψ
with τ ′ = [σ]ψ(τ)

[σ]ψ(τ) fails otherwise

Figure 7: Simultanous substitution for terms and substitutions



M. Boespflug & B. Pientka 27

Simultanous substitution into atomic types

[σ]ψ(a) = a

[σ]ψ(P (Φ̂n.N)) = P ′ (Φ̂n.N) if level(ψ) = m, m ≤ n, P ′ = [σ]ψ(P )

[σ]ψ(P (Φ̂n.N)) = P ′ (Φ̂n.N ′) if level(ψ) = m, m > n, P ′ = [σ]ψ(P )

and N ′ = [σ|n ++ id(Φ̂) ](ψ|n ++ φ)(N)
[σ]ψ(P ) fails otherwise

Simultanous substitution into non-atomic types

[σ]ψ(P ) = P ′ where P ′ = [σ]ψ(P )
[σ]ψ(Πxn:A[Φn]. B) = Πx:A[Φn]. B′ if level(ψ) = m, m ≤ n, B′ = [σ]ψ(B)

choosing xn 6∈ FV(σ)
[σ]ψ(Πxn:A[Φn]. B) = Πx:A′[Φ′]. B′ if level(ψ) = m, m ≤ n, Φ′ = [ σ ]ψ(Φn),

A′ = [ σ|n ++ id(Φ̂) ](ψ|n ++ φ)(A) and
B′ = [σ,4xn]ψ,xn:α[φ](B) where α[φ] = (A[Φ])−

choosing xn 6∈ FV(σ) and xn 6∈ ψ
[σ]ψ(A) fails otherwise

Simultanous substitution into context

[σ]ψ(·) = ·
[σ]ψ(Φn, xk:A[Γk]) = Φn, xk:A[Γk] if level(ψ) = m, m ≤ n
[σ]ψ(Φn, xk:A[Φk]) = Φ′n, xk:A′[Γ′k] if level(ψ) = m, m > n, Φ′ = [ σ ]ψ(Φn),

A′ = [ σ|n ++ id(Φ̂n|k) ++ id(Γ̂k) ](ψ|n ++ φ|k ++ γ)(A)

and Γ′k = [ σ|n ++ φn|k ](ψ|n ++ φn|k)Γ
k

Figure 8: Simultanous substitution for types and contexts
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