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Abstract
Functional Reactive Programming (FRP) models reactive systems
with events and signals, which have previously been observed to
correspond to the “eventually” and “always” modalities of linear
temporal logic (LTL). In this paper, we define a constructive vari-
ant of LTL with least fixed point and greatest fixed point opera-
tors in the spirit of the modal mu-calculus, and give it a proofs-as-
programs interpretation in the realm of reactive programs. Previ-
ous work emphasized the propositions-as-types part of the corre-
spondence between LTL and FRP; here we emphasize the proofs-
as-programs part by employing structural proof theory. We show
that this type system is expressive enough to enforce liveness prop-
erties such as the fairness of schedulers and the eventual deliv-
ery of results. We illustrate programming in this language using
(co)iteration operators. We prove type preservation of our opera-
tional semantics, which guarantees that our programs are causal.
We give also a proof of strong normalization which provides justifi-
cation that the language is productive and that our programs satisfy
liveness properties derived from their types.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications – Applicative (functional) lan-
guages

1. Introduction
Reactive programming seeks to model systems which react and
respond to input such as games, print and web servers, or user
interfaces. Functional reactive programming (FRP) was introduced
by Elliott and Hudak [13] to raise the level of abstraction for
writing reactive programs, particularly emphasizing higher-order
functions. Today FRP has several implementations [10–12, 31].
Many allow one to write unimplementable non-causal functions,
where the present output depends on future input, and space leaks
are all too common.

Recently there has been a lot of interest in type-theoretic foun-
dations for (functional) reactive programming [17, 20, 24–26] with
the intention of overcoming these shortcomings. In particular, Jef-
frey [17] and Jeltsch [20] have recently observed that Pnueli’s linear
temporal logic (LTL) [34] can act as a type system for FRP.

In this paper, we present a novel logical foundation for discrete
time FRP with (co)iteration operators which exploits the full ex-
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pressiveness afforded by the proof theory (i.e. the universal prop-
erties) for least and greatest fixed points, in the spirit of the modal
µ-calculus [23]. The “always”, “eventually” and “until” modalities
of LTL arise simply as special cases. We do this while still remain-
ing relatively conservative over LTL.

Moreover, we demonstrate that distinguishing between and in-
terleaving of least and greatest fixed points is key to statically guar-
antee liveness properties, i.e. something will eventually happen, by
type checking. To illustrate the power and elegance of this idea, we
describe the type of a fair scheduler – any program of this type is
guaranteed to be fair, in the sense that each participant is guaranteed
that his requests will eventually be served. Notably, this example
requires the expressive power of interleaving least fixed points and
greatest fixed points, a construction due to Park [33], and which is
unique to our system.

Our approach of distinguishing between least and greatest fixed
points and allowing for iteration and coiteration is in stark contrast
to prior work in this area: Jeffrey’s work [18, 19] for example
only supports less expressive combinators instead of the primitive
(co)recursion our system affords, and only particular instances of
our recursive types. Krishnaswami et al. employ a more expressive
notion of recursion, which entails unique fixed points [24–26]. This
means that their type systems are actually less expressive, in the
sense that they cannot guarantee liveness properties about their
programs. Our technical contributions are as follows:

• A type system which, in addition to enforcing causality (as in
previous systems [17, 25]), also enables one to enforce live-
ness properties; fairness being a particularly intruiging exam-
ple. Moreover, our type system forms a sound proof system for
LTL. While previous work [17] emphasized the propositions-
as-types component of the correspondence between LTL and
FRP, the present work additionally emphasizes the proof-as-
programs part of the correspondence through the lens of struc-
tural proof theory. Our type system bears many similarities to
Krishnaswami’s recent work [24]. The crucial difference lies in
the treatment of recursive types and recursion. Our work dis-
tinguishes between least and greatest fixed points, while Krish-
naswami’s work collapses them.
• A novel operational semantics which provides a reactive in-

tepretation of our programs. One can evaluate the result of a
program for the first n time steps, and in the next time step,
resume evaluation for the (n+ 1)st result. It allows one to eval-
uate programs one time step at a time. Moreover, we prove type
preservation of our language. As a consequence, our language
is causal: future inputs do not affect present results.
• A strong normalization proof using Tait’s method of saturated

sets which justifies that our programs are productive total func-
tions. It also demonstrates that our programs satisfy liveness
properties derived from their types. Notably, our proof tackles
the full generality of interleaving fixed points, and offers a novel
treatment of monotonicity.
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The paper is organized as follows: To illustrate the main idea,
limitations and power of our foundation, we give several examples
in Sec. 2. In particular, we elaborate the implementation of two fair
schedulers where our foundation statically guarantees that each re-
quest will eventually be answered. We then introduce the syntax
(Sec. 3) of our language which features (co)iteration operators and
explicit delay operators together with typing rules (Sec. 4). In Sec. 5
we describe the operational semantics and prove type preservation.
In Sec. 6, we outline the proof of strong normalization. In Sec. 7,
we discuss consequences of strong normalization and type preser-
vation, namely causality, liveness, and productivity. We conclude
with related work.

2. Examples
To illustrate the power of our language, we first present several
motivating examples using an informal ML or Haskell-like syntax.
For better readability we use general recursion in our examples, al-
though our foundation only provides (co)iteration operators. How-
ever, all the examples can be translated into our foundation straight-
forwardly and we subsequently illustrate the elaboration in Sec 3.

On the type level, we employ a type constructor© correspond-
ing to the “next” modality of LTL to describe data available in the
next time step. On the term level, we use the corresponding intro-
duction form • and elimination form let • x = e in e’ where
x is bound to the value of the expression e in the next time step.

2.1 The “always” modality
Our first example app produces a stream of elements of type B,
given a stream fs of functions of type A → B and a stream xs of
elements of type A by applying the nth function in fs to the nth
value in xs. Such streams are thought of as values which vary in
time.

Here we use the � type of LTL to describe temporal streams,
where the nth value is available at the nth time step. � A can be
defined in terms of the © modality as follows using a standard
definition as a greatest fixed point (a coinductive datatype).

codata � A = _::_ of A × © � A

� A has one constructor :: which is declared as an infix op-
erator and takes an A now and recursively a � A in the next time
step.

The functions hd and tl can then be defined, the only caveat
being that the type of tl expresses that the result is only available
in the next time step:

hd : � A → A
tl : � A → © � A

Finally, we can implement the app function as follows:

app : � (A → B) → � A → � B
app fs xs =

let • fs’ = tl fs
• xs’ = tl xs

in ((hd fs) (hd xs)) :: (• (app fs’ xs’))

We use the© elimination form, let • to bind the variables fs’
and xs’ to values of the remaining streams in the next time step.
Our typing rules will guarantee that fs’ and xs’ are only usable
underneath a •, which we will explain further in the following
examples.

Such a program is interpreted reactively as a process which,
at each time step, receives a function A → B and a value A and
produces a value B. More generally, given n functions A → B and
n values A, it can compute n values B.

2.2 The “eventually” modality
A key feature of our foundation is the distinction between least
fixed points and greatest fixed points. In other words, the distinction
between data and codata. This allows us to make a distinction
between events that may eventually occur and events that must
eventually occur. This is a feature not present in the line of work
by Krishnaswami and his collaborators, Benton and Hoffman [24–
26] – they have unique fixed points corresponding most closely to
our greatest fixed points.

To illustrate the benefits of having both, least and greatest fixed
points, we present here the definition of LTL’s ♦ operator (read:
“eventually”) as a data type, corresponding to a type of events in
reactive programming:

data ♦ A = Now of A | Later of© ♦ A

The function evapp below receives an event of type A and a
time-varying stream of functions A → B. It produces an event
of type B. Operationally, evapp waits for the A to arrive, applies
the function available at that time, and fires the resulting B event
immediately:

evapp : ♦ A → �(A → B) → ♦ B
evapp ea fs = case ea of
| Now x ⇒ Now ((hd fs) x)
| Later ea’ ⇒ let • ea’’ = ea’

• fs’ = tl fs
in Later (• (evapp ea’’ fs’))

This is not the only choice of implementation for this type. Such
functions could opt to produce a B event before the A arrives, or
even long after (if B is something concrete such as bool).

However, all functions with this type (in our system) have the
property that given that an A is eventually provided, it must eventu-
ally produce a B, although perhaps not at the same time. This is our
first example of a liveness property guaranteed by a type. This is in
contrast to the “weak eventually” modality present in other work,
which does not guarantee the production of an event.

It is interesting to note that this program (and all the other pro-
grams we write) can rightly be considered proofs of their corre-
sponding statements in LTL.

2.3 Abstract server
Here we illustrate an abstract example of a server whose type
guarantees responses to requests. This example is inspired by a
corresponding example in Jeffrey’s [19] recent work.

We wish to write a server which responds to two kinds of
requests: Get and Put with possible responses OK and Error. We
represent these:

data Req = Get | Put
data Resp = OK | Error

At each time step, a server specifies how to behave in the future
if it did not receive a request, and furthermore, if it receives a
request, it specifies how to respond and also how to behave in the
future. This is the informal explanation for the following server
type, expressed as codata (here, we use coinductive record syntax):

codata Server = {noreq : © Server,
some : Req → Resp × © Server}

Now we can write the server program which responds to Get
with OK and Put with Error:

server : Server
server = { noreq = • server,

some = λr. if isGet r
then (OK, • server)
else (Error, • server)}

Fair Reactive Programming - Long version 2 2013/7/19



Above, we say that if no request is made, we behave the same
in the next time step. If some request is made, we check if it is a
Get request and respond appropriately. In either case, in the next
time step we continue to behave the same way. More generally, we
could opt to behave differently in the next time step by e.g. passing
along a counter or some memory of previous requests.

It is clear that this type guarantees that every request must im-
mediately result in a response, which Jeffrey calls a liveness guar-
antee. In our setting, we reserve the term liveness guarantee for
something which has the traditional flavor of “eventually some-
thing good happens”. That is, they are properties which cannot be
falsified after any finite amount of time, because the event may still
happen. The present property of immediately providing a response
does not have this flavor: it can be falsified by a single request
which does not immediately receive a response. In our setting, live-
ness properties arise strictly from uses of inductive types (i.e. data,
or µ types) combined with the temporal © modality, which re-
quires something to happen arbitrarily (but finitely!) far into the
future.

2.4 Causality-violating (and other bad) programs
We wish to disallow programs such as the following, which has the
effect of pulling data from the future into the present; it violates
a causal interpretation of such programs. Moreover, its type is
certainly not a theorem of LTL for arbitrary A!

predictor : © A → A
predictor x = let • x’ = x in x’

−− does not typecheck

Our typing rules disallow this program roughly by restricting
variables bound under a • to only be usable under a •, in much the
same way as Krishnaswami [24].

Similarly, the type ©(A + B) expresses that either an A or a
B is available in the next time step, but it is not known yet which
one it will be. Hence we disallow programs such as the following
by disallowing case analysis on something only available in the
future:

predictor : ©(A + B) → © A + © B
predictor x = let • x’ = x in

case x’ of −− does not typecheck
| inl a ⇒ inl (• a)
| inr a ⇒ inr (• b)

Such a program would tell us now whether we will receive an A
or a B in the future. Again this violates causality. Due to this inter-
pretation, there is no uniform inhabitant of this type, despite being
a theorem of classical LTL. Similarly,©⊥ → ⊥ is uninhabited in
our system; one cannot get out of doing work today by citing the
end of the world tomorrow.

Although it would be harmless from the perspective of causality,
we disallow also the following:

import : A → © A
import x = • x −− does not typecheck

This is disallowed on the grounds that it is not uniformly a theo-
rem of LTL. Krishnaswami and Benton allow it in [25], but disallow
it later in [26] to manage space usage. Syntactically, this is accom-
plished by removing from scope all variables not bound under a •
when moving under a •. However, some concrete instances of this
type are inhabited, for example the following program which brings
natural numbers into the future:

import : Nat → © Nat
import Zero = • Zero
import (Succ n) = let • n’ = import n

in •(Succ n’)

Our language does not have Nakano’s guarded recursion [16]
fix : (© A → A) → A because it creates for us undesirable
inhabitants of inductive types (inductive types collapse into coin-
ductive types). For example, the following would be an undesirable
inhabitant of ♦A in which the A is never delivered:

never : ♦ A
never = fix (λx. Later x) −− disallowed

Finally, the following program which attempts to build a con-
stant stream cannot be elaborated into the formal language. While
it is guarded, we must remove all local variables from scope in
the bodies of recursive definitions, so the occurrence of x is out of
scope.

repeat : A → � A
repeat x = xs

where xs = x :: •xs −− x out of scope !

This is intentional – the above type is not uniformly a theorem of
LTL, so one should not expect it to be inhabited. As Krishnaswami
et al. [26] illustrate, this is precisely the kind of program which
leads to space leaks.

2.5 Fair scheduling
Here we define a type expressing the fair interleavings of two
streams, and provide examples of fair schedulers employing this
type – this is the central example illustrating the unique power
of the presented system. This is enabled by our system’s ability
to properly distinguish between and interleave least and greatest
fixed points (i.e. data and codata). Other systems in the same vein
typically collapse least fixed points into greatest fixed points or
simply lack the expressiveness of recursive types.

First we require the standard “until” modality of LTL, written A
U B. This is a sequence of As, terminated with a B. In the setting

of reactive programming, Jeltsch [21] calls programs of this type
processes – they behave as time-varying signals which eventually
terminate with a value.

data A U B = Same of A × (© (A U B))
| Switch of B

Notably, since this is an inductive type, the B must eventually
occur. The coinductive variant is “weak until”; the B might never
happen, in which case the As continue forever.

We remark that without temporal modalities, A U B is isomor-
phic to (List A) × B, but because of the©, it matters when the
B happens.

We define also a slightly stronger version of “until” which
requires at least one A, which we write A Û B.

type A Û B = A × © (A U B)

We characterize the type of fair interleavings of a stream of A
s and Bs as some number of As until some number of Bs (at least
one), until an A, and the process restarts. This is fair in the sense
that it guarantees infinitely many As and infinitely many Bs. As a
coinductive type:

codata Fair A B =

In of (A U (B Û (A × ©(Fair A B))))

This type corresponds to the Büchi automaton in Figure 1. With
this type, we can write the type of a fair scheduler which takes a
stream of As and a stream of Bs and selects from them fairly. Here
is the simplest fair scheduler which simply alternates selecting an
A and B:

sched : � A → � B → Fair A B
sched as bs =
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Figure 1. Scheduler automaton.

let • as’ = tl as
• bs’ = tl bs

in
In (Switch (hd bs,
• (Switch (hd as’,
let • as’’ = tl as’
• bs’’ = tl bs’

in • (sched as’’ bs’’)))))

The reader may notice that this scheduler drops the As at odd
position and the Bs at even position. This could be overcome if one
has import for the corresponding stream types, but at the cost of a
space leak.

as : a a a a a a a a a a a a a a

bs : b b b b b b b b b b b b b b

However, this “dropping” behaviour could be viewed positively:
in a reactive setting, the source of the A requests could have the
option to re-send the same request or even modify the previous
request after observing that the scheduler decided to serve a B
request instead.

Next we illustrate a more elaborate implementation of a fair
scheduler which serves successively more As each time before
serving a B. Again the type requires us to eventually serve a B.

as : a a a a a a a a a a a a a a

bs : b b b b b b b b b b b b b b

We will need a special notion of “timed natural numbers” to
implement the countdown. In the Succ case, the predecessor is only
available in the next time step:

data TNat = Zero | Succ (© TNat)

We can write a function which imports TNats:

import : TNat → © TNat

The scheduler is implemented in Figure 2. It involves two mutu-
ally recursive functions: cnt is structurally decreasing on a TNat,
counting down how many As to produce, while the recursive call to
sch2’ is guarded by the necessary Switchs to guarantee produc-
tivity, and increments the number of As served the next time. sch2
kicks off the process starting with zero As.

To understand why type TNat is necessary, we note cnt is struc-
turally decreasing on its first argument. This requires the immediate
subterm n’ to be available in the next step, not the current.

The important remark here is that these schedulers can be seen
to be fair simply by virtue of typechecking and termination/pro-
ductivity checking. More precisely, this is seen by elaborating the
program to use the (co)iteration operators available in the formal
language, which we illustrate in the next section.

mutual
cnt : TNat → TNat → � A → � B

→ (A U (B Û (A × © (Fair A B))))
cnt n m as bs =

let • m’ = import m
• as’ = tl as
• bs’ = tl bs

in
case n of
| Zero ⇒
Switch (hd bs, • (Switch (hd as’,
let • m’’ = import m’
• as’’ = tl as’
• bs’’ = tl bs’

in
• (sch2’ (Succ (import m’’)) as’’ bs’’)))

| Succ p ⇒ let • n’ = p in
Same (hd as, (• (cnt n’ m’ as’ bs’)))

and
sch2’ : TNat → � A → � B → Fair A B
sch2’ n as bs = In (cnt n n as bs)

−−Main function
sch2 : � A → � B → Fair A B
sch2 as bs = sch2’ Zero as bs

Figure 2. Fair scheduler

3. Syntax
The formal syntax for our language (Figure 3) includes conven-
tional types such as product types, sum types and function types.
Additionally the system has the ©A modality for values which
will have the type A in the next step and least and greatest fixed
points, µ and ν types. Our convention is to write the lettersA,B,C
for closed types, and F,G for types which may contain free type
variables.

TypesA,B, F,G ::= 1 | F × G | F + G | A→ F |
©F | µX.F | νX.F | X

Terms M,N ::= x | () | (M,N) | fstM | sndM |
| inlM | inrM | caseM of inl x 7→ N | inr y 7→ N ′

| λx.M |MN | •M | let • x = M in N | inj M
| iterX.F (x.M)N | out M | coitX.F (x.M)N
| map (∆.F ) η M

Contexts Θ,Γ ::= · | Γ, x :A
Kind Contexts ∆ ::= · | ∆, X : ∗
Type substitutions ρ ::= · | ρ, F/X
Morphisms η ::= · | η, (x.M)/X

Figure 3. LTL Syntax

Our term language is mostly standard and we only discuss
the terms related to © modality and the fixed points, µ and ν.
•M describes a term M which is available in the next time step.
let • x = M in N allows us to use the value of M which is avail-
able in the next time step in the bodyN . Our typing rules will guar-
antee that the variable only occurs under a •. Our language also in-
cludes iteration operator iterX.F (x.M)N and coiteration operator
coitX.F (x.M)N . Intuitively, the first argument x.M corresponds
to the inductive invariant while N specifies how many times to un-
roll the fixed point. The introduction form for µ types is inj M ,
rolling up a term M . The elimination form for ν types is out M ,
unrolling M .
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We note that the X.F annotations on iter and coit play a key
role during runtime, since the operational semantics of map are
defined using the structure of F (see Sec. 5). We do not annotate
λ abstractions with their type because we are primarily interested
in the operational behaviour of our language, and not e.g. unique
typing. The term map (∆.F ) η N witnesses that F is a functor,
and is explained in more detail in the next sections.

Our type language with least and greatest fixed points is expres-
sive enough that we can define the always and eventual modality
e.g.:

�A ≡ νX.A × ©X
♦A ≡ µX.A +©X

The definition of �A expresses that when we unfold a �A,
we obtain a value of type A (the head of the stream) and another
stream in the next time step. The definition of ♦A expresses that
in each time step, we either have a value of type A now or a
postponed promise for a value of type A. The use of the least fixed
point operator guarantees that the value is only postponed a finite
number of times. Using a greatest fixed point would permit always
postponing and never providing a value of type A.

We can also express the fact that a value of type A occurs in-
finitely often by using both great and least fixed points. Tradition-
ally one expresses this by combining the always and eventually
modalities, i.e.�♦A. However, there is another way to express this,
namely:

inf A ≡ νX.µY.(A×©X +©Y )

In this definition, at each step we have the choice of making
progress by providing an A or postponing until later. The least
fixed point implies that one can only postpone a finite number
of times. The two definitions are logically equivalent, but have
different constructive content – they are not isomorphic as types.
Intuitively, �♦A provides, at each time step, a handle on an A to
be delivered at some point in the future. It can potentially deliver
several values of type A in the same time step. On the other hand,
infA can provide at most one value of type A at each time step.
This demonstrates that the inclusion of general µ and ν operators
in the language (in lieu of a handful of modalities) offers more fine-
grained distinctions constructively than it does classically. We show
here also the encoding of Server, A U B, A Û B and FairAB
which we used in the examples in Sec. 2.

Server ≡ νX.©X × (Req→ Resp × ©X)
A U B ≡ µX.(B + A × ©X)

A Û B ≡ A × ©(A U B)

FairAB ≡ νX.(A U (B Û (A × ©X)))

Finally, to illustrate the relationship between our formal lan-
guage which features (co)iteration operators and the example pro-
grams which were written using general recusion, we show here the
program app in our foundation. Here we need to use the pair of fs
and xs as the coinduction invariant:

app : �(A→ B)→ �A→ �B
app fs xs ≡ coitX.B×©X (x.

let • fs′ = tl (fst x) in

let • xs′ = tl (snd x) in

( (hd (fst x)) (hd (snd x)) , •(fs′, xs′) )
) (fs, xs)

In the formal language, evapp becomes the following

Well-formedness of types: ∆ ` F : ∗

∆ ` 1 : ∗
∆ ` F : ∗ ∆ ` G : ∗

∆ ` F ×G : ∗
∆ ` F : ∗ ∆ ` G : ∗

∆ ` F +G : ∗

· ` A : ∗ ∆ ` F : ∗
∆ ` A→ F : ∗

∆, X : ∗ ` F : ∗
∆ ` µX.F : ∗

∆, X : ∗ ` F : ∗
∆ ` νX.F : ∗

∆ ` F : ∗
∆ ` ©F : ∗

(X : ∗) ∈ ∆

∆ ` X : ∗

Figure 4. Well-formed types

Typing Rules for→, ×, +, 1

Θ; Γ, x :A `M :B

Θ; Γ ` λx.M :A→ B

Θ; Γ `M :A→ B Θ; Γ ` N :A

Θ; Γ `MN :B

x :A ∈ Γ

Θ; Γ ` x :A Θ; Γ ` () :1

Θ; Γ `M :A Θ; Γ ` N :B

Θ; Γ ` (M,N) :A × B

Θ; Γ `M :A × B
Θ; Γ ` fstM :A

Θ; Γ `M :A × B
Θ; Γ ` sndM :B

Θ; Γ `M :A

Θ; Γ ` inlM :A + B

Θ; Γ ` N :B

Θ; Γ ` inr N :A + B

Θ; Γ `M :A + B Θ; Γ, x :A ` N1 :C Θ; Γ, y :B ` N2 :C

Θ; Γ ` caseM of inl x 7→ N1 | inr y 7→ N2 :C

Rules for© modality and least and greatest fixed points

·; Θ `M :A

Θ; Γ ` •M :©A
Θ; Γ `M :©A Θ, x :A; Γ ` N :C

Θ; Γ ` let • x = M inN :C

Θ; Γ `M : [µX.F/X]F

Θ; Γ `inj M :µX.F

·;x : [C/X]F `M :C Θ; Γ ` N :µX.F

Θ; Γ `iterX.F (x.M)N:C

·;x :C `M : [C/X]F Θ; Γ ` N :C

Θ; Γ `coitX.F (x.M)N:νX.F

Θ; Γ `M :νX.F

Θ; Γ `out M : [νX.F/X]F

∆ ` F : ∗ Θ; Γ `M : [ρ1]F ρ1 ` η : ρ2

Θ; Γ ` map (∆.F ) η M : [ρ2]F

Typing Rules for morphisms: ρ1 ` η : ρ2

ρ1 ` η :ρ2 ·;x : A `M : B

ρ1, A/X ` η, (x.M)/X : ρ2, B/X · ` · : ·

Figure 5. Typing Rules

evapp : ♦A→ �(A→ B)→ ♦B
evapp ≡ λea. iter�(A→B)→♦B

X.A+©X (y.
case y of
|inl x 7→ λfs. inl( (hd fs) x )
|inr frec 7→ λfs.

let • frec′ = frec in

let • fs′ = tl fs in

inr (• (frec′ fs′) )
) ea

4. Type System
We define well-formed types in Fig. 4. In particular, we note that
free type variables cannot occur to the left of a→. That is to say, we
employ a strict positivity restriction, in contrast to Krishnaswami’s
guardedness condition [24].
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We give a type assignment system for our language in Fig. 5
where we distinguish between the context Θ which provides types
for variables which will become available in the next time step (i.e.
when going under a •) and the context Γ which provides types
for the variables available at the current time. The main typing
judgment, Θ; Γ ` M : A asserts that M has type A given the
context Θ and Γ.

In general, our type system is similar to that of Krishnaswami
and collaborators. While in their work, the validity of assumptions
at a given time step is indicated either by annotating types with a
time [25] or by using different judgments (i.e. now, later, stable)
[24], we separate assumptions which are valid currently from the
assumptions which are valid in the next time step via two different
contexts. We suggest that keeping assumptions at most one step into
the future models the practice of reactive programming better than
a general time-indexed type system. Much more importantly, our
foundation differs in the treatment of recursive types and recursion.

Most rules are standard. When traversing λx.M , the variable is
added to the context Γ describing the fact that x is available in the
current time step. Similarly, variables in each of the branches of the
case-expression, are added to Γ.

The interesting rules are the ones for © modality and fixed
points µ and ν. In the rule I©, the introduction rule for © with
corresponding constructor •, provides a term to be evaluated in the
next time step. It is then permitted to use the variables promised in
the next time step, so the assumptions in Θ move to the “available”
position, while the assumptions in Γ are no longer available. In fact,
the variables in Θ remain inaccessible until going under a • – this
is how causality is enforced. Our motivation for forgetting about
current assumptions Γ and not allowing them to persist is that we
wish to obtain a type system which is sound for LTL. Allowing
Γ to persist would make the unsound A → ©A easily derivable.
In the work of Krishnaswami et. al [26], forgetting about current
assumptions plays a key role in managing space usage.

The corresponding elimination form let • x = M in N simply
adds x:A, the type of values promised by M , to the context Θ and
we continue to check the body N allowing it to refer to x under a
•.

The elimination form for µ is an iteration operator iter. Exam-
ining an instantiation of this rule for Nat ≡ µX.1 +X may help to
clarify this rule:

· ; x : 1 + C `M : C Θ; Γ ` N : µX.1 +X

Θ; Γ `iterX.1+X (x.M)N : C

The term M contains the base case and the step case (M will
typically be a case analysis on x), while N specifies how many
times to iterate the step case of M starting at the base case of M .
For example, we illustrate here the doubling function on natural
numbers written using this iteration operator. We write 0 for the
term inj (inl()) and suc m for the term inj (inrm).

db = iterX.1+X(x.casex of inl y 7→ 0
| inr w 7→ suc(suc w))

double = λx:Nat.db x

We note that dropping Θ and Γ in the first premise is essential.
Intuitively, the bodies of recursive definitions need to be used at
arbitrary times, while Γ and Θ are only available for the current and
next time steps, respectively. This is easiest to see for the coit rule,
where keeping Γ allows a straightforward derivation of A → �A
(repeat), which is unsound for LTL and easily produces space
leaks. Similarly, keeping Γ in the iter rule allows one to derive the
unsound A→ ♦B → A U B which says that if A holds now, and
B eventually holds, then A in fact holds until B holds.

unsound : A→ ♦B → A U B
unsound ≡ λa. λeb. iterX.B+©X (y.

case y of
|inl b 7→ inj (inl b)
|inr u 7→ inj (inr (a, u)) – a out of scope!

) eb
The typing rules for µ and ν come directly from the universal

properties of initial algebras and terminal coalgebras. The reader
may find it clarifying to compare these rules to the universal prop-
erties, depicted here:

F (µF ) F (C)

µF C

inj f

F (iterf)

iter f

C νF

F (C) F (νF )

f out

coitf

F (coitf)

We remark that the primitive recursion operator below can be
derived from our (co)iteration operators in the standard way, so we
do not lose expressiveness by only providing (co)iteration. One can
similarly derive a primitive corecursion operator.

·;x : [C × µX.F/X]F `M :C Θ; Γ ` N :µX.F

Θ; Γ ` recX.F (x.M) N :C

The term map (∆.F ) η M witnesses that F is a functor. It
has the effect of applying the transformations specified by η at the
positions in M specified by F . It is a generic program defined on
the structure of F . While this term is definable at the meta-level
using the other terms in the language, we opt to include it in our
syntax, because doing so significantly simplifies the operational
semantics and proof of normalization. In this term, ∆ binds the
free variables of F . It is illustrative to consider the case where
F (Y ) = list Y = µX.1 + Y × X . If y : A ` M : B and
N : list A, then map (Y. list Y ) ((y. M)/Y ) N : list B. In this
case, map implements the standard notion of map on lists!

We define two notions of substitution: substitution for a “cur-
rent” variable, written [N/x]M , and substitution for a “next” vari-
able, written [N/x]•M . The key case in their definition is the
case for •M . For current substitution [N/x](•M), in well-scoped
terms, x cannot occur in M , so we define:

[N/x](•M) = •M
For next substitution [N/x]•(•M), in the body of M , x be-

comes a current variable, so we can defer to current substitution,
defining:

[N/x]•(•M) = •([N/x]M)

These definitions are motivated by the desire to obtain tight
bounds on how substitution interacts with the operational semantics
without having to keep typing information to know that terms
are well-scoped. These substitutions satisfy the following typing
lemmas.

Lemma 1. Substitution Typing

1. If Θ; Γ, x:A `M : B and Θ; Γ ` N : A
then Θ; Γ ` [N/x]M : B

2. If Θ, x:A; Γ `M : B and ·; Θ ` N : A
then Θ; Γ ` [N/x]•M : B

5. Operational Semantics
Next, we define a small-step operational semantics for our language
using evaluation contexts. Since we allow full reductions, a redex
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Ek+1 ::= •Ek
Ek ::= Ek N |M Ek | fst Ek | snd Ek | (Ek,M) | (M, Ek)

| λx.Ek | case Ek of inl x 7→ N | inr y 7→ N ′

| inl Ek | caseM of inl x 7→ Ek | inr y 7→ N
| inr Ek | caseM of inl x 7→ N | inr y 7→ Ek
| let • x = Ek in N | let • x = M in Ek | inj Ek
| iterX.F (x.M) Ek | coitX.F (x.M) Ek
| out Ek | map (∆.F ) η Ek

E0 ::= []

Figure 6. Evaluation contexts

(λx.M) N −→ [N/x]M
fst(M,N) −→ M
snd(M,N) −→ N
case (inlM) of inl x 7→ N1 | inr y 7→ N2 −→ [M/x]N1

case (inrM) of inl x 7→ N1 | inr y 7→ N2 −→ [M/y]N2

let • x = •M in N −→ [M/x]•N
iterX.F (x.M) (inj N) −→

[map (X.F ) ((y. iterX.F (x.M) y)/X) N/x]M
out (coitX.F (x.M)N) −→

map (X.F ) ((y. coitX.F (x.M) y)/X) ([N/x]M)

Figure 7. Operational Semantics

can be under a binder and in particular may occur under a ©
modality. We define evaluation contexts in Fig. 6. We index an
evaluation context Ek by a depth k which indicates how many ©
modalities we traverse. Intuitively, the depth k tells us how far we
have stepped in time - or to put it differently, at our current time, we
know that we have at most taken k time steps and therefore terms
under k© modalities are available to us now.

Single step reduction is defined on evaluation contexts at a time
α < ω+ 1 (i.e. either α ∈ N or α = ω) and states that we can step
Ek[M ] to Ek[N ] where M is a redex occurring at depth k where
k ≤ α and M reduces to N . More precisely, the reduction rule
takes the following form:

M −→ N
Ek[M ] α Ek[N ]

if k ≤ α

If α = 0, then we are evaluating all redexes now and do not
evaluate terms under a© modality. If we advance to α = 1, we in
addition need to contract all redexes at depth 1, i.e. terms occurring
under one •, and so on. At α = ω, we are contracting all redexes
under any number of •. We have reached a normal form at time α
if for all k ≤ α all redexes at depth k have been reduced and no
further reduction is possible.

The contraction rules for redexes (see Fig. 7) are mostly
straightforward - the only exceptions are the iteration and coit-
eration rules. If we make an observation about a corecursive value
by (out (coitX.F (x.M)N)), then we need to compute one obser-
vation of the resulting object using M , and explain how to make
more observations at the recursive positions specified by F . Du-
ally, if we unroll an iteration (iterX.F (x.M) (inj N)), we need to
continue performing the iteration at the recursive positions of N
(the positions are specified by F ), and reduce the result using M .

Performing an operation at the positions specified by F is ac-
complished with map, which witnesses that F is a functor. The op-
erational semantics of map are presented in Fig. 8. They are driven
by the type F . Most cases are straightforward and more or less
forced by the typing rules. The key cases, and the reason for putting
map in the syntax in the first place, are those for µ and ν. For µ,

we reduce N until it is of the form inj N . At which point, we can
continue applying η insideN , where now at the recursive positions
specified by Y we need to continue recursively applying map. The
case for ν is similar, except it is triggered when we demand an ob-
servation with out.

We remark that we do not perform reductions inside the bodies
of iter, coit, and map, as these are in some sense timeless terms
(they will be used at multiple points in time), and it is not clear how
our explictly timed notion of operational semantics could interact
with these. We sidestep the issue by disallowing reductions inside
these bodies.

To illustrate the operational semantics and the use of map, we
consider an example of a simple recursive program: doubling a
natural number.

Example We revisit here the program double which multiplies a
given natural number by two given in the previous section. Recall
the following abbreviations for natural numbers: 0 =inj (inl()),
suc w =inj (inr w), 1 = suc 0, etc.

Let us first compute double 0.

double 0
−→ db (inj (inl ())
−→ caseM0 of inl y 7→ 0 | inr w 7→ suc (suc w)

where
M0 = map (1 +X) (y.db y/X) (inl ())

−→∗ case (inl()) of inl v 7→ inl() | inr u 7→ inr(db u)

−→∗ case (inl ()) of inl y 7→ 0 | inr w 7→ suc (suc w)
−→ 0

We now compute double 1

double 1
−→ db (inj (inr 0))
−→ caseM1 of inl y 7→ 0 | inr w 7→ suc (suc w)

where
M1 = map (1 +X) (y.db y/X) (inr 0)

−→∗ case (inr 0) of inl v 7→ inl() | inr u 7→ inr(db u)

−→∗ case (inr(db 0)) of inl y 7→ 0 | inr w 7→ suc (suc w)
−→∗ case (inr 0) of inl y 7→ 0 | inr w 7→ suc (suc w)
−→ suc (suc 0) = 2

We have the following type soundness result for our operational
semantics:

Theorem 2 (Type Preservation). For any α, if M  α N and
Θ; Γ `M : A then Θ; Γ ` N : A

Observe that after evaluating M  ∗n N , where N is in normal
form, one can then resume evaluation N  ∗n+1 N ′ to obtain
the culmulative result available at the next time step. One may
view this as restarting the computation, aiming to compute the
result up to n + 1, but with the results up to time n memoized.
In practical implementations, one is typically only concerned with
 0 (see below), however considering the general α gives us the
tools to analyze programs from a more global viewpoint, which is
important for liveness guarantees.

Our definition of substitution is arranged so that we can prove
the following bounds on how substitution interacts with , which
are important in our proof of strong normalization. Notice that these
are independent of any typing assumptions.

Proposition 3.

1. If N  α N
′ then [N/x]M  ∗α [N ′/x]M

2. If M  α M
′ then [N/x]M  α [N/x]M ′

3. If N  n N
′ then [N/x]•M  ∗n+1 [N ′/x]•M
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map (∆. X) η N −→ [N/x]M if η(X) = x.M
map (∆. 1) η N −→ ()
map (∆. F × G) η N −→ (map (∆. F ) η (fstN),map (∆. G) η (sndN))

map (∆. F + G) η N −→ caseN of inl y 7→ inl(map (∆. F ) η y)
| inr z 7→ inr(map (∆. G) η z)

map (∆. A→ F ) η N −→ λy.map (∆. F ) η (N y)

map (∆. © F ) η N −→ let • y = N in • map (∆. F ) η y

map (∆. µY.F ) η (inj N) −→ inj (map (∆, Y. F ) (η, (x. map (∆. µY.F ) η x)/Y ) N)

out (map (∆. νY.F ) η N) −→ map (∆, Y. F ) (η, (x. map (∆. νY.F ) η x)/Y ) (out N)

Figure 8. Operational semantics of map

4. If N  ω N
′ then [N/x]•M  ∗ω [N ′/x]•M

5. If M  α M
′ then [N/x]•M  α [N/x]•M ′

Our central result is a proof of strong normalization for our
calculus which we prove in the next section.

6. Strong Normalization
In this section we give a proof of strong normalization for our
calculus using the Girard-Tait reducibility method [14, 15, 36].
In our setting, this means we prove that for any α ≤ ω, every
reduction sequence M  α ... is finite, for well-typed terms M .
This means that one can compute the approximate value of M up
to time α. In fact, this result actually gives us more: our programs
are suitably causal using normalization at 0, and the type of a
program gives rise to a liveness property which it satisfies, using
normalization at ω. Our logical relation is in fact a degenerate form
of Kripke logical relation, as we index it by an α ≤ ω to keep track
of how many time steps we are normalizing. It is degenerate in that
the partial order we use on ω + 1 is discrete, i.e. α ≤ β precisely
when α = β. It is not step-indexed because our strict positivity
condition on µ and ν means we can interpret them without the aid
of step indexing.

This proof is made challenging by the presence of interleaving µ
and ν types and (co)iteration operators. This is uncommon, but has
been treated before by Matthes [29] as well as Abel and Altenkirch
[2]. Others have considered non-interleaving cases or with other
forms of recursion, such as Mendler [30] and Jouannaud and Okada
[22]. To our knowledge, ours is the first such proof which treats
map as primitive syntax with reduction rules instead of a derivable
operation, which we find simplifies the proof substantially as it
allows us to consider map independently of iter and coit in the
proof.

We use a standard inductive characterization of strongly nor-
malizing:

Definition 4 (Strongly normalizing). We define sn as the inductive
closure of:

∀M ′,M  α M
′ =⇒M ′ ∈ snα

M ∈ snα
We say M is strongly normalizing at α if M ∈ snα.

It is immediate from this definition that if M ∈ snα and
M  α M

′ then M ′ ∈ snα. Since this is an inductive definition,
it affords us a corresponding induction principle: To show that a
property P holds of a termM ∈ snα, one is allowed to assume that
P holds for all M ′ such that M  α M

′. One can easily verify by
induction that if M ∈ snα then there are no infinite α reduction
sequences rooted at M .

For our proof, we use Tait’s saturated sets instead of Girard’s
reducibility candidates, as this allows us to perform the syntactic

analysis of redexes separate from the more semantic parts of the
proof. This technique has been used by Luo [28], Altenkirch [4],
and Matthes [29].

In the following, we will speak of indexed sets, by which we
mean a subset of terms for each α ≤ ω, i.e. A : ω + 1→ P(tm),
where we write tm for the set of all terms. We overload the notation
⊆, ∩, and ∪ to mean pointwise inclusion, intersection, and union.
That is, if A and B are indexed sets, we will write A ⊆ B to mean
Aα ⊆ Bα for all α.

Definition 5. We define the following next step operator on indexed
sets A : ω + 1→ P(tm):

(I A)0 ≡ tm
(I A)m+1 ≡ Am
(I A)ω ≡ Aω

The motivation for this is that it explains what happens when
we go under a • – we are now interested in reducibility under one
fewer •.

In Figure 9 we define a notion of normalizing weak head reduc-
tion. We write M �α M ′ for a contraction, and M _α N for
a contraction occuring under a weak head context. This is a weak
head reduction where every term which may be lost along the way
(e.g. by a vacuous substitution) is required to be strongly normaliz-
ing. This is a characteristic ingredient of the saturated set method.
It is designed this way so as to (backward) preserve strong normal-
ization. The intuition is that weak head redexes are unavoidable –
reducing other redexes can only postpone a weak head reduction,
not eliminate it. We define below weak head reduction contexts and
normalizing weak head reduction.

H ::= [] | fstH | sndH | HN | iterX.F (x.M) H
| map (∆. µX.F ) η H | out H | let • x = H in N
| caseH of inl x 7→ N1 | inr y 7→ N2

M �α M
′

H[M ] _α H[M ′]

Lemma 6. snα is backward closed under normalizing weak head
reduction: If M ′ ∈ snα and M _α M

′ then M ∈ snα

Proof. We consider each redex in the definition of _. The proofs
are by lexicographic induction on the derivations of snα. We show
some of the cases of interest:

(1) We show by lexicographic induction, first on N ∈ snα and
second onH[[N/x]M ] ∈ snα thatH[(λx.M)N ] ∈ snα.

We must show that every M ′ such that H[(λx.M)N ]  α M
′

is in snα. So we analyze the waysH[(λx.M)N ] can reduce:
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N ∈ snα
(λx.M) N �α [N/x]M

N ∈ snα
fst(M,N)�α M

M ∈ snα
snd(M,N)�α N

N ∈ (I sn)α

(let • x = •N inM)�α [N/x]•M

M ∈ snα N2 ∈ snα
case (inlM) of inl x 7→ N1 | inr y 7→ N2 �α [M/x]N1

M ∈ snα N1 ∈ snα
case (inrM) of inl x 7→ N1 | inr y 7→ N2 �α [M/y]N2

N ∈ snα
iterX.F (x.M) (inj N) �α [map F (y. iterX.F (x.M) y /X) N /x]M

N ∈ snα
(out (coitX.F (x.M)N))�α map F (y. coitX.F (x.M) y) ([N/x]M)

η(X) = x.M N ∈ snα
map (∆. X) η N �α [N/x]M

N ∈ snα
map (∆. 1) η N �α ()

map (∆. F × G) η N �α (map (∆. F ) η (fstN),map (∆. G) η (sndN))

map (∆. F + G) η N �α caseN of inl y 7→ inl(map (∆. F ) η y)| inr z 7→ inr(map (∆. G) η z)

map (∆. A→ F ) η N �α λy.map (∆. F ) η (N y)

map (∆. © F ) η N �α let • y = N in • (map (∆. F ) η y)

map (∆. µY.F ) η (inj N)�α inj (map (∆, Y. F ) (η, (x. map (∆. µY.F ) η x)/Y ) N)

out (map (∆. νY.F ) η N)�α map (∆, Y. F ) (η, (x. map (∆. νY.F ) η x)/Y ) (out N)

Figure 9. Normalizing weak head reduction

(a) H  α H′: then H[[N/x]M ]  α H′[[N/x]M ], and
hence by the induction hypothesis with the smaller derivation
H′[[N/x]M ] ∈ snα we haveH′[(λx.M)N ] ∈ snα as required.

(b) M  α M ′: then H[[N/x]M ]  α H[[N/x]M ′], and
hence by the induction hypothesis with the smaller derivation
H[[N/x]M ′] ∈ snα we haveH[(λx.M ′)N ] ∈ snα as required.

(c) N  α N ′: then H[[N/x]M ]  ∗α H[[N ′/x]M ], and
hence H[[N ′/x]M ] ∈ snα (although this derivation is not nec-
essarily smaller, since it may have taken 0 steps). By the induc-
tion hypothesis with the smaller derivation N ′ ∈ snα, we have
H[(λx.M)N ′] ∈ snα as required.

(d) (λx.M)N  α [N/x]M : we have H[[N/x]M ] ∈ snα by
assumption.

By careful inspection of the reduction rules, no other cases are
possible.

(4) We show by lexicographic induction, first on N ∈ (I sn)α
and second onH[[N/x]•M ] ∈ snα thatH[let • x = •N inM ] ∈
snα.

We analyze the waysH[let • x = •N inM ] can reduce:
(a) H  α H′: then H[[N/x]•M ]  α H′[[N/x]•M ], and

hence by the induction hypothesis with the smaller derivation
H′[[N/x]•M ] ∈ snα we have H′[let • x = •N inM ] ∈ snα as
required.

(b) M  α M ′: then H[[N/x]•M ]  α H[[N/x]•M ′], and
hence by the induction hypothesis with the smaller derivation
H[[N/x]•M ′] ∈ snα we have H[let • x = •N inM ′] ∈ snα as
required.

(c) •N  α •N ′:
The case α = 0 is impossible.
If α = m + 1 then N  m N ′ and H[[N/x]•M ]  ∗m+1

H[[N ′/x]•M ], and henceH[[N ′/x]•M ] ∈ snm+1. By the induc-
tion hypothesis with the smaller derivation N ′ ∈ snm, we have
H[let • x = •N ′ inM ] ∈ snm+1 as required.

Ifα = ω thenN  ω N
′ andH[[N/x]•M ] ∗ω H[[N ′/x]•M ],

and hence H[[N ′/x]•M ] ∈ snω . By the induction hypothesis
with the smaller derivation N ′ ∈ snω , we have H[let • x =
•N ′ inM ] ∈ snω as required.

(d) let •x = •N inM  α [N/x]•M : we haveH[[N/x]•M ] ∈
snα by assumption.

The other cases are similar.

We note that in all of our proofs, the subscript α plays little to
no role, except of course in the cases pertaining to the next step
operator©. For this reason, we typically highlight the© cases of
the proofs.

We define the indexed set of terms sne (“strongly normalizing
neutral”) which are strongly normalizing, but are stuck with a
variable in place of a weak head redex.

Definition 7. We define sneα = {H[x] ∈ snα}

Lemma 8. The rules presented in Figure 10 are admissible for sn
and sne.

Proof. We show the case I sn ⊆ sn ◦ •:
Suppose M ∈ (I sn)α.
Case α = 0: then •M ∈ sn0 because there are noM ′ such that

•M  0 M
′.

Case α = m + 1: then M ∈ snm. We show by induction on
the derivation of M ∈ snm that •M ∈ snm+1:

Suppose •M  m+1 N . By inversion, we have N = •M ′ and
M  m M ′. By I.H. •M ′ ∈ snm+1 as required.

Case α = ω: Then M ∈ snω . We show by induction on the
derivation of M ∈ snω that •M ∈ snω:

Suppose •M  ω N . By inversion, we have N = •M ′ and
M  ω M

′. By I.H. •M ′ ∈ snω as required.
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x ∈ sneα
M ∈ sneα N ∈ snα

M N ∈ sneα
M ∈ sneα

fstM ∈ sneα
M ∈ sneα

sndM ∈ sneα
M ∈ sneα

out M ∈ sneα
N ∈ sneα

map (∆. µX.F ) η N ∈ sneα
M ∈ sneα N1 ∈ snα N2 ∈ snα

caseM of inl x 7→ N1 | inr y 7→ N2 ∈ sneα
N ∈ sneα

iterX.F (x.M) N ∈ sneα
M ∈ sneα N ∈ snα

let • x = M in N ∈ sneα

M ∈ sneα
M ∈ snα

M ∈ snα
λx.M ∈ snα

M ∈ snα N ∈ snα
(M,N) ∈ snα

M ∈ snα
inlM ∈ snα

M ∈ snα
inrM ∈ snα

M ∈ snα
inj M ∈ snα

N ∈ snα
coitX.F (x.M)N∈ snα

M ∈ (I sn)α

•M ∈ snα
N ∈ snα

map (∆. νX.F ) η N ∈ snα

Figure 10. Admissible rules for sn and sne

We can now define saturated sets as subsets of strongly normal-
izing terms. The rest of the proof proceeds by showing that our
types can be interpreted as saturated sets, well-typed terms inhabit
saturated sets, and hence are strongly normalizing.

Definition 9 (Saturated sets). An indexed setA : ω+ 1→ P(tm)
is saturated if

1. A ⊆ sn
2. For any α,M,M ′, ifM _∗α M ′ andM ′ ∈ Aα thenM ∈ Aα

(Backward closure under normalizing weak head reduction)
3. sne ⊆ A

It is immediate from Lemma 6 that sn is saturated.

Definition 10. For an indexed set A : ω + 1→ P(tm), we define
A as its closure under conditions 2 and 3. i.e.

Aα ≡ {M |∃M ′.M _∗α M
′ ∧ (M ′ ∈ Aα ∨M ′ ∈ sneα)}

Lemma 11. We have the following properties of (−):

1. P = P
2. P ⊆ P
3. If A ⊆ B then A ⊆ B (monotonicity)
4. If A is a set and B is saturated with A ⊆ B then A ⊆ B

(adjunction)
5. If A is an indexed set such that A ⊆ sn, then A is saturated

To interpret least and greatest fixed points, we construct a com-
plete lattice structure on saturated sets:

Lemma 12. Saturated sets form a complete lattice under ⊆, with
greatest lower bounds and least upper bounds given by:∧

S ≡ (
⋂
S) ∩ sn

∨
S ≡

⋃
S

For ∧, we intersect with sn so that the nullary lower bound is
sn, and hence saturated. For non-empty S, we have

∧
S =

⋂
S.

As a consequence, by an instance of the Knaster-Tarski fixed point
theorem, we have the following:

Corollary 13. Given F which takes predicates to predicates, we
define:

µF ≡
∧
{C saturated | F (C) ⊆ C}

νF ≡
∨
{C saturated | C ⊆ F (C)}

If F is monotone and takes saturated sets to saturated sets, then
µF (resp. νF ) is a least (resp. greatest) fixed point of F in the
lattice of saturated sets

In what follows, we will use the characterization of least fixed
points as least pre-fixed points (and correspondingly for greatest
fixed points):

Property 14. If F is a monotone operator on saturated sets and C
is saturated, then:

1. F (µF ) ⊆ µF
2. If F (C) ⊆ C then µF ⊆ C (µ induction)
3. νF ⊆ F (νF )
4. If C ⊆ F (C) then C ⊆ νF (ν coinduction)

Lemma 15. If F is monotone in its n + 1 arguments, then ρ 7→
µ(X 7→ F(ρ,X )) is monotone in its n arguments. Dually, so is
ρ 7→ ν(X 7→ F(ρ,X ))

Proof. Suppose ρ1 ⊆ ρ2 (pointwise).

1. ρ1, µ(X 7→ F(ρ2,X )) ⊆ ρ2, µ(X 7→ F(ρ2,X )) (pointwise)
2. F(ρ1, µ(X 7→ F(ρ2,X )))
⊆ F(ρ2, µ(X 7→ F(ρ2,X ))) (monotonicity of F)
⊆ µ(X 7→ F(ρ2,X )) (pre-fixed point)

3. µ(X 7→ F(ρ1,X )) ⊆ µ(X 7→ F(ρ2,X )) (µ induction)

The following operator definitions are convenient, as they allow
us to reason at a high level of abstraction without having to intro-
duce α at several places in the proof.

Definition 16. We define:

(A ◦ f)α ≡ {M |fM ∈ Aα}
(A ? f)α ≡ {fM |M ∈ Aα}

We will often use these notations for partially applied syntactic
forms, e.g. A? inj

Lemma 17. The following properties hold:

1. For any f , if A ⊆ B then A ◦ f ⊆ B ◦ f (monotonicity)
2. For any f , if A ⊆ B then A ? f ⊆ B ? f (monotonicity)
3. For any f and set A, we have A ⊆ (A ? f) ◦ f
4. For any f and sets A,B, we have A ? f ⊆ B if and only if
A ⊆ B ◦ f (Adjunction ?)

Lemma 18 (Subterm property of sn). IfH[M ] ∈ snα whereH is
a head context, then M ∈ snα

Proof. By induction on the derivation H[M ] ∈ snα. Suppose
M  α M ′. Then H[M ]  α H[M ′]. Hence by the induction
hypothesis, M ′ ∈ snα as required.

Lemma 19. If A is saturated andH is a head context then A ◦H
is saturated.
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Proof.
1. A ◦H ⊆ sn ◦ H ⊆ sn (by lemmas 18,17)
2. If H′[M ] _α H′[M ′] and H′[M ′] ∈ (A ◦ H)α then

H[H′[M ]] _α H[H′[M ′]] andH[H′[M ′]] ∈ Aα, henceH[H′[M ]] ∈
Aα (by closedness of A).

3. sne ⊆ sne ◦ H ⊆ A ◦ H (by lemmas 8,17)

We are now in a position to define the operators on saturated
sets which correspond to the operators in our type language.

Definition 20. We define the following operations on saturated
sets:

1 ≡ sn
(A× B) ≡ (A ◦ fst) ∩ (B ◦ snd)

(A+ B) ≡ (A ? inl ) ∪ (B ? inr )
(A→ B)α ≡ {M |∀N ∈ Aα.(MN) ∈ Bα}
(©A) ≡ (I A) ? •
µF ≡ µ(X 7→ F(X )? inj)
νF ≡ ν(X 7→ F(X )◦ out)

Notice that µF is defined regardless of whetherF is monotone,
although we only know that µF is actually a least fixed point when
F is monotone. We remark also that our → definition does not
resemble the Kripke-style definition one might expect. That is to
say, we are using the discrete partial order on ω + 1. We do not
need the monotonicity that the standard ordering would grant us,
since our type system does not in general allow carrying data into
the future.

Lemma 21. The operators defined in Definition 20 take saturated
sets to saturated sets.

Proof. For 1,×,µ,ν observe that previous lemmas establish that
the operations involved in their definitions take saturated sets to
saturated sets.

Case A+ B: Suppose A and B are saturated.

1. A ⊆ sn (since A saturated)
⊆ sn ◦ inl (by lemma 8)

2. A ? inl ⊆ sn (by lemma 17)
3. B ? inr ⊆ sn (similarly)
4. (A ? inl) ∪ (B ? inr) ⊆ sn
5. (A ? inl) ∪ (B ? inr) is saturated (by lemma 11)

Case©A: Suppose A is saturated.

1. A ⊆ sn (since A saturated)
2. I A ⊆ I sn (functor)
⊆ sn ◦ • (by lemma 8)

3. I A ? • ⊆ sn (by lemma 17)
4. I A ? • is saturated (by lemma 11)

Case A→ B: Suppose A and B are saturated.

1. Suppose M ∈ (A → B)α, i.e. for any N ∈ Aα we have
M N ∈ Bα.
(a) x ∈ Aα (since A is saturated)
(b) M x ∈ Bα (by assumption)
(c) M x ∈ snα (since B is saturated)
(d) M ∈ snα (by lemma 18)
So (A→ B) ⊆ sn

2. Suppose M _α M ′ with M ′ ∈ (A → B)α, i.e. for any
N ∈ Aα we have M ′ N ∈ Bα. Suppose N ∈ Aα.
(a) MN _α M

′N (by def of _)
(b) MN ∈ Bα (since B is saturated)

So A→ B is backward closed under _.
3. Suppose M ∈ sneα. Suppose N ∈ Aα. Then MN ∈ sneα,

henceMN ∈ Bα (sinceB is saturated). HenceM ∈ (A→ B)
Hence sne ⊆ A→ B

We are now ready to interpret well-formed types as saturated
sets. The definition is unsurprising, given the operators defined
previously.

Definition 22. Given ρ, an environment mapping the free variables
of F to saturated sets, we define the interpretation JF K(ρ) of an
open type as a saturated set as follows:

JXK(ρ) ≡ ρ(X)
J1K(ρ) ≡ 1
JF × GK(ρ) ≡ JF K(ρ)× JGK(ρ)
JF + GK(ρ) ≡ JF K(ρ) + JGK(ρ)
JA→ F K(ρ) ≡ JAK(·)→ JF K(ρ)
J©F K(ρ) ≡ ©JF K(ρ)
JµX.F K(ρ) ≡ µ(X 7→ JF K(ρ,X/X))
JνX.F K(ρ) ≡ ν(X 7→ JF K(ρ,X/X))

Observe that, by lemma 21, every JF K(ρ) is saturated.

Lemma 23 (Monotonicity of JF K). If

ρ1 ⊆ ρ2 (pointwise)

And F is a well-formed type whose free variables match the do-
mains of ρ1 and ρ2, then

JF K(ρ1) ⊆ JF K(ρ2)

Proof. Observe that A→ (−) is a monotone operator.
We have by now shown that every operator involved in the

definition is monotone.

Lemma 24 (J−K is compositional). If σ is a substitution of (possi-
bly open) types for types, and F is an open type, then:

J[σ]F K(ρ) = JF K(JσK(ρ))

If θ = N1/y1, ..., Nn/yn and σ = M1/x1, ...,Mm/xm are
simultaneous substitutions, we write [θ;σ]M to mean substituting
the Ni with next substitution [Ni/yi]

•(−) and the Mi with the
current substitution [Mi/xi](−). We may write this explicitly as
follows:

[N1/y
•
1 , ..., Nn/y

•
n;M1/x1, ...,Mm/xm]M

If σ = M1/x1, ...,Mm/xm and Γ = x1 : A1, ..., xm : Am,
then we write σ ∈ Γα to mean Mi : Aαi for all i, and similarly for
θ ∈ Θα.

Definition 25 (Semantic typing). We write Θ; Γ � M : C, where
the free variables ofM are bound by Θ and Γ, if for any α and any
substitutions θ ∈ (I Θ)α and σ ∈ Γα, we have [θ;σ]M ∈ Cα

Lemma 26 (Semantic substitution lemma).
If Θ; Γ, x : A �M : B and Θ; Γ � N : A
then Θ; Γ � [N/x]M : B

Proof.

1. For any α, substitutions θ ∈ (I Θ)α σ ∈ Γα and N ′ ∈ Aα
we have [θ;σ,N ′/x]M ∈ Bα (assumption)

2. For any α, and θ ∈ (I Θ)α, σ ∈ Γα we have [θ;σ]N ∈ Aα
(assumption)

3. So takingN ′ = [θ;σ]N in line 1, we have [θ;σ, [θ;σ]N/x]M ∈
Bα
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4. Hence [θ;σ]([N/x]M) ∈ Bα (since [θ;σ, [θ;σ]N/x]M =
[θ;σ]([N/x]M))

Lemma 27. If Θ; Γ, x : A � H[x] : C where C is saturated and
H is a head context not containing x, then Θ; Γ, x : A � H[x] : C

Proof. We are given that for any α, θ ∈ (I Θ)α, σ ∈ Γα,
N ∈ Aα, we have [θ;σ,N/x](H[x]) ∈ C.

Notice [θ;σ,N/x](H[x]) = ([θ;σ]H)[N ], and so our assump-
tion states:
Aα ⊆ (C ◦ ([θ;σ]H))α.
Hence Aα ⊆ (C ◦ ([θ;σ]H))α (by Lemmas 19,11).
By definition, this is what we need to prove.

Lemma 28. IfA is saturated and Θ; Γ �M ′ : A and ∀α, θ ∈ (I
Θ)α, σ ∈ Γα we have [θ;σ]M _∗α [θ;σ]M ′ then Θ; Γ �M : A

Next we show that the term constructors of our language obey
corresponding semantic typing lemmas. We prove the easier cases
first (i.e. constructors other than map, iter, and coit), as their results
are used in the next lemma pertaining to map.

Lemma 29 (Interpretation of term constructors). The following
hold, where we assume Θ, Γ, A, B, and C are saturated.

1. Θ; Γ � () : 1
2. If Θ; Γ � M : A and Θ; Γ � N : B then Θ; Γ � (M,N) :
A × B

3. If Θ; Γ �M : A × B then Θ; Γ � fstM : A
4. If Θ; Γ �M : A × B then Θ; Γ � sndM : B
5. If Θ; Γ �M : A then Θ; Γ � inlM : A + B
6. If Θ; Γ �M : B then Θ; Γ � inrM : A + B
7. If Θ; Γ � M : A + B and Θ; Γ, x : A � N1 : C and

Θ; Γ, y : B � N2 : C then Θ; Γ � caseM of inl x 7→ N1 |
inr y 7→ N2 : C

8. If Θ; Γ, x : A �M : B then Θ; Γ � λx.M : A→ B
9. If Θ; Γ �M : A→ B and Θ; Γ � N : A then Θ; Γ �MN :
B

10. If ·; Θ �M : A then Θ; Γ � •M :©A
11. If Θ; Γ � M : ©A and Θ, x:A; Γ � N : B then Θ; Γ �

let • x = M in N : B
12. If F is a monotone function from saturated sets to saturated

sets, and Θ; Γ �M : F(µF) then Θ; Γ �inj M : µF
13. If F is a monotone function from saturated sets to saturated

sets, and Θ; Γ �M : νF then Θ; Γ �out M : F(νF)

Proof. We show some representative cases. The others are similar.

2. (a) Θ; Γ �M : A (assumption)
(b) Θ; Γ � N : B (assumption)
(c) Θ; Γ � fst(M,N) : A (by _ closure)
(d) Θ; Γ � (M,N) : A ◦ fst
(e) Θ; Γ � snd(M,N) : B (by _ closure, line (b))
(f) Θ; Γ � (M,N) : B ◦ snd
(g) Θ; Γ � (M,N) : A ◦ fst ∩ B ◦ snd (lines (d),(f))

7. (a) Θ; Γ, x : A � N1 : C (assumption)
(b) Θ; Γ, x : B � N2 : C (assumption)
(c) Θ; Γ, x : A � case inl x of inl x 7→ N1 | inr y 7→ N2 : C

(by _ closure)
(d) Θ; Γ, z : A ? inl � case z of inl x 7→ N1 | inr y 7→ N2 : C
(e) Θ; Γ, x : B � case inr x of inl x 7→ N1 | inr y 7→ N2 : C

(by _ closure)
(f) Θ; Γ, z : B ? inr � case z of inl x 7→ N1 | inr y 7→ N2 : C

(g) Θ; Γ, z : (A? inl∪B? inr) � case z of inl x 7→ N1 | inr y 7→
N2 : C (by lines (d),(f))

(h) Θ; Γ, z : (A ? inl ∪ B ? inr) � case z of inl x 7→ N1 |
inr y 7→ N2 : C

(i) Θ; Γ �M : A+ B (assumption)
(j) Θ; Γ � caseM of inl x 7→ N1 | inr y 7→ N2 : C (subst.

lemma, lines (h),(i))
10. We are given ·; Θ � M : A, i.e. for any α and θ ∈ Θα, that

[·; θ]M ∈ Aα.
Suppose we are given α and θ ∈ (I Θ)α and σ ∈ Γα.
Case α = 0: Then (I A)0 = tm, so [·; θ]M ∈ (I A)0

Case α = m + 1: Then (I A)m+1 = Am, and θ ∈ Θm. By
our assumption, taking α = m, we have [·; θ]M ∈ Am
Case α = ω: Then (I A)ω = Aω , and θ ∈ Θω . By our
assumption, [·; θ]M ∈ Aω
In any case, we have [·; θ]M ∈ (I A)α.
Then [θ;σ](•M) = •([·; θ]M) ∈ (I A ? •)α
Hence [θ;σ](•M) ∈ (©A)α as required.

11. (a) Θ, x:A; Γ � N : C (assumption)
(b) Θ, x:A; Γ � let • x = •x in N : C (by _ closure)
(c) Θ; Γ, y : I A ? • � let • x = y in N : C
(d) Θ; Γ, y : I A ? • � let • x = y in N : C (lemma 27)
(e) Θ; Γ, y :©A � let • x = y in N : C (by def)
(f) Θ; Γ �M :©A (assumption)
(g) Θ; Γ � let •x = M inN : C (subst lemma 26, lines (e),(f))

12. (a) Θ; Γ �M : F(µF) (assumption)
(b) Θ; Γ � inj M : F(µF) ? inj

(c) Θ; Γ � inj M : F(µF) ? inj (monotonicity)
(d) Θ; Γ � inj M : µ(X 7→ F(X ) ? inj) (monotonicity, pre

fixed point)
(e) Θ; Γ � inj M : µF (by def)

13. (a) Θ; Γ �M : νF (assumption)
(b) Θ; Γ �M : ν(X 7→ F(X ) ◦ out) (by def)
(c) Θ; Γ �M : F(νF) ◦ out (monotonicity, post fixed point)
(d) Θ; Γ � out M : F(νF)

With this lemma, it remains only to handle map, iter, and coit.
Below we show the semantic typing lemma for map. We write
ρ1 � η : ρ2 where η = (x.M1/X1, ..., x.Mm/Xm) and ρ1 =
A1/X1, ...,Am/Xm and ρ2 = B1/X1, ...,Bm/Xm and the Ai
and Bi are saturated to mean x : Ai �Mi : Bi for each i. Notably,
because we define map independently of iter and coit, we can prove
this directly before tackling iter and coit, offering a simplification
of known proofs for interleaving µν. For readability, we write F
instead of (∆.F ).

Lemma 30 (Semantic typing for map). If ρ1 � η : ρ2 then
x : JF K(ρ1) � map F η x : JF K(ρ2)

Proof. Notice by unrolling the definitions, this is equivalent to
showing JF K(ρ1) ⊆ JF K(ρ2) ◦ (map F η). The proof proceeds
by induction on F .

Case F ×G:

1. x : JF K(ρ1) � map F η x : JF K(ρ2) (by I.H.)
2. y : JF K(ρ1)× JGK(ρ1) � fst y : JF K(ρ1) (by lemma 29)
3. y : JF K(ρ1)× JGK(ρ1) � map F η (fst y) : JF K(ρ2) (by sem.

subst 26)
4. x : JGK(ρ1) � map G η x : JGK(ρ2) (by I.H.)
5. y : JF K(ρ1)× JGK(ρ1) � snd y : JGK(ρ1) (by lemma 29)
6. y : JF K(ρ1) × JGK(ρ1) � map G η (snd y) : JGK(ρ2) (by

sem. subst 26)
7. y : JF K(ρ1)×JGK(ρ1) � (map F η (fst y),map G η (snd y)) :

JF K(ρ2)× JGK(ρ2) (by lemma 29, lines 3,6)
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8. y : JF K(ρ1) × JGK(ρ1) � map (F × G) η y : JF K(ρ2) ×
JGK(ρ2) (by _ closure)

9. y : JF ×GK(ρ1) � map (F ×G) η y : JF ×GK(ρ2) (by def)

Case A→ F :

1. x : JF K(ρ1) � map F η x : JF K(ρ2) (by I.H.)
2. y : JAK(·) → JF K(ρ1), z : JAK � y z : JF K(ρ1) (by lemma

29)
3. y : JAK(·) → JF K(ρ1), z : JAK � map F η (y z) : JF K(ρ2)

(by sem. subst 26)
4. y : JAK(·) → JF K(ρ1) � λz. map F η (y z) : JAK(·) →

JF K(ρ2) (by lemma 29)
5. y : JAK(·) → JF K(ρ1) � map (A → F ) η y : JAK(·) →

JF K(ρ2) (by _ closure)
6. y : JA → F K(ρ1) � map (A → F ) η y : JA → F K(ρ2) (by

def)

Case©F :

1. x:JF K(ρ1) � map F η x : JF K(ρ2) (by I.H.)
2. x:JF K(ρ1); y:© (JF K(ρ1)) � •(map F η x) : ©(JF K(ρ2))

(by lemma 29)
3. y:©(JF K(ρ1)) � let •x = y in •(map F η x) :©(JF K(ρ2))

(by lemma 29)
4. y:J©F K(ρ1) � let •x = y in • (map F η x) : J©F K(ρ2) (by

def)
5. y:J©F K(ρ1) � map (©F ) η y : J©F K(ρ2) (by _ closure)

Case µX.F : This proceeds primarily using the least fixed point
property and _ closure.

Let C = JµX.F K(ρ2) = µ(X 7→ JF K(ρ2,X )? inj)
Let D = C ◦ (map(µX.F )η)
Let N = (map F (η,map (µX.F ) η))

1. D is saturated (by Lemma 19)
2. x : D � map (µX.F ) η x : C (by definition of �, D)
3. x : JF K(ρ1,D) � map F (η,map (µX.F ) η) x : JF K(ρ2, C)

(by I.H.)
4. JF K(ρ1,D) ⊆ JF K(ρ2, C) ◦ (map F (η,map (µX.F ) η)) (by

definition of �)
⊆ JF K(ρ2, C) ? inj ◦ inj ◦N
⊆ JF K(ρ2, C) ? inj ◦ inj ◦N (by mon. of ◦)
= C ◦ inj ◦N (by rolling fixed point)
= C ◦ (inj(map F (η,map (µX.F ) η)−)) (by def)
⊆ C ◦ (map (µX.F ) η (inj −)) (by _ closure)
= C ◦ (map (µX.F ) η)◦ inj
= D◦ inj (by def)

5. JF K(ρ1,D) ? inj ⊆ D (by adjunction ?)
6. JF K(ρ1,D) ? inj ⊆ D (by adjunction (−))
7. JµX.F K(ρ1) ⊆ D (by lfp property)
8. y : JµX.F K(ρ1) � map (µX.F ) η y : JµX.F K(ρ2)

(by definitions of �, D, C)

Case νX.F :
Let C = JνX.F K(ρ1) = ν(X 7→ JF K(ρ1,X ) ◦ out)
Let N = map (νX.F ) η
Let D = C ? N

1. D is saturated (by properties of (−), closure property of sn)
2. x : C � Nx : D (trivial, definition of D)
3. x : JF K(ρ1, C) � map F (η,N) x : JF K(ρ2,D) (by I.H.)
4. JF K(ρ1, C) ⊆ JF K(ρ2,D) ◦ (map F (η,N)) (by definition of
�)

5. C ⊆ JF K(ρ1, C) ◦ out (unrolling fixed point)
⊆ JF K(ρ2,D) ◦ (map F (η,N)) ◦ out (by mon. & line 5)
⊆ JF K(ρ2,D) ◦ out ◦N (by _ closure)

6. C ? N ⊆ JF K(ρ2,D) ◦ out (by ?-adjunction)
7. JF K(ρ2,D) ◦ out is saturated (by Lemma 19)
8. D = C ? N ⊆ JF K(ρ2,D) ◦ out (by (−) adjunction, line 7)
9. D ⊆ JνX.F K(ρ2) (by gfp property)

10. C ? N ⊆ JνX.F K(ρ2) (monotonicity)
11. C ⊆ JνX.F K(ρ2) ◦N (by ?-adjunction)
12. JνX.F K(ρ1) ⊆ JνX.F K(ρ2)◦(map (νX.F ) η) (by definitions

of C,N )
13. y : JνX.F K(ρ1) � map (νX.F ) η y : JνX.F K(ρ2)

(by definition of �)

The other cases are similar.

The only term constructors remaining to consider are iter and
coit. These are the subject of the next two lemmas, which are
proven similarly to the µ and ν cases of the map lemma. Namely,
they proceed primarily by using the least (greatest) fixed point
properties and backward closure under _, appealing to the map
lemma.

Lemma 31. If x : JF K(C/X) � M : C where C is saturated, we
have y : JµX.F K �iterX.F (x.M) y: C

Proof. Let D = C ◦ (iterX.F (x.M) )

1. D is saturated (by Lemma 19)
2. JF K(C) ⊆ C ◦ ([−/x]M) (by assumption)
3. D ⊆ C ◦ (iterX.F (x.M)) (by def)
4. y : D � iterX.F (x.M) y : C (by def of �)
5. y : JF K(D) � map (X.F ) (iterX.F (x.M)) y : JF K(C) (by

semantic typing of map, previous line)
6. JF K(D) ⊆ JF K(C) ◦ (map(X.F )(iterX.F (x.M))) (by defini-

tion of �)
⊆ C ◦ ([−/x]M) ◦ (map(X.F )(iterX.F (x.M))) (by mono-
tonicity of ◦, line 2)
= C ◦ ([(map(X.F )(iterX.F (x.M))−)/x]M)

7. JF K(D) ⊆ sn ∩ C ◦ ([(map(X.F )(iterX.F (x.M))−)/x]M)
(previous line, saturated)
⊆ C ◦ (iterX.F (x.M)(inj −)) (by _ closure)
= C ◦ (iterX.F (x.M))◦ inj
= D◦ inj

8. JF K(D)? inj ⊆ D (by adjunction ?)
9. JF K(D)? inj ⊆ D (by adjunction (−))

10. µ(X 7→ JF K(X )? inj ) ⊆ D (lfp property)
11. y : JµX.F K �iterX.F (x.M) y: C (by definitions)

Corollary 32. If x : JF K(C) � M : C and Θ; Γ � N : JµX.F K
where C is saturated, then Θ; Γ �iterX.F (x.M)N : C
Lemma 33. If x : C � M : JF K(C/X) where C is saturated, we
have y : C �coitX.F (x.M) y: JνX.F K

Proof. Let D = C ? (coitX.F (x.M) )

1. D is saturated (property of (−), closure property of sn)
2. C ⊆ C ? (coitX.F (x.M) ) ◦ (coitX.F (x.M) )
⊆ D ◦ (coitX.F (x.M) ) (monotonicity of ◦)

3. y : C �coitX.F (x.M) y : D (by def of �)
4. y : JF K(C) � map(X.F )(coitX.F (x.M) )y : JF K(D) (seman-

tic typing of map)
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5. JF K(C) ⊆ JF K(D) ◦ (map(X.F )(y. coitX.F (x.M) y)) (defi-
nition of �)

6. C ⊆ JF K(C) ◦ ([−/x]M) (by assumption)
⊆ JF K(D) ◦ (map(X.F )(y. coitX.F (x.M) y)) ◦ ([−/x]M)
(monotonicity of ◦, previous line)
= JF K(D) ◦ (map(X.F )(y. coitX.F (x.M) y)([−/x]M))

7. C ⊆ sn∩JF K(D)◦(map(X.F )(y. coitX.F (x.M) y)([−/x]M))
(previous line, C saturated)
⊆ JF K(D) ◦ (out(coitX.F (x.M)−)) (by _ closure)
= JF K(D) ◦ out ◦ (coitX.F (x.M) )

8. C ? (coitX.F (x.M) )⊆ JF K(D) ◦ out (by adjunction ?)
9. D ⊆ JF K(D) ◦ out (by adjunction (−))

10. D ⊆ ν(X 7→ JF K(X ) ◦ out) (by gfp property)
= JνX.F K

11. C ? (coitX.F (x.M) )⊆ JνX.F K
12. C ⊆ JνX.F K ◦ (coitX.F (x.M) ) (adjunction ?)
13. y : C �coitX.F (x.M) y: JνX.F K (by definitions)

Corollary 34. If x : C � M : JF K(C) and Θ; Γ � N : C where C
is saturated, then Θ; Γ �coitX.F (x.M)N : JνX.F K

By now we have shown that all of the term constructors can be
interpreted, and hence the fundamental theorem is simply an induc-
tion on the typing derivation, appealing to the previous lemmas.

Theorem 35 (Fundamental theorem). If Θ; Γ ` M : A, then we
have JΘK; JΓK �M : JAK

Corollary 36. If Θ; Γ ` M : A then for any α, M is strongly
normalizing at α.

7. Causality, Productivity and Liveness
We discuss here some of the consequences of type soundness and
strong normalization and explain how our operational semantics
enables one to execute programs reactively.

We call a term M a α-value if it cannot step further at time
α. We may write this M 6 α. We obtain as a consequence of
strong normalization that there is no closed inhabitant of the type
⊥ (which we define as µX.X), since there is no closed α-value of
this type. Perhaps surprisingly, we can also show there is no closed
inhabitant of©⊥ → ⊥. For if there was some ` f : ©⊥ → ⊥,
we could evaluate x : ⊥; · ` f(•x) : ⊥ at 0 to obtain a 0-value
x : ⊥; · ` v : ⊥, which by inspection of the possible 0-values,
cannot exist!

Similarly, we can demonstrate an interesting property of the
type B ≡ µX.©X . First, there is no closed term of type B → ⊥.
For if there was some f : B → ⊥, we could normalize x : B; · `
f(inj •x) : B at time 0 to obtain a 0-value x : B; · ` v : ⊥, which
cannot exist. Moreover, there is no closed term of type B, since
there is no closed ω-value of typeB. That is,B is neither inhabited
nor provably uninhabited inside the logic.

To show how our operational semantics and strong normaliza-
tion give rise to a causal (reactive) interpretation of programs, as
well as an explanation of the liveness properties guaranteed by the
types, we illustrate here the reactive execution of an example pro-
gram x0 : ♦P ` M0 : ♦Q. Such a program can be thought of as
waiting for aP event from its environment, and at some point deliv-
ering a Q event. For simplicity, we assume that P and Q are pure
(non-temporal) types such as Bool or N. We consider sequences
of interaction which begin as follows, where we write now p for
inj (inl p) and later • t for inj (inr(•t)).

[later • x1/x0]M0  ∗0 later •M1

[later • x2/x1]M1  ∗0 later •M2

...

Each such step of an interaction corresponds to the environment
telling the program that it does not yet have the P event in that
time step, and the program responding saying that it has not yet
produced a Q event. Essentially, at each stage, we leave a hole
xi standing for input not yet known at this stage, which we will
refine further in the next time step. The resulting Mi acts as a
continuation, specifying what to compute in the next time step. We
note that each xi:♦P ` Mi : ♦Q by type preservation. Such
a sequence may not end, if the environment defers providing a
P forever. However, it may end one of two ways. The first is if
eventually the environment supplies a closed value p of type P :

[now p/xi+1]Mi+1  ∗ω v 6 ω

In this case, ` [now p/xi+1]Mi+1 : ♦Q. By type preservation
and strong normalization, we can evaluate this completely to ` v :
♦Q. By an inspection of the closed ω-values, v must be of the form
later(•later(• · · · (now q))). That is, a Q is eventually delivered in
this case.

The second way such an interaction sequence may end is if the
program produces a result before the environment has supplied a
P :

...
[later • xi+1/xi]Mi  ∗0 now q

We remark that type preservation of 0 provides an explanation
of causality: since xi+1 : ♦P ; · ` [later • xi+1/xi]Mi : ♦Q, if
evaluating the term [later • xi+1/xi]Mi with  0 produces a 0-
value v, then xi+1 : ♦P ; · ` v : ♦Q and by an inspection of the
0-values of this type, we see that v must be of the form later•Mi+1

or now p – since the variable xi+1 is in the next context, it cannot
interfere with the part of the value in the present, which means the
present component cannot be stuck on xi+1. That is, xi+1 could
only possibly occur in Mi+1. This illustrates that future inputs
do not affect present output – this is precisely what we mean by
causality.

We also remark that strong normalization of 0 guarantees re-
active productivity. That is, the evaluation of [later•xi+1/xi]Mi is
guaranteed to terminate at some 0-value v by strong normalization.
As an aside, we note that if we were to use a time-indexed type
system such as that of Krishnaswami and Benton [25], one could
generalize this kind of argument to reduction at n, and normalize
terms using n to obtain n-value where x can only occur at time
step n+ 1. This gives a more global perspective of reactive execu-
tion. However, we use our form of the type system because we find
it corresponds better in practice to how one thinks about reactive
programs (one step at a time).

Finally, strong normalization of ω provides an explanation of
liveness. When evaluating a closed term `M : ♦Q at ω, we arrive
at a closedω-value v : ♦Q. By inspection of the normal forms, such
a value must provide a result after only finitely many delays. This is
to say that when running programs reactively, the environment may
choose not to satisfy the prequisite liveness requirement (e.g. it may
never supply a P event). In which case, the output of the program
cannot reasonably be expected to guarantee its liveness property,
since it may be waiting for an input event which never comes.
However, we have the conditional result that if the environment
satisfies its liveness requirement (e.g. eventually it delivers a P
event) then the result of the interaction satisfies its liveness property
(e.g. eventually the program will fire a Q event).
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8. Related Work
Most closely related to our work is the line of work by Krish-
naswami and his collaborators [24–26]. Our type systems are simi-
lar; in particular our treatment of the©modality and causality. The
key distinction lies in the treatment of recursion and fixed points.
Krishnaswami et al. employ a Nakano-style [16] guarded recursion
rule which allows some productive programs to be written more
conveniently than with our (co)iteration operators. However, their
recursion rule has the effect of collapsing least fixed points into
greatest fixed points. Both type systems can be seen as proofs-as-
programs interpretations of temporal logics; ours has the advantage
that it is capable of expressing liveness guarantees (and hence it re-
tains a tighter relationship to LTL). In their recent work [24, 26],
they obtain also promising results about space usage, which we
have so far ignored in our foundation. In his most recent work,
Krishnaswami [24] describes an operational semantics with better
sharing behaviour than ours.

Another key distinction between the two lines of work is that
where we restrict to fixed points of strictly positive functors, Krish-
naswami restricts to guarded fixed points – type variables always
occur under ©; even negative occurrences are permitted. In con-
trast, our approach allows a unified treatment of typical pure recur-
sive datatypes (e.g. list) and temporal types (e.g. �A), as well as
more exotic “mixed” types such as νX.X +©X . Krishnaswami
observes that allowing negative, guarded occurrences enables the
definition of guarded recursion. As a consequence, this triggers a
collapse of (guarded) µ and ν, so negative occurrences appear in-
compatible with our goals.

Also related is the work of Jeffrey [17, 19] and Jeltsch [20],
who first observed that LTL propositions correspond to FRP types.
Both consider also continuous time, while we focus on discrete
time. Here we provide a missing piece of this correspondence:
the proofs-as-programs component. Jeffrey writes programs with
a set of causal combinators, in contrast to our ML-like language.
His systems lack general (co)recursive datatypes and as a result,
one cannot write practical programs which enforce some liveness
properties such as fairness as we do here. In his recent work [19],
he illustrates what he calls a liveness guarantee. The key distinction
is that our liveness guarantees talk about some point in the future,
while Jeffrey only illustrates guarantees about specific points in
time. We illustrated in Sec. 2 that our type system can also provide
similar guarantees. We claim that our notion of liveness retains a
tighter correspondence to the concept of liveness as it is defined in
the temporal logic world.

Jeltsch [20, 21] studies denotational settings for reactive pro-
gramming, some of which are capable of expressing liveness guar-
antees. He obtains the result that his Concrete Process Categories
(CPCs) can express liveness when the underlying time domain has
a greatest element. He does not describe a language for program-
ming in CPCs, and hence it is not clear how to write programs
which enforce liveness properties in CPCs, unlike our work. He
discusses also least and greatest fixed points, but does not mention
the interleaving case in generality, nor does he treat their existence
or metatheory as we do here. His CPCs may provide a promising
denotational semantics for our calculus.

The classical linear µ-calculus (often called νTL) forms the
inspiration for our calculus. The study of (classical) νTL proof
systems goes back at least to Lichtenstein [27]. Our work offers a
constructive, type-theoretic view on νTL.

Synchronous dataflow languages, such as Esterel [6], Lustre [9],
and Lucid Synchrone [35] are also related. Our work contributes to
a logical understanding of synchronous dataflow, and in particular
our work could possibly be seen as providing a liveness-aware type
system for such languages.

9. Conclusion
We have presented a type-theoretic foundation for reactive pro-
gramming inspired by a constructive interpretation of linear tempo-
ral logic, extended with least and greatest fixed point type construc-
tors, in the spirit of the modal µ-calculus. The distinction of least
and greatest fixed points allows us to distinguish between events
which may eventually occur or must eventually occur. Our type sys-
tem acts as a sound proof system for LTL, and hence expands on the
Curry-Howard interpretation of LTL. We prove also strong normal-
ization, which, together with type soundness, guarantees causality,
productivity, and liveness of our programs.

10. Future Work
Our system provides a foundational basis for exploring expressive
temporal logics as type systems for FRP. From a practical stand-
point, however, our system is lacking a few key features. For exam-
ple, it is commonly known that our iteration operators cannot ex-
press a constant-time predecessor function; one must traverse the
entire term to compute its predecessor. This is straightforwardly
solved by adding inverses to inj and out in the term language and
operational semantics; the strong normalization proof extends eas-
ily. This is a motivation for studying the calculus with explicit µ and
ν operators instead of merely using their impredicative encodings
in a second order system such as (a hypothetical) System F +©.

In a similar vein, the import functions we wrote in Section 2
unnecessarily traverse the entire term. From a foundational per-
spective, it is interesting to notice that they can be implemented
at all. We remark that in our system, this can be done for types con-
structed without the negative connectives → and ν. However, in
practice, one would like to employ a device such as Krishnaswami’s
stability [24] to allow constant-time import for such types. We be-
lieve that our system can provide a solid foundation for exploring
such features in the presence of liveness guarantees.

It would also be useful to explore more general forms of re-
cursion with syntactic or typing restrictions such as sized types to
guarantee productivity and termination/liveness, which would al-
low our examples to typecheck as they are instead of by manual
elaboration into (co)iteration. Tackling this in the presence of inter-
leaving µ and ν is challenging – as Altenkirch and Danielsson [5]
explain, Agda [32] has serious limitations with interleaving. Coq
[7] does not fare any better. Some solutions exist employing sized
types [1]. This is one motivation for using Nakano-style guarded
recursion [16]. A promising direction is to explore the introduction
of Nakano-style guarded recursion at so-called complete types in
our type system (by analogy with the complete ultrametric spaces
of [25]) – roughly, types built with only ν, not µ. This would be a
step in the direction of unifying the two approaches. Similarly, it
would be interesting to investigate pattern matching and especially
the copatterns of Abel et al. [3] in this setting. This needs a careful
treatment, because matching under a • typically, but not always,
violates causality.

We are in the process of developing a denotational semantics
for this language in the category of presheaves on ω + 1, inspired
by the work of Birkedal et al. [8] who study the presheaves on
ω, as well as Jeltsch [21] who studies more general (e.g. contin-
uous) time domains. The idea is that the extra point “at infinity”
expresses the global behaviour – it prevents (guarded) least and
greatest fixed points from collapsing, and expresses our liveness
guarantees, which can only be observed from a global perspective
on time. This is essentially Jeltsch’s observation that, in his setting,
only time domains having a greatest element allow one to express
liveness properties. The chief challenge in our setting lies in con-
structing interleaving fixed points. It is expected that such a deno-
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tational semantics will provide a crisper explanation of our liveness
guarantees.
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