
Higher-order term indexing using substitution trees

BRIGITTE PIENTKA

McGill University

We present a higher-order term indexing strategy based on substitution trees for simply typed
lambda-terms. The strategy is based in linear higher-order patterns where computationally ex-
pensive parts are delayed. While insertion of terms into the index is based on computing the most
specific linear generalization of two linear higher-order patterns, retrieval is based on matching
two linear higher-order patterns. We give a theoretical framework for higher-order term indexing,
describe insertion and retrieval algorithms and prove their correctness. This indexing structure
is implemented as part of the Twelf system to speed-up the execution of the tabled higher-logic
programming interpreter.

Categories and Subject Descriptors: F.4.1 [Theory of Computation]: Mathematical Logic and
Formal Languages; D.3.3 [Software]: Language Constructs and Features—Frameworks

General Terms: Design, Theory

Additional Key Words and Phrases: Indexing, type theory, logical frameworks

1. INTRODUCTION

First-order logic programming and theorem proving systems have developed into
highly sophisticated automated reasoning systems with remarkable performance
over the last decade. This success is to a large extent due to term indexing tech-
niques which allow these systems to manage and use redundancy elimination tech-
niques. In general, term indexing is concerned with compactly storing a large
collection of terms and rapidly retrieving a set of candidate terms satisfying some
property (e.g. unifiability, instance, variant etc.) from a large collection of terms.

There are many examples where term indexing is used. In logic programming,
for example, we need to select all clauses from the program whose head unifies with
the current goal. In tabled logic programming we memoize intermediate goals in a
table and reuse their results later in order to eliminate redundant and infinite com-
putation. Here we need to find all entries in the table such that the current goal is
a variant or an instance of a table entry and re-use the associated answers. Simi-
larly in theorem proving, we keep track of previously derived formulas to eliminate
redundancy and detect loops. Since rapid retrieval and efficient storage of large
collection of terms plays a central role in logic programming and in proof search in
general, a variety of indexing techniques have been proposed for first-order terms
(see [Ramakrishnan et al. 2001] for a survey). However, indexing techniques for

This material is based upon work supported by
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 1529-3785/2007/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007, Pages 1–0??.

2 · Brigitte Pientka

higher-order terms, i.e. terms which may contain lambda-abstraction, are largely
missing thereby severely hampering the performance of higher-order systems and
limiting their potential applications. There are mainly two problems in adapting
first-order indexing techniques. First many operations used in building an efficient
term index and retrieving a set of candidate terms from a large collection are un-
decidable in general for higher-order terms. Second, the scoping of variables and
binders in the higher-order case presents challenges.

In this paper, we present a higher-order term indexing technique based on sub-
stitution trees. Substitution tree indexing [Graf 1995] is a highly successful first-
order term indexing strategy which allows the sharing of common sub-expressions
via substitutions. We extend this idea to the higher-order setting and present an
indexing technique for higher-order terms, i.e. terms which may contain lambda-
abstractions. The challenge in the higher-order setting is that many common oper-
ations on higher-order terms which are necessary to build and maintain substitution
trees or retrieve elements from the index are undecidable in general. For example,
to build a substitution tree, we compute the most specific common generalization
between two terms. However, in general the most specific generalization of two
terms does not exist in the higher-order setting. Similarly, retrieving all terms,
which unify or match, needs to be efficient – but higher-order unification is unde-
cidable in general. Fortunately, there exists a fragment called higher-order patterns
for which checking unifiability of two terms and computing the most specific gen-
eralization between two terms is decidable [Miller 1991b; Pfenning 1991]. However,
even for this fragment algorithms may not be efficient in practice [Pientka and
Pfennning 2003] and are sufficiently complex that it is not obvious that they are a
suitable basis for higher-order term indexing techniques. In this paper we consider
an even stricter class of lambda-terms, called linear higher-order patterns which
refines the notion of higher-order patterns further and factor out any computa-
tionally expensive parts. As we have shown in [Pientka and Pfennning 2003] many
terms encountered fall into this fragment and linear higher-order pattern unification
performs well in practice. In this paper, we demonstrate that linear higher-order
patterns are well suited to elegantly describe term indexing operations such as com-
puting the most specific linear generalization or checking unifiability of two terms.
Moreover, we give algorithms for inserting linear higher-order patterns into an index
and for retrieving a set of terms from the index such that the query is an instance
of the term in the index and prove the correctness of these operations. Although
we concentrate on the simply typed terms in this paper, the presented techniques
can be generalized to the dependently typed setting (see [Pientka 2003b]) and are
in fact implemented as part of the logical framework Twelf system [Pfenning and
Schürmann 1999]. We have used higher-order substitution trees to speed-up the ex-
ecution of the tabled logic programming interpreter [Pientka 2002] and to facilitate
the generation of small proof witnesses [Sarkar et al. 2005]. Preliminary results have
been published in [Pientka 2003a], and this paper expands the theoretical results.

The paper is organized as follows: In Section 2, we present the general idea of
higher-order substitution trees. In Section 3 we give the theoretical background. In
Section 5, we give algorithms for computing the most specific linear generalization
of two terms and inserting terms into the index. Retrieval is discussed in Section

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 3

6. We conclude with summarizing the results and related work.

2. HIGHER-ORDER SUBSTITUTION TREES

We illustrate the general idea of substitution tree indexing using a first-order ex-
ample and then focus on indexing of higher-order terms. In particular, we highlight
some of the subtle issues concerning the interplay of bound and meta-variables

Example 1. To illustrate the basic idea consider the example of equality trans-
formations for propositional logic, described by A ⇔ B. In the logical framework
Twelf [Pfenning and Schürmann 1999], we first declare constructors for propositions
such as conjunction, implication, disjunction and negation as follows.

prop: type.

and: prop -> prop -> prop. or: prop -> prop -> prop.

imp: prop -> prop -> prop. neg: prop -> prop.

Next, we present some standard equivalence preserving transformations on propo-
sitions together with their encoding in the logical framework Twelf.

A ⇔ B

e1 : ¬(A ∧ B) ⇔ (¬A) ∨ (¬B).
e2 : (A ⊃ B) ⇔ (¬A) ∨ B.
e3 : (¬(A ∨ B) ⇔ ((¬A) ∧ (¬B)).

eq : prop → prop → type.

e1 : eq (not (and A B)) (or (not A) (not B)).
e2 : eq (imp A B) (or (not A) B).
e3 : eq (not (or A B) (and (not A) (not B)).

First, we define a type family eq which represents the judgment for equivalence
preserving transformation between two propositions. Next, we represent each equiv-
alence transformation. As we see, the three transformations share quite a lot of
structure. For example, e1 and e2 share the same structure in the second argument,
namely (or (not A) 2) where 2 denotes a whole in the term. Our intention is to
share common structure of terms in order to share common operations. For example
when checking whether a term U is already in the index, we only want to compare
once against the skeleton (or (not A) 2). To achieve this, we compute the most
specific generalization between the given terms. For example. the most specific
generalization of the first and second clause stated is, eq i1 (or (not A) i2) where
we can obtain the clause e1 by instantiating i1 with (not (and A B)) and i2 with
(not B). Similarly, we can obtain the clause e2 by instantiating i1 with (imp A B)
and i2 with B. i0,i1, i2, . . . denote meta-variables which represent wholes in terms.
A term can be represented as a sequence of substitutions. For example, the clause
e1 can be described as [[(not (and A B))/i1, (not B)/i2]](eq i1 (or (not A) i2)).
A substitution tree is a tree where each node contains a set of substitutions. One
possible substitution tree which allows sharing of this sub-structure for the three
clauses is given below. The original clause can be obtained by composing all the
substitutions along one branch. To easily identify, which branch corresponds to
which clause, we labeled the leafs with the name of the clause.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

4 · Brigitte Pientka

(eq i1 i3)/i0

(or (not A) i2)/i1

(not (and A B))/i3,
(not B)/i2

e1

(imp A B)/i3,
B/i2

e2

(not (or A B))/i3
(and (not A) (not B))/i1

e3

Example 2. There are also well-know equivalence preserving transformation in
first-order logic and we give some involving universal quantification below.

e5 : (∀x.A(x)) ∧ B ⇔ ∀x.A(x) ∧ B
e6 : A ∧ (∀x.B(x)) ⇔ ∀x.A ∧ B(x)
e7 : A ⊃ (∀x.B(x)) ⇔ ∀x.A ⊃ B(x)

Of course these stated equality preserving transformations are only valid, if cer-
tain bound variable conditions are satisfied. For example, the first translation
requires that the bound variable x does not occur in B. These conditions are nat-
urally enforced using higher-order abstract syntax where bound variables in the
object language are represented by bound variables in the meta-language. We first
define the constructor forall with type (i → prop) → prop. The universal quanti-
fier ∀x.A(x) is then encoded as forall λx.A x and bound variables are represented
by the λ-binder. The representation of the equivalence preserving transformations
is given below.

e5 : eq (and (forall λx.A x) B) (forall λx.(and (A x) B)).
e6 : eq (and A (forall λx.B x)) (forall λx.(and A (B x))).
e7 : eq (imp A (forall λx.B x)) (forall λx.(imp A (B x))).

In the higher-order setting, meta-variables denote a closed instance of terms. A

in the first translation denotes a function which is applied to x, B however denotes
an atomic proposition, and hence cannot depend on the bound variable x. As
this example illustrates, bound variable dependencies are naturally and elegantly
encoded in this higher-order setting. To highlight the common structure between
the three transformation, we have spaced each line.

Inspecting the four given clauses closely, we observe that they share a lot of struc-
ture. For example clause e5 and e6 “almost” agree on the second argument. Our
goal is to share common structure of terms in order to share common operations
even below a binder. This means for example that we would like to share the term
forall λx.2 where 2 is once instantiated with and (A x) B to obtain the terms e5
and e6 and secondly instantiated with (imp A (B x)) to obtain e7. Note that 2 is
instantiated with open terms which are allowed to refer to the bound variable x.
Our indexing structure supports such sharing of expressions even in the presence
of binders and allows instantiations with open terms, i.e. terms which may contain
bound variables. This is unlike the first-order case where holes were always instan-
tiated with closed terms. To achieve this, we characterize holes as a closure of a
meta-variable i together with a delayed substitution. This substitution precisely
characterizes the dependencies we allow when instantiating the meta-variable with

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 5

an open term. For example, forall λx.2 is denoted by forall λx.i[x/y] where i

is a meta-variable and [x/y] is a post-poned substitution. When we instantiate the
meta-variable i with and (A y) B we will apply the substitution [x/y] which essen-
tially renames the variable y to x, and yields as a final result forall λx.and (A x) B.

Associating meta-variables with a postponed substitution is a known technique
from explicit substitution calculus. Instead of using the explicit substitution cal-
culus based in de Bruijn indices [Abadi et al. 1990; Dowek et al. 1995], we use the
contextual modal type theory [Nanevski et al. 2006] as a foundation which pro-
vides a high-level explanation of meta-variables. Characterizing holes in terms as a
closure of meta-variable and a post-poned substitution will allow us to instantiate
holes using first-order replacement.

To insert these three clauses into a substitution tree, we need to compute the most
specific common generalization. To do this in a simple manner, we first translate
them into linear higher-order patterns[Pientka and Pfennning 2003]. Linear higher-
order patterns refine the notion of higher-order patterns [Miller 1991b; Pfenning
1991] where every meta-variable must be applied to some distinct bound variables
in two ways: First, linear higher-order patterns require that every meta-variable
occurs only once and in addition every meta-variable is applied to all distinct bound
variables in its context. This observation to restrict higher-order patterns even
further to patterns where meta-variables must be applied to all bound variables has
also been made by Hanus and Prehofer [Hanus and Prehofer 1999] in the context of
higher-order functional logic programming. While Hanus and Prehofer syntactically
disallow terms which are not fully applied, we translate any term into a linear
higher-order pattern together with some variable definitions. Maintaining these
two conditions yield a simple algorithm and allows us to delay the occurs check and
any other complicated conditions involving bound variable occurrences.

As we observe, none of the above clauses fulfills this stringent condition. For
example, in eq (and (forall λx.A x) B) (forall λx.(and (A x) B) the meta-
variable B does not depend on the bound variable x in (forall λx.(imp (A x) B))
although it occurs within the scope of the binder x. Hence, B is not a linear higher-
order pattern, since it is not applied to all bound variables in whose scope it occurs.
In addition, the meta-variable A occurs twice. Before inserting the clauses into a
substitution tree, we therefore first linearize terms by eliminating any duplicate
occurrences of meta-variables, and replacing any meta-variable which is not fully
applied with one which is. The program after linearization is shown next:

e5 : eq (and (forall λx.A x) B) (forall λx.and (A′
x) (B′ x)).

∀x.(A′ x)
.
= (A x) ∧ B

′
x

.
= B

e6 : eq (and A (forall λx.B x)) (forall λx.and (A′ x) (B′x)).
∀x.(A′ x)

.
= A ∧ B

′
x

.
= (B x)

e7 : eq (imp A (forall λx.B x)) (forall λx.(imp (A′ x) (B′ x))).
∀x.(A′ x)

.
= A ∧ B

′
x

.
= (B x)

We view linearization as a standardization step, which is also in a simpler form
present in first-order indexing techniques. In the first-order setting, terms are
linearized and duplicate occurrences of meta-variables are factored out in order to
postpone the occurs check. Our notion of liner higher-order patterns establishes a

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

6 · Brigitte Pientka

criteria with the same intentions of factoring out expensive operations in the higher-
order setting. Together with the linear term, we simply store variable definitions,
which establish the equality between these two meta-variables.

Now even more sharing becomes apparent. For example, the clauses e5 and e6

agree upon the last argument. We now compute the most specific generalization
between these clauses, and can build up a substitution tree. Each node in the
substitution tree contains a set of substitutions, and variable definitions which
resulted from linearizing terms are found at the leafs.

eq i2[.] (forall λx.i1[x/y])/i0

(and (A′ y) (B′ y))/i1
(and (i3[.]) (i4[.]))/i2

(forall λx.A x)/i3,
B/i4

∀x.A′ x
.
= A x ∧

∀x.B′ x
.
= B

e6

A/i3,
(forall λx.(B x))/i4

∀x.A′ x
.
= A ∧

∀x.B′ x
.
= B x

e5

(imp (A′ y) (B′ y))/i1
(imp (forall λx.A x) B)/i2

∀x.A′ x
.
= A x ∧

∀x.B′ x
.
= B

e7

3. BACKGROUND

3.1 Contextual modal type theory

In this section we briefly introduce a typed lambda-calculus with first-class meta-
variables which allows the instantiation of meta-variables with open terms. Previ-
ously, we have used the contextual modal type theory as a foundation for describing
linear higher-order pattern unification for example [Pientka and Pfennning 2003;
Pientka 2003b].

Normal Kinds K ::= type | A→ K
Atomic Types P,Q ::= a · S
Normal Types A,B,C ::= P | A→ B

Atomic Objects R ::= H · S | u[σ]
Normal Objects M,N ::= λx.M | R

Head H ::= x | c
Spines S ::= nil |M ;S

Contexts Γ,Ψ ::= · | Γ, x:A
Substitutions σ ::= . | σ,N/x | σ,R//x

Modal Contexts ∆ ::= · | ∆, u::P [Ψ]

Signatures Σ ::= · | Σ, a:K | Σ, c:A

We base our description of the simply typed lambda-calculus on a variant of
the contextual modal type theory as presented in [Nanevski et al. 2006]. Our
presentation uses a spine notation [Iliano Cervesato 2003] which makes it more
natural and elegant to present algorithms and we enforce terms to be in normal
form by exploiting a presentation technique due to Watkins et al. [Watkins et al.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 7

2002]. We follow a bi-directional type checking approach. In order to achieve this
we divide the term calculus into atomic objects R and normal objects M . We start
by defining a simply typed version of logical frameworks.

Contexts Γ and Ψ contain only declarations x:A where A is normal, all terms
occurring in substitutions σ are either normal (in N/x) or atomic (in R//x), and
so on. Finally, while the syntax only guarantees that terms N are normal (that
is, contain no β-redexes), the typing rules will in addition guarantee that all well-
typed terms are fully η-expanded. The modal context ∆ contains declaration of
meta-variables u::P [Ψ]. We enforce that all meta-variables occurring in well-typed
terms must be of atomic type, i.e. they are lowered. This can always be achieved.

Signatures declare global constants and never change in the course of a typing
derivation. We therefore suppress the signatures throughout. Typing at the level
of objects is divided into three judgments:

∆; Γ `M ⇐ A Check normal object M against canonical A
∆; Γ ` R⇒ P Synthesize atomic P for atomic object R
∆; Γ ` S > A⇒ P Synthesize atomic P for spine S and canonical A
∆; Γ ` σ ⇐ Ψ Check σ against Ψ

We always assume that ∆ and Γ and the subject (M , R, or σ) are given, and
that the contexts ∆ and Γ contain only canonical types. For synthesis R ⇒ P we
assume R is given and we generate an atomic type P . Similar judgments hold for
kinds which we omit here.

Normal objects

∆; Γ, x:A `M ⇐ B

∆; Γ ` λx.M ⇐ A→ B
Lam

∆; Γ ` R ⇒ P ′ P ′ = P

∆; Γ ` R ⇐ P
⇒⇐

Atomic objects

∆; Γ, x:A,Γ′ ` S > A⇒ P

∆; Γ, x:A,Γ′ ` x · S ⇒ P
var

c:A ∈ Σ ∆; Γ ` S > A⇒ P

∆; Γ ` c · S ⇒ P
con

∆, u::P [Ψ],∆′; Γ ` σ ⇐ Ψ

∆, u::P [Ψ],∆′; Γ ` u[σ] ⇒ P
mvar

Spines

∆; Γ ` S > B ⇒ P ∆; Γ `M ⇐ A

∆; Γ `M ; S > A→ B ⇒ P
Scons

∆; Γ ` nil > P ⇒ P
Snil

In general, introduction forms for a type constructor break down a type when
read from the conclusion to the premise. This means if the type in the conclusion
is given, we can extract the type for the premise, and therefore introduction forms
should be checked against a type. Conversely, elimination forms break down the
type when read from premise to conclusion. This means if the type in the premise
can be synthesized, we can extract the component type for the conclusion, and
therefore elimination forms should synthesize their type.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

8 · Brigitte Pientka

When checking a normal object that happens to be atomic (that is, has the form
R) against a type P we have to synthesize the type for R and compare it with
P . Since all synthesized types are canonical, this comparison is simple syntactic
equality for simple types.

The rules for ordinary variables and constants are as usual. For meta-variables we
need to be careful about directions and dependencies. We will enforce that meta-
variables are lowered, i.e. they must be of atomic type P . While u[σ] synthesizes
a type, we need the type of u, namely P [Ψ] so we can check σ against Ψ. Some
renaming is left implicit here, as the variables in the domain of σ should match
the variables declared in Ψ. Moreover, we need to apply σ to transport A from Ψ
(upon which it may depend) to Γ.

Theorem 3.1 Decidability of type checking. All judgments in the simply

typed contextual modal type theory are decidable.

Proof. The typing judgments are syntax-directed and therefore clearly decid-
able.

Since our description of substitution trees relies on a concise notion of substitu-
tion, we carefully define ordinary substitution for ordinary variables and contextual
substitutions for meta-variables.

3.2 Substitution on Terms

In this section we start with defining the operations of substitution on terms. The
substitution function we need must construct canonical terms, since those are the
only ones that are well-formed and the only ones of interest. Hence, in places
where the ordinary substitution operation would create a redex, in particular when
applying the substitution [M/x] to a term x · S, we must apply the substitution
[M/x] to the spine S, but we also must reduce the redex (M · [M/x]S) which would
be created. Since when applying [M/x] to the spine S, we again may encounter
situations which require us to contract a redex, the substitution [M/x] must be
hereditary. We therefore call this operation hereditary substitution.

This technique is due to Watkins et. al. where it has been used to describe
canonical version of logical framework. Here we demonstrate that this technique
is in fact very general and even useful in the simply typed setting. The main
difficulty in defining hereditary substitutions is that this operation could easily fail
to terminate. Consider for example the term which arises when computing the
normal form of (λy.y y) (λx.x x). Clearly, on well-typed terms this should not
occur.

We define hereditary substitutions as a primitive recursive functional where we
pass in the type of the variable we substitute for. This will be crucial in determin-
ing termination of the overall substitution operation. If we herditarily substitute
[λy.M/x](x · S), then if everything is well-typed, x : A1 → A2 for some A1 and A2

and we will write [λy.M/x]A1→A2
(x · S) indexing the substitution with the type

for x. These will all be total operations since any side condition can be satisfied
by α-conversion. First, we present the ordinary capture-avoiding substitution for a
single variable, [M/x]AN , [M/x]AS, and[M/x]Aσ.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 9

[M/x]A(λy.N) = λy.N ′ where N ′ = [M/x]AN
choosing y 6∈ FV(M) and y 6= x

[M/x]A(u[σ]) = u[σ′] where σ′ = [M/x]Aσ
[M/x]A(c · S) = c · S′ where S′ = [M/x]AS
[M/x]A(x · S) = reduce(M : A,S ′) where S′ = [M/x]AS
[M/x]A(y · S) = y · S′ if y 6= x and S′ = [M/x]AS

[M/x]A(nil) = nil

[M/x]A(N ;S) = N ′;S′ where N ′ = [M/x]AN and S′ = [M/x]AS

[M/x]A(·) = ·
[M/x]A(σ,N/y) = (σ′, N ′/y) where σ′ = [M/x]Aσ and N ′ = [M/x]AN
[M/x]A(σ,R//y) = (σ′, R′//y) where σ′ = [M/x]Aσ and R′ = [M/x]AR
[M/x]A(σ,R//y) = (σ′, N ′/y) where σ′ = [M/x]Aσ and N ′ = [M/x]AR

Inductive definition for substituting an atomic term R for a variable x is straight-
forward.

reduce(λy.M : A1 → A2, (N ;S)) = M ′′ where [N/y]A1
M = M ′

and reduce(M ′ : A2, S) = M ′′

reduce(R : P, nil) = R
reduce(M : A,S) fails otherwise

Substitution may fail to be defined only if substitutions into the subterms are
undefined. The side conditions y 6∈ FV(M) and y 6= x do not cause failure, because
they can always be satisfied by appropriately renaming y. However, substitution
may be undefined if we try for example to substitute an atomic term R for x in
the term x · S where the spine S is non-empty. Similarly, the reduce operation
is undefined. The substitution operation is well-founded since recursive appeals
to the substitution operation take place on smaller terms with equal type A, or
the substitution operates on smaller types (see the case for reduce(λy.M : A1 →
A2, (N ;S))).

The first property states that the hereditary substitution operations terminate,
independently of whether the terms involved are well-typed or not. The operation
may fail, in particular if we have ill-typed terms, or yield a canonical term as a
result.

Theorem 3.2 Termination. [M/x]A(N), [M/x]AR, [M/x]Aσ, reduce(M : A,S)
terminates, either by returning a result or failing after a finite number of steps.

Proof. This can be verified by a nested induction, first on the structure of A,
and second on the structure of the term we apply hereditary substitution to or the
term S we apply to M : A in the case for reduce.

Theorem 3.3 Substitution on Terms.

(1) If ∆; Γ `M ⇐ A and ∆; Γ, x:A,Γ′ ` N ⇐ C and [M/x]AN = N ′

then ∆; Γ,Γ′ ` N ′ ⇐ C.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

10 · Brigitte Pientka

(2) If ∆; Γ `M ⇐ A and ∆; Γ, x:A,Γ′ ` R ⇒ P and R′ = [M/x]AR
then ∆; Γ,Γ′ ` R′ ⇒ P .

(3) If ∆; Γ `M ⇐ A and ∆; Γ, x:A,Γ′ ` S > B ⇒ P and S′ = [M/x]AS
then ∆; Γ,Γ′ ` S′ > B ⇒ P .

(4) If ∆; Γ `M ⇐ A and ∆; Γ ` S > A⇒ P
then reduce(M : A,S) = R and ∆; Γ ` R ⇒ P ′ and P ′ = P .

(5) If ∆; Γ `M ⇐ A and ∆; Γ, x:A,Γ′ ` σ ⇐ Ψ and σ′ = [M/x]Aσ
then ∆; Γ,Γ′ ` σ′ ⇐ Ψ.

Proof. By simultaneous induction on the definition of substitution, structure
of the type A occurring in the type annotation of the substitution [M/x]A or
reduce(M : A,S) and the second derivation. Either we apply the substitution to a
smaller term, or the type A is decreasing or the second derivation is decreasing.

3.3 Simultaneous Substitutions

The ideas underlying the definition of substitutions in the previous section can be
extended to capture simultaneous substitutions. The substitution is again heredi-
tary.

∆; Γ ` (·) ⇐ (·)

∆; Γ ` σ ⇐ Ψ ∆; Γ `M ⇐ A

∆; Γ ` (σ,M/x) ⇐ (Ψ, x:A)

∆; Γ ` σ ⇐ Ψ ∆; Γ ` R ⇒ A′ A′ = A

∆; Γ ` (σ,R//x) ⇐ (Ψ, x:A)

Besides M/x for canonical M , there is a second way to construct a substitution
to replace a variable by an atomic term R, written R//x. This is justified from the
nature of hypothetical judgments, since an assumption x:A represents x ⇒ A so
we can substitute R for x if R ⇒ A1.

Substitutions R//x are necessary so that we can extend a given substitution with
x//x when traversing a binding operator in a type-free way. We could not extend
substitutions with x/x, since x is not a canonical term unless it is of atomic type.
Identity substitutions can now have the form x1//x1, . . . , xn//xn.

Next we define simultaneous substitution [σ]M and [σ]τ . It is only total when the
substitution σ is defined on all free variables in M and τ , respectively. This will be
satisfied, because simultaneous substitution is only applied when the assumptions
of the theorem following this definition are satisfied. Simultaneous substitutions
commute with the term constructors, as one would expect. Just as we annotated
the substitution [M/x]A with the type of the variable x, we will annotate the
simultaneous substitution σ with an approximation ψ of its domain Ψ where in
fact the type for variables which will be replaced by atomic terms can be omitted.
The intuition is that simultaneous substitution may contain substitutions such as
x//x and the type of x may not always be available to extend the context annotation
(see the case for [σ]ψ(λy.M)).

1In fact, R must be of atomic type.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 11

[σ]ψ(λy.N) = λy.N ′ where N ′ = [σ, y//y]ψ,y: (N)
choosing y 6∈ FV(σ), dom(σ)

[σ]ψ(c · S) = c · S′ where [σ]ψ(S) = S′

[σ]ψ(x · S) = R′ where [σ]ψ(S) = S′, M/x ∈ σ and x:A ∈ Ψ,
and R′ = reduce(M : A,S′)

[σ]ψ(x · nil) = R where R//x ∈ σ and x: ∈ Ψ or x:A ∈ Ψ
[σ]ψ(v[τ]) = v[τ ′] where τ ′ = [σ]ψ(τ)

[σ]ψ(R) fails otherwise

[σ]ψ(·) = ·
[σ]ψ(τ,N/y) = (τ ′, N ′/y) where τ ′ = [σ]ψ(τ) and N ′ = [σ]ψ(N)
[σ]ψ(τ, R//y) = (τ ′, R′//y) where τ ′ = [σ]ψ(τ) and [σ]ψ(R) = R′

[σ]ψ(τ, R//y) = τ ′,M ′/y if [σ]ψ(R) = M ′ : α′ with τ ′ = [σ]ψ(τ)
[σ]ψ(τ) fails otherwise

The definition of simultaneous substitutions is a straightforward extension of the
ordinary substitution described earlier. The only difficulty is that we sometimes
need to rename the domain of a substitution to match a given context. When
σ = (M1/x1, . . . ,Mn/xn) and Ψ = (y1:A1, . . . , yn:An) then we will rename the
domain of the substitution σ by writing σ/Ψ = (M1/y1, . . . ,Mn/yn).

Simultaneous substitutions satisfy the simultaneous substitution principle, an-
notated with proof terms. The second property amounts to composition of the
substitutions τ and σ.

Theorem 3.4 Simultaneous Substitution on Terms.

(1) If ∆; Γ ` σ ⇐ Ψ and ∆; Ψ ` N ⇒ C and [σ]ψN = N ′ then ∆; Γ ` N ′ ⇒ C.

(2) If ∆; Γ ` σ ⇐ Ψ and ∆; Ψ ` R ⇐ P and [σ]ψR = R′ then ∆; Γ ` R ⇐ P .

(3) If ∆; Γ ` σ ⇐ Ψ and ∆; Ψ ` S > A⇒ P and [σ]ψS = S′ then

∆; Γ ` S′ > A⇒ P .

(4) If ∆; Γ ` σ ⇐ Ψ and ∆; Ψ ` τ ⇐ Θ then ∆; Γ ` [σ]ψτ ⇐ Θ.

Proof. By induction on the structure of the second given derivation.

Finally, we remark that composition of hereditary substitution is written as [σ]ψτ ,
and the standard composition principles hold (see [Nanevski et al. 2006]).

Finally, we emphasize that substitutions σ are defined only on ordinary vari-
ables x and not modal variables u. We write idΓ for the identity substitution
(x1//x1, . . . , xn//xn) for a context Γ = (·, x1:A1, . . . , xn:An).

3.4 Contextual substitution

Meta-variables u[σ] give rise to new contextual substitutions, which are only slightly
more difficult than ordinary substitutions. To understand contextual substitutions,
we take a closer look at the closure u[σ] which describes the meta-variable. Recall
that the substitution σ which is associated with every meta-variable u stands for a
postponed substitution. As a consequence, we can apply σ as soon as we know which
term u should stand for. Moreover, we require that meta-variables have atomic type
P and hence, we will only substitute atomic objects for meta-variables.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

12 · Brigitte Pientka

Finally because of α-conversion, the variables that are substituted at different
occurrences of u may be different. As a result, substitution for a meta-variable
must carry a context, written as [Ψ̂.R/u]N and [Ψ̂.R/u]σ where Ψ̂ binds all free
variables in R. This complication can be eliminated in an implementation of our
calculus based on de Bruijn indexes. In general, we must again ensure that the result
is a canonical term, we will define contextual substitution herditarily following the
ideas for hereditary ordinary substitutions. Just as we annotated the substitution
[M/x]A with the type of the variable x, we will annotate the contextual substitution
[[Ψ.M/u]]A[Ψ] with the type of the meta-variable A[Ψ]. We will abbreviateA[Ψ] with
α for better readability.

[[Ψ̂.R/u]]α(λy.N) = λy.N ′ where N ′ = [[Ψ̂.R/u]]αN

[[Ψ̂.R/u]]α(c · S) = c · S′ where S′ = [[Ψ̂.R/u]]αS

[[Ψ̂.R/u]]α(x · S) = x · S′ where S′ = [[Ψ̂.R/u]]αS

[[Ψ̂.R/u]]α(u[τ]) = R′ where τ ′ = [[Ψ̂.R/u]]ατ and R′ = [τ ′/Ψ]ψR

[[Ψ̂.R/u]]α(v[τ]) = v[τ ′] where τ ′ = [[Ψ̂.R/u]]ατ and provided v 6= u

[[Ψ̂.R/u]]α(·) = ·

[[Ψ̂.R/u]]α(τ,N/y) = τ ′, N ′/y where τ ′ = [[Ψ̂.R/u]]ατ and N ′ = [[Ψ̂.R/u]]αN

[[Ψ̂.R/u]]α(τ, R′//y)α = τ ′, R′′//y where τ ′ = [[Ψ̂.R/u]]ατ and R′′ = [[Ψ̂.R/u]]αR
′

Applying [[Ψ̂.R/u]] to the closure u[τ] first obtains the simultaneous substitution
τ ′ = [[Ψ.R/u]]τ , but instead of returning R[τ ′], it proceeds to eagerly apply τ ′

to R. Before τ ′ can be carried out, however, it’s domain must be renamed to
match the variables in Ψ, denoted by τ ′/Ψ. We note that maintaining canonical
forms is easy since we enforce that every occurrence of a meta-variable must have
atomic type. While the definition of the discussed case may seem circular at first,
it is actually well-founded. The computation of τ ′ recursively invokes [[Ψ̂.R/u]]
on τ , a constituent of u[τ]. Then τ ′/Ψ is applied to R, but applying simultaneous
substitutions has already been defined without appeal to meta-variable substitution.

Substitution of a meta-variable satisfies the following contextual substitution
property.

Theorem 3.5 Contextual Substitution on Terms.

(1) If ∆; Ψ ` R ⇐ P and (∆, u::P [Ψ],∆′); Γ ` N ⇐ C
and [[Ψ̂.R/u]]N = N ′ then (∆,∆′); Γ ` N ′ ⇐ C.

(2) If ∆; Ψ ` R ⇐ P and (∆, u::P [Ψ],∆′); Γ ` R′ ⇒ P ′

and [[Ψ̂.R/u]]R′ = R′′ then (∆,∆′); Γ ` R′′ ⇒ P ′.

(3) If ∆; Ψ ` R ⇐ P and (∆, u::P [Ψ],∆′); Γ ` τ ⇐ Θ and τ ′ = [[Ψ̂.R/u]]τ then

(∆,∆′); Γ ` τ ′ : Θ.

Proof. By simple inductions on the second given derivation, appealing to The-
orem 3.4 in the case for meta-variables.

3.5 Simultaneous contextual substitution

This contextual substitution can be extended to a simultaneous contextual substi-
tution in a similar way we extended ordinary substitutions to simultaneous substi-

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 13

tutions

Simultaneous contextual substitutions θ ::= · | θ, Ψ̂.R/u

We write θ for a simultaneous substitution [[Ψ̂1.R1/u1, . . . , Ψ̂n.Rn/un]]. We first
define typing rules for simultaneous contextual substitutions.

∆ ` (·) ⇐ (·)

∆; Ψ ` R⇐ P ∆ ` θ ⇐ ∆′

∆ ` (θ, Ψ̂.R/u) ⇐ (∆′, u::P [Ψ])

The new operation of substitution is compositional, but two interesting situations
arise: when a variable u is encountered, and when we substitute into a λ-abstraction.
We again annotated the simultaneous contextual substitution [[θ]]∆ with its domain.

Objects
[[θ]]∆(λy.N) = λy.N ′ where N ′ = [[θ]]∆N

[[θ]]∆(c · S) = c · S′ where S′ = [[θ]]∆S
[[θ]]∆(x · S) = x · S′ where S′ = [[θ]]∆S

[[θ]]∆(u[σ]) = R where θ = (θ1, Ψ̂.R/u, θ2) and σ′ = [[θ]]∆(σ)
and R′ = [σ′]ψR where u::P [Ψ] ∈ ∆

Ordinary Substitutions
[[θ]]∆(·) = ·
[[θ]]∆(σ,N/y) = (σ′, N ′/y) where σ′ = [[θ]]∆σ and N ′ = [[θ]]∆N
[[θ]]∆(σ,R//y) = (σ′, R′//y) where σ′ = [[θ]]∆σ and R′ = [[θ]]∆R

We remark that the rule for substitution into a λ-abstraction does not need to
extend the substitution θ nor does it need any other restrictions. This is because
the object R is defined in a different context, which is accounted for by the explicit
substitution stored at occurrences of u. Finally, consider the case of substituting
into a closure, which is the critical case of this definition.

[[θ]]∆(u[σ]) = R′ where θ = (θ1, Ψ̂.R/u, θ2) and σ′ = [[θ]]∆(σ)
and R′ = [σ′]ψR where u::P [Ψ] ∈ ∆

This is clearly well-founded, because σ is a subexpression (so [[R/u]]σ will termi-
nate) and the application of an ordinary substitution has been defined previously
without reference to the new form of substitution.

Similar to composition of ordinary substitution, composition for contextual sub-
stitutions holds (see [Nanevski et al. 2006]).

3.6 Pattern substitutions

An important fragment of higher-order terms, is the pattern fragment. While in
general many algorithms such as unification are undecidable in the general higher-
order case, these operations become decidable with suitable restrictions to patterns

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

14 · Brigitte Pientka

[Miller 1991a]. Higher-order patterns are terms where meta-variables must be ap-
plied to distinct bound variables. In our setting, this means that substitution σ
which is associated with the meta-variable u[σ] must be a pattern substitution of
the form [xφ(1)//x1, . . . , xφ(n)//xn]. In other words the pattern substitution is just
a renaming of variables.

When we consider only closures of meta-variables together with pattern substi-
tutions then applying the modal substitution θ to a term M will directly yield a
canonical term and it is unnecessary to annotate [[θ]]M with the domain of θ. In
the subsequent development, we therefore omit this annotation.

Finally, we note that applying a modal substitution θ to a pattern substitution σ
does not change σ itself, since the range of σ refers only to bound variables, while
θ refers to modal variables.

Lemma 3.6.

If ∆′ ` θ : ∆ and σ is a pattern substitution, s.t. ∆; Γ ` σ : Ψ then [[θ]]∆(σ) = σ

Proof. Induction on the structure of σ

4. HIGHER-ORDER SUBSTITUTION TREES

Higher-order substitution trees are designed for linear higher-order patterns and
are built with contextual substitutions. Recall the example given earlier, where
we described equality preserving transformations on logical propositions. One such
transformation was the following:

eq (and (forall λx.A x) B) (forall λx.(and (A x) B)).

In this example, A and B denote meta-variables which are present in the original
query, while x denotes an ordinary bound variable. In our contextual modal type
theory, this term would be represented as follows:

eq (and (forall λx.u[x/y]) v[·]) (forall λx.(and (u[x/y]) v[·])).

The meta-variables u[x/y] and v[·] directly encode the dependencies which must
be obeyed. As we can see, the meta-variable v[·] is not fully applied, since the sub-
stitution associated with the meta-variable v is empty although v[·] occurs within
the scope of a λ-binder. Hence we translate this term into:

eq (and (forall λx.u[x/y]) v[·]) (forall λx.(and (u[x/y]) w[x/y]))
where w[x/y]

.
= v[·]

When computing the most specific generalization between two terms to build
the substitution tree, we will create internal meta-variables. For example, i3[·] and
i4[·] are internal meta-variables in

eq (and (i3[.]) (i4[.])) (forall λx.(and (u[x/y]) (w[x/y]))).

In the definition of higher-order substitution trees we will distinguish between a
modal context ∆ which denotes the original meta-variables such as u, v, and w, a

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 15

modal context Σ for the internal meta-variables i3 and i4, and a context Γ denoting
ordinary variables. A higher-order substitution tree is an ordered n-ary tree.

(1) A node with a contextual substitution ρ such that ∆ ` ρ⇐ Σ and no children
is called a leaf and is a tree.

(2) If N1, . . . , Nn are trees such that for every i, Ni has a substitution ρi, such that
(∆,Σi) ` ρi ⇐ Σ, and a list of children Ci,
then a node with a contextual substitution ρ, such that (∆,Σ) ` ρ ⇐ Σ′, and
children N1, . . . , Nn is a tree.

First we note that the domain of a contextual substitution (∆,Σ) ` ρ⇐ Σ′, can
be extended to the domain (∆,Σ′) by extending ρ with the contextual identity sub-
stitution id∆. Then for every path from the top node ρ0 where (∆,Σ1) ` (id∆, ρ0) :
(∆,Σ0) to the leaf node ρn, we have ∆ ` [[id∆, ρn]]([[id∆, ρn−1]] . . . (id∆, ρ0)) :
(∆,Σ0). In other words, there are no internal meta-variables left after we com-
pose all the substitutions ρn up to ρ0. We assume that all meta-variables occurring
in one path are unique, and are fully applied, i.e. every meta-variable u::P [Ψ] where
Ψ = x1:A1, . . . , xn:An is applied to all the bound variables in Ψ.

Note that there are no typing dependencies among the variables in Σ and they
can be arbitrarily re-ordered. Moreover, we point out that while it is convenient to
consider the extended modal substitution (id∆, ρi) in the theory, we do not need to
carry around explicitly the contextual substitution id∆ in an implementation, but
can always assume that any substitution ρi can be extended appropriately.

The algorithms for insertion and retrieval in substitution trees are based on most
specific linear generalization (mslg) and unifiability. Types themselves do not play
a role when computing the mslg and unifiers. However, we assume the term is
well-typed before it is inserted into the substitution tree, and we will show that the
term can be decomposed into contextual substitutions such that their composition
results in the original term.

5. INSERTION

Insertion of a term R into the index is viewed as insertion of the substitution
Ψ̂.R/i0. Assuming that R has type P in a modal context ∆ and a bound variable
context Ψ. Ψ̂.R/i0 is a contextual substitution such that ∆ ` Ψ̂.R/i0 ⇐ i0::P [Ψ].
This will simplify the following theoretical development. Again we note that we
do not need to carry around explicitly the contextual substitution id∆, but can
always assume that any substitution can be extended appropriately. The insertion
process works by following down a path in the tree that is compatible with the
contextual substitution ρ. To formally define insertion, we first describe the most
specific linear generalization of two objects, and then show how to compute the
most specific linear generalization (mslg) of two contextual substitutions.

5.1 Most specific generalization of two linear objects

Computing the most specific linear generalization of two contextual substitutions
relies on finding the most specific linear generalization of two objects. Recall that
we require that all objects are linear higher-order patterns and are in canonical
forms. Moreover, we assume that all meta-variables are lowered and have atomic

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

16 · Brigitte Pientka

type. We define the computation of the most specific linear generalization of two
terms next.

(∆,Σ); Γ ` M1 tM2 : A =⇒M/(Σ′, θ1, θ2) M is the mslg of M1 and M2

(∆,Σ); Γ ` R1 tR2 : P =⇒ R/(Σ′, θ1, θ2) R is the mslg of R1 and R2

(∆,Σ); Γ ` S1 tS2 : A > P =⇒ S/(Σ′, θ1, θ2) S is the mslg of S1 and S2

If the canonical terms M1 and M2 have type A in modal context (∆,Σ) and
bound variable context Γ, then M is the most specific linear generalization of M1

and M2 such that [[θ1]]M is equal to M1 and [[θ2]]M is equal to M2. Moreover, θ1
and θ2 are contextual substitutions which map meta-variables from Σ′ to the modal
context (∆,Σ). Finally, (∆,Σ′); Γ ` M ⇐ A. Similar invariant holds for atomic
terms and spines. If S1 and S2 are spines from heads of type A to terms of type P ,
then S is the mslg of S1 and S2 such that [[θ1]]S is equal to S1 and [[θ2]]S is equal
to S2. θ1 and θ2 are contextual substitutions which map meta-variables from Σ′ to
the modal context (∆,Σ).

We think of M1 (R1, or S1) as an object which is already in the index and M2

(R2, or S2) is the object to be inserted. As a consequence, only M1 (R1, and S1)
may refer to the internal variables in Σ, while M2 (R2, and S2) only depends on
∆. In defining the most specific linear generalization, we distinguish between the
the internal meta-variables i and the global meta-variables u in the rules, because
the play different roles. The inference rules for computing the mslg are given next.

Normal linear objects

(Σ,∆); Γ, x:A1 `M1 tM2 : A2 =⇒M/(Σ′, θ1, θ2)

(∆,Σ); Γ ` λx.M1 t λx.M2 : A1 → A2 =⇒ λx.M/(Σ′, θ1, θ2)
a-lam

(∆,Σ); Γ ` R1 tR2 : P =⇒ R/(Σ′, θ1, θ2)

(∆,Σ); Γ ` R1 t R2 : P =⇒ R/(Σ′, θ1, θ2)
a-coe

In the rule for lambda, we do not need to worry about capture, since meta-
variables and bound variables are defined in different context. Hence, we can just
traverse the body of the lambda-term. Next, we consider the rules for neutral
objects.

Atomic linear objects
u::P [Ψ]) ∈ ∆

(∆,Σ); Ψ ` u[πψ]t u[πψ] : P =⇒ u[πψ]/(·, ·, ·)
a-mvar-same

u::P [Ψ] ∈ ∆ i must be new R 6= u[π]

(∆,Σ); Ψ ` u[πψ]tR : P =⇒ i[idψ]/(i::P [Ψ], Ψ̂.u[πψ]/i, Ψ̂.R/i)
a-mvar-diff-1

u::P [Ψ] ∈ ∆ R 6= i0[idψ] for some i0 R 6= u[π] i must be new

(∆,Σ); Ψ ` Rt u[πψ] : P =⇒ i[idψ]/(i::P [Ψ], Ψ̂.R/i, Ψ̂.u[π]/i)
a-mvar-diff-2

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 17

i::P [Ψ] ∈ Σ

(∆,Σ); Ψ ` i[idψ]tR : P =⇒ i[idψ]/(i::P [Ψ], Ψ̂.i[idψ]/i, Ψ̂.R/i)
a-ivar

(∆,Σ); Ψ ` S1 tS2 : A > P =⇒ S/(Σ′, θ1, θ2) x:A ∈ Ψ

(∆,Σ); Ψ ` x · S1 tx · S2 : P =⇒ x · S/(Σ′, θ1, θ2)
a-var

(∆,Σ); Ψ ` S1 tS2 : A > P =⇒ S/(Σ′, θ1, θ2) c:A ∈ Σ

(∆,Σ); Ψ ` c · S1 t c · S2 : P =⇒ c · S/(Σ′, θ1, θ2)
a-con

H1 · S1 = R1 R2 = H2 · S2 H1 6= H2 i must be new

(∆,Σ); Ψ ` R1 tR2 : P =⇒ i[idψ]/((i::P [Ψ]), Ψ̂.R1/i, Ψ̂.R2/i))
a-diff

Normal linear spines

(∆,Σ); Ψ ` nilt nil : P > P =⇒ nil/(·, ·, ·)
a-nil

(∆,Σ); Ψ `M1 t M2 : A1 =⇒M/(Σ1, θ1, θ2)
(∆,Σ); Ψ ` S1 t S2 : A2 > P =⇒ S/(Σ2, θ

′

1, θ
′

2)
and Σ′ = (Σ1,Σ2) θ = (θ1, θ

′

1) θ′ = (θ2, θ
′

2)

(∆,Σ); Ψ ` (M1;S1)t (M2;S2) : A1 → A2 > P =⇒ (M ;S)/(Σ′, θ, θ′)
a-cons

Rule a-mvar-same treats the case where both terms are meta-variables. Note that
we require that both meta-variables must be the same and their associated substitu-
tions must also be equal. In the rule a-mvar-diff-1 and a-mvar-diff-2, we just create
the substitution Ψ̂.u[πψ]/i. In general, we would need to create [idψ]−1 (u[πψ]),

but since we know that π is a permutation substitution, we know that [idψ]
−1

(π)
always exists. In addition, the inverse substitution of the identity is the identity.
The different roles of meta-variables u and internal meta-variables i becomes clear
in the rules above. In a-mvar-diff-1 and a-mvar-diff-2 we pick a new internal meta-
variable i while we re-use the internal meta-variable i in rule a-ivar. If we encounter
a meta-variable u and another object R then we generalize and generate a new
internal meta-variable i. However, when we encounter an internal meta-variable i
and another object R, we do not generate a new internal meta-variable, because i
will be defined later on in the branch of the substitution tree, and we will need to
continue to insert R into the tree. This is important for maintaining the invariant
that any child of (∆,Σ2) ` ρ⇐ Σ1 has the form (∆,Σ3) ` ρ

′ ⇐ Σ2 during insertion
(see the insertion algorithm later on).

In rule a-var, a-con, and a-diff, we distinguish on the head symbol H and compute
the most specific linear generalization of two objects H1 ·S1 and H1 ·S1. If H1 and
H2 are not equal, then we generate a new internal meta-variable i[idψ] together with

the substitutions Ψ̂.(H1 · S1)/i and Ψ̂.(H2 · S2)/i (see a-diff rule). Otherwise, we
traverse the spines S1 and S2 and compute the most specific linear generalization
of them (see rules a-var and a-con). Finally the rules for computing the most
specific generalization of two spines are straightforward. We compute the mslg of
all the sub-expressions, and just combine the substitution θ1 and θ′1 and θ2 and θ′2
respectively. As we require that all meta-variables occur uniquely, and hence there

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

18 · Brigitte Pientka

are no dependencies among Σ1 and Σ2.

Definition 5.1 Compatibility of neutral objects.

If (∆,Σ); Ψ ` R1 tR2 : P =⇒ i[idψ]/(i::P [Ψ], Ψ̂.R1/i, Ψ̂.R2/i), then two neutral
objects R1 and R2 are called incompatible. Otherwise, we call R1 and R2 compat-
ible.

In other words, we call two terms compatible, if they share at least the head
symbol or a λ-prefix. We are now ready to prove correctness of the algorithm for
computing the most specific linear generalization of higher-order linear patterns.

Theorem 5.2 Soundness of mslg for objects.

(1) If (∆,Σ); Γ `M1 tM2 : A =⇒M/(Σ′, θ1, θ2) and

(∆,Σ); Γ `M1 ⇐ A and (∆,Σ); Γ `M2 ⇐ A
then (∆,Σ) ` θ1 ⇐ Σ′ and (∆,Σ) ` θ2 ⇐ Σ′ and

M1 = [[θ1]]M and M2 = [[θ2]]M and (∆,Σ′); Γ `M ⇐ A .

(2) If (∆,Σ); Γ ` R1 tR2 : P =⇒ R/(Σ′, θ1, θ2) and

(∆,Σ); Γ ` R1 ⇒ P1 and (∆,Σ); Γ ` R2 ⇒ P2 and P1 = P2 = P
then (∆,Σ) ` θ1 ⇐ Σ′ and (∆,Σ) ` θ2 ⇐ Σ′ and

R1 = [[θ1]]R and R2 = [[θ2]]R and (∆,Σ′); Γ ` R ⇒ P ′ and P ′ = P .

(3) If (∆,Σ); Γ ` S1 tS2 : A > P =⇒ S/(Σ′, θ1, θ2) and

(∆,Σ); Γ ` S1 > A⇒ P1 and (∆,Σ); Γ ` S2 > A⇒ P2 and P2 = P = P1

then (∆,Σ) ` θ1 : Σ′ and (∆,Σ) ` θ2 : Σ′ and

(∆,Σ′); Γ ` S > A⇒ P and S1 = [[θ1]]S and S2 = [[θ2]]S.

Proof. Simultaneous induction on the structure of the first derivation. We give
here a few cases.

Case. D = (∆,Σ); Γ ` λx.M1 t λx.M2 : A1 → A2 =⇒ λx.M/(Σ′, θ1, θ2)

(∆,Σ); Γ, x:A1 `M1 tM2 : A2 =⇒M/(Σ′, θ1, θ2) by premise
(∆,Σ); Γ ` λx.M1 ⇐ A1 → A2 by assumption
(∆,Σ); Γ, x:A1 `M1 ⇐ A2 by inversion
(∆,Σ); Γ ` λx.M2 ⇐ A1 → A2 by assumption
(∆,Σ); Γ, x:A1 `M2 ⇐ A2 by inversion
(∆,Σ) ` θ1 ⇐ Σ′ by i.h.
(∆,Σ) ` θ2 ⇐ Σ′ by i.h.
M1 = [[θ1]]M by i.h.
λx.M1 = λx.[[θ1]]M by rule
λx.M1 = [[θ1]](λx.M) by contextual substitution definition
M2 = [[θ2]]M by i.h.
λx.M2 = λx.[[θ2]]M by rule
λx.M2 = [[θ2]](λx.M) by contextual substitution definition
(∆,Σ′); Γ, x:A1 `M ⇐ A2 by i.h.
(∆,Σ′); Γ ` λx.M ⇐ A1 → A2 by rule

Case. D = (∆; Σ); Γ ` R1 t R2 : P =⇒ R/(Σ′, θ1, θ2)

(∆,Σ); Γ ` R1 tR2 : P =⇒ R/(Σ′, θ1, θ2) by rule
(∆,Σ); Γ ` R1 ⇐ P by ass

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 19

(∆,Σ); Γ ` R1 ⇒ P1 and P1 = P by rule
(∆,Σ); Γ ` R2 ⇐ P by ass
(∆,Σ); Γ ` R2 ⇒ P2 and P2 = P by rule
(∆,Σ) ` θ1 ⇐ Σ′ by i.h.
(∆,Σ) ` θ2 ⇐ Σ′ and
R1 = [[θ1]]R and R2 = [[θ2]]R and (Σ′,∆); Γ ` R⇒ P ′ and P ′ = P .
(∆,Σ′); Γ ` R⇐ P by rule

Case. D = (∆,Σ); Γ ` u[π]tu[π] : P =⇒ u[π]/(·, ·, ·)

u::P [Ψ] ∈ ∆ and ∆; Γ ` π ⇐ Ψ by premise
(∆,Σ); Γ ` u[π] ⇒ P1 and P = P1 by assumption
u[π] = u[π] by reflexivity
(∆,Σ) ` · ⇐ · by rule
∆; Γ ` u[π] ⇒ P1 by rule

Case. D = (∆,Σ); Γ ` u[π]tR : P =⇒ i[idγ]/(i::P [Γ], Γ̂.u[π]/i, Γ̂.R/i)

u::P [Ψ] ∈ ∆ and ∆; Γ ` π ⇐ Ψ by premise
(∆,Σ); Γ ` u[π] ⇒ P1 and P1 = P by assumption
(∆,Σ); Γ ` R ⇒ P2 and P2 = P by assumption
(∆,Σ); Γ ` R ⇐ P by rule
(∆,Σ); Γ ` u[π] ⇐ P by rule
u[π] = [[Γ̂.u[π]/i]]i[idγ]
u[π] = u[π] by reflexivity
R = [[Γ̂.R/i]]i[idγ]
R = R by reflexivity
(∆,Σ) ` Γ̂.R/i⇐ i::P [Γ] by rule using assumption
(∆,Σ) ` u[π]/i⇐ i::P [Γ] by rule using assumption
(∆, i::P [Γ]); Γ ` idγ ⇐ Γ by definition
(∆, i::P [Γ]); Γ ` i[idγ] ⇒ P by rule
P = P by reflexivity

Case. D = (∆,Σ); Γ ` c · S1 t c · S2 : P =⇒ c · S/(Σ′, θ1, θ2)

(∆,Σ); Γ ` S1 tS2 : A > P =⇒ S/(Σ′, θ1, θ2) by premise
(∆,Σ); Γ ` c · S1 ⇒ P1 and P1 = P by assumption
(∆,Σ); Γ ` S1 > A⇒ P1 by inversion
(∆,Σ); Γ ` c · S2 ⇒ P2 and P2 = P by assumption
(∆,Σ); Γ ` S2 > A⇒ P2 by inversion
S1 = [[θ1]]S by i.h.
S2 = [[θ2]]S by i.h.
(∆,Σ) ` θ1 ⇐ Σ′ by i.h.
(∆,Σ) ` θ2 ⇐ Σ′ by i.h.
c · S1 = c · [[θ1]]S by rule
c · S1 = [[θ1]](c · S) by contextual substitution definition
c · S2 = c · [[θ2]]S by rule
c · S2 = [[θ2]](c · S) by contextual substitution definition
(∆,Σ′); Γ ` S > A⇒ P by i.h.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

20 · Brigitte Pientka

(∆,Σ′); Γ ` c · S ⇒ P by rule

Case. D = (∆,Σ); Γ ` R1 tR2 : P =⇒ i[idγ]/(i::P [Γ], Γ̂.R1/i, Γ̂.R2/i)

R1 = H1 · S1 and R2 = H2 · S2 and H1 6= H2 by inversion
(∆,Σ); Γ ` H1 · S1 ⇒ P1 and P1 = P by assumption
(∆,Σ); Γ ` H1 · S1 ⇐ P by rule
(∆,Σ); Γ ` H2 · S2 ⇒ P2 and P2 = P by assumption
(∆,Σ); Γ ` H2 · S2 ⇐ P by rule
H1 · S1 = [[Γ̂.(H1 · S1)/i]](i[idγ]) by contextual substitution definition
H1 · S1 = H1 · S1 by reflexivity
H2 · S2 = [[Γ̂.(H2 · S2)/i]](i[idγ]) by contextual substitution definition
H2 · S2 = H2 · S2 by reflexivity
(∆, i::P [Γ]); Γ ` idγ ⇐ Γ by definition
(∆, i::P [Γ]); Γ ` i[idγ] ⇒ P by rule

Case. D = (∆,Σ); Γ ` (M1;S1)t (M2;S2) : (A1 → A2) > P
=⇒ (M ;S)/(Σ′, θ, θ′)

(∆,Σ); Γ `M1 tM2 : A1 =⇒M/(Σ1, θ1, θ2) by premise
(∆,Σ); Γ ` S1 tS2 : A2 > P =⇒ S/(Σ2, θ

′
1, θ

′
2)

Σ′ = (Σ1,Σ2), θ = (θ1, θ
′

1), θ
′ = (θ2, θ

′

2)
(∆,Σ); Γ ` (M1;S1) > A1 → A2 ⇒ P1 and P1 = P by assumption
(∆,Σ); Γ `M1 ⇐ A1 by inversion
(∆,Σ); Γ ` S1 > A2 ⇒ P1

(∆,Σ); Γ ` (M2;S2) > A1 → A2 ⇒ P2 and P2 = P by assumption
(∆,Σ); Γ `M2 ⇐ A1 by inversion
(∆,Σ); Γ ` S2 > A2 ⇒ P2

M1 = [[θ1]]M by i.h.
M2 = [[θ2]]M by i.h.
(∆,Σ1); Γ `M ⇐ A1 by i.h.
(∆,Σ) ` θ1 ⇐ Σ1 by i.h.
(∆,Σ) ` θ2 ⇐ Σ1 by i.h.
(∆,Σ′); Γ `M ⇐ A1 by weakening
S1 = [[θ′1]]S by i.h.
S2 = [[θ′2]]S by i.h.
(∆,Σ2); Γ ` S > A2 ⇒ P by i.h.
(∆,Σ) ` θ′1 ⇐ Σ2 by i.h.
(∆,Σ) ` θ′2 ⇐ Σ2 by i.h.
(∆,Σ′,); Γ ` S > A2 ⇒ P by weakening
(∆,Σ) ` (θ1, θ

′

1) ⇐ (Σ′) θ1 and θ′1 refer to distinct meta-variables
by typing rules for contextual substitutions

(∆,Σ) ` (θ2, θ
′

2) ⇐ (Σ′) θ2 and θ′2 refer to distinct meta-variables
by typing rules for contextual substitutions

M1 = [[θ1, θ
′
1]]M by lemma weakening

M2 = [[θ2, θ
′

2]]M by lemma weakening
S1 = [[θ1, θ

′

1]]S by lemma weakening
S2 = [[θ2, θ

′
2]]S by lemma weakening

(M1;S1) = ([[θ1, θ
′

1]]M ; [[θ1, θ
′

1]]S) by rule

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 21

(M1;S1) = [[θ1, θ
′

1]](M ;S) by contextual substitution definition
(M2;S2) = ([[θ2, θ

′

2]]M ; [[θ2, θ
′

2]]S) by rule
(M2;S2) = [[θ2, θ

′
2]](M ;S) by contextual substitution definition

(∆,Σ′); Γ ` (M ; S) > A1 → A2 ⇒ P by rule

Next, we prove completeness.

Theorem 5.3 Completeness of mslg of terms.

(1) If ∆,Σ ` θ1 ⇐ Σ′ and ∆,Σ ` θ2 ⇐ Σ′ and θ1 and θ2 are incompatible

and ∆,Σ; Γ `M1 ⇐ A, ∆; Γ `M2 ⇐ A, and ∆,Σ′; Γ `M ⇐ A and

M1 = [[θ1]]M and M2 = [[θ2]]M
then there exists a contextual substitution θ∗1, θ

∗

2 , and a modal context Σ∗, such

that (∆,Σ); Γ ` M1 tM2 : A =⇒ M/(Σ∗, θ∗1 , θ
∗

2) and θ∗1 ⊆ θ1, θ
∗

2 ⊆ θ2 and

Σ∗ ⊆ Σ′

(2) If ∆,Σ ` θ1 ⇐ Σ′ and ∆,Σ ` θ2 ⇐ Σ′ and θ1 and θ2 are incompatible

and ∆,Σ; Γ ` R1 ⇒ P1, ∆; Γ ` R2 ⇒ P2, and Σ′,∆; Γ ` R ⇒ P and

P1 = P2 = P and R1 = [[θ1]]R and R2 = [[θ2]]R
then there exists a contextual substitution θ∗1, θ

∗
2 , and a modal context Σ∗, such

that (∆,Σ); Γ ` R1 t R2 : P =⇒ R/(Σ∗, θ∗1 , θ
∗

2) and θ∗1 ⊆ θ1, θ
∗

2 ⊆ θ2 and

Σ∗ ⊆ Σ′

(3) If ∆,Σ ` θ1 ⇐ Σ′ and ∆,Σ ` θ2 ⇐ Σ′ and θ1 and θ2 are incompatible and

(∆,Σ); Γ ` S1 > A⇒ P , (∆,Σ); Γ ` S2 > A ⇒ P , and

(∆,Σ′); Γ ` S > A⇒ P and S1 = [[θ1]]S and S2 = [[θ2]]S
then there exists a contextual substitution θ∗1, θ

∗

2 , and a modal context Σ∗, such

that (∆,Σ); Γ ` S1 tS2 : A =⇒ S/(Σ∗, θ∗1 , θ
∗

2) and θ∗1 ⊆ θ1, θ
∗

2 ⊆ θ2 and

Σ∗ ⊆ Σ′.

Proof. Simultaneous induction on the structure of M , R, and S.

Case. R = u[π] and u::P [Φ] ∈ ∆
(∆,Σ); Γ ` u[π] ⇒ P by assumption
R1 = [[θ1]](u[π]) by assumption
R1 = u[π] by contextual substitution definition
R2 = [[θ2]](u[π]) by assumption
R2 = u[π] by contextual substitution definition
(∆,Σ); Γ ` u[π] t u[π] : P =⇒ u[π]/(·, ·, ·) by rule
· ⊆ Σ′, · ⊆ θ1, · ⊆ θ2

Case. M = λx.M ′.
M1 = [[θ1]](λx.M

′) by assumption
M1 = λx.[[θ1]]M

′ by contextual substitution definition
M ′

1 = [[θ1]]M
′ and M1 = λx.M ′

1 by inversion
M2 = [[θ2]](λx.M

′) by assumption
M2 = λx.[[θ2]]M

′ by contextual substitution definition
M ′

2 = [[θ2]]M
′ and M2 = λx.M ′

2 by inversion
(∆,Σ′); Γ ` λx.M ′ ⇐ A1 → A2 by assumption
(∆,Σ′); Γ, x:A1 `M ′ ⇐ A2 by inversion
(∆,Σ); Γ ` λx.M ′

1 ⇐ A1 → A2 by assumption

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

22 · Brigitte Pientka

(∆,Σ); Γ, x:A1 `M ′

1 ⇐ A2 by inversion
(∆,Σ); Γ ` λx.M ′

2 ⇐ A1 → A2 by assumption
(∆,Σ); Γ, x:A1 `M ′

2 ⇐ A2 by inversion
(∆,Σ); Γ, x:A1 `M ′

1 tM
′

2 : A2 =⇒M ′/(Σ∗, θ∗1 , θ
∗

2) by i.h.
Σ∗ ⊆ Σ′, θ∗1 ⊆ θ1, θ

∗

2 ⊆ θ2
(∆,Σ); Γ ` λx.M ′

1 t λx.M
′

2 : A1 → A2 =⇒ λx.M ′/(Σ∗, θ∗1 , θ
∗

2) by rule

Case. R = i[idγ]
(∆; Σ); Γ ` i[idγ] ⇒ P by assumption
i::P [Γ] ∈ Σ by inversion
R1 = [[θ1]](i[idγ]) by assumption
R2 = [[θ2]](i[idγ]) by assumption

Γ̂.R′/i ∈ θ1 and Γ̂.R′′/i ∈ θ2 by assumption
R′ and R′′ are incompatible by assumption
R1 = R′ by contextual substitution definition
R2 = R′′ by contextual substitution definition

Sub-Case 1. : R1 = u[π] and R2 = R′′

(∆,Σ); Γ ` u[π] tR′′ : P =⇒ i[idγ]/(i::P [Γ], Γ̂.u[π]/i, Γ̂.R′′/i) by rule

i::P [Γ] ⊆ Σ′, (Γ̂.u[π]/i) ⊆ θ1, (Γ̂.R′′/i) ⊆ θ2

Sub-Case 2. : R1 = R′ and R2 = u[π]
(∆,Σ); Γ ` R′ t u[π] : P =⇒ i[idγ]/(i::P [Γ], Γ̂.R′/i, Γ̂.u[π]/i) by rule

(i::P [Γ] ⊆ Σ′, (Γ̂.u[π]/i) ⊆ θ2, (Γ̂.R′/i) ⊆ θ1

Sub-Case 3. : R1 = H1 · S1 and R2 = H2 · S2

H1 · S1 is incompatible with H2 · S2 and H1 6= H2 by assumption
(∆,Σ); Γ ` H1 · S1 tH2 · S2 : P =⇒ i[idγ]/(i::P [Γ], Γ̂.(H1 · S1)/i, Γ̂.(H2 · S2)/i)

by rule
(i::P [Γ]) ⊆ Σ′, (Γ̂.H1 · S1/i) ⊆ θ1, (Γ̂.H2 · S2/i) ⊆ θ2

In the next Section, we extend the soundness and completeness property to sub-
stitutions.

5.2 Most specific generalization of two contextual substitutions

Building on the previous algorithm for computing the most specific generalization
of two linear higher-order patterns, we extend the algorithm to contextual substi-
tutions. We begin by giving the judgments for computing the most specific linear
generalization of two contextual substitutions.

∆,Σ1 ` ρ1 t ρ2 : Σ2 =⇒ ρ/(Σ, θ1, θ2) ρ is the mslg of ρ1 and ρ2

Intuitively, we will be able to obtain ρ1 by composing θ1 with ρ, and we yield ρ2

by composing θ2 with ρ. We assume ρ1 and ρ2 are well-typed, and have the domain
Σ2 and range (Σ1,∆).

We think of ρ1 as the contextual substitution which is already in the index, while
the contextual substitution ρ2 is to be inserted. As a consequence, only ρ1 will refer
to the internal meta-variables in Σ1, while ρ2 only depends on the meta-variables

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 23

in ∆. The result of the mslg are the contextual substitution θ1 and θ2, where
∆,Σ1 ` θ1 ⇐ Σ and ∆,Σ1 ` θ2 ⇐ Σ. In other words, θ1 (resp. θ2) only replaces
internal meta-variables in Σ. Note that any contextual substitution ρ or θ with
domain Σ, can be extended to a contextual substitution (id∆, ρ) (or (id∆, θ) resp.)
with domain (∆,Σ).

First, we give the rules for computing the most specific linear generalization of
two contextual substitutions.

(∆,Σ) ` · t · : · =⇒ ·/(·, ·, ·)

(∆,Σ1) ` ρ1 t ρ2 : Σ2 =⇒ ρ / (Σ′

1, θ1, θ2)
(∆,Σ1); Ψ ` R1 t R2 : P =⇒ R / (Σ′

2, θ
′

1, θ
′

2)
Σ = (Σ′

1,Σ
′

2) θ = (θ1, θ
′

1) θ′ = (θ2, θ
′

2)

(∆,Σ1) ` (ρ1, Ψ̂.R1/i) t (ρ2, Ψ̂.R2/i) : (Σ2, i::P [Ψ]) =⇒ (ρ, Ψ̂.R/i) / (Σ, θ, θ′))

Note, that we are allowed to just combine the contextual substitutions θ1 (θ2
resp.) and θ′1 (θ′2 resp.) since we require that they refer to distinct meta-variables
and all the meta-variables occur uniquely.

Similar to the compatibility of two terms, we can define the compatibility of two
substitutions.

Definition 5.4 Compatibility of contextual substitutions.

If (∆,Σ1) ` ρ1 t ρ2 : Σ2 =⇒ idΣ1
/(Σ, ρ1, ρ2), then two contextual substitutions ρ1

and ρ2 are incompatible. Otherwise, we call ρ1 and ρ2 compatible.

As a consequence, if ρ1 and ρ2 are incompatible, then for any Ψ̂.R/i ∈ ρ1 and
Ψ̂.R′/i ∈ ρ2, we know that R and R′ are incompatible. Next, we prove soundness
and completeness of this algorithm.

Theorem 5.5 Soundness for mslg of substitutions.

If (∆,Σ1) ` ρ1 t ρ2 : Σ2 =⇒ ρ/(Σ, θ1, θ2) and

(∆,Σ1) ` ρ1 ⇐ Σ2 and (∆,Σ1) ` ρ2 ⇐ Σ2

then (∆,Σ) ` ρ⇐ Σ2, (∆,Σ1) ` θ1 ⇐ Σ, (∆,Σ1) ` θ2 ⇐ Σ, and

[[θ1]]ρ = ρ1 and [[θ2]]ρ = ρ2

Proof. Induction on the first derivation.

Case. D = (∆,Σ1) ` · : · =⇒ ·/(·, ·, ·)
· = · by syntactic equality
· = [[·]](·) contextual substitution definition

Case. D = (∆,Σ1) ` (ρ1, Ψ̂.R1/i) t (ρ2, Ψ̂.R2/i) : (Σ2, i::P [Ψ])
=⇒ (ρ, Ψ̂.R/i)/((Σ,Σ′), (θ1, θ

′

1), (θ2, θ
′

2))
(∆,Σ1) ` ρ1 t ρ2 : Σ2 =⇒ ρ/(Σ, θ1, θ2) by premise
(∆,Σ1); Ψ ` R1 t R2 : P =⇒ R/(Σ′, θ′1, θ

′

2) by premise
(∆,Σ1) ` (ρ1, Ψ̂.R1/i) ⇐ (Σ2, i::P [Ψ]) by assumption
(∆,Σ1) ` ρ1 ⇐ Σ2 by inversion
(∆,Σ1); Ψ ` R1 ⇐ P
(∆,Σ1) ` (ρ2, Ψ̂.R2/i) ⇐ (Σ2, i::P [Ψ]) by assumption
(∆,Σ1) ` ρ2 ⇐ Σ2 by inversion
(∆,Σ1); Ψ ` R2 ⇐ P

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

24 · Brigitte Pientka

(∆,Σ′); Ψ ` R ⇐ P by soundness theorem 5.2
R1 = [[θ′1]]R, ∆,Σ1 ` θ′1 ⇐ Σ′ by soundness theorem 5.2
R2 = [[θ′2]]R, ∆,Σ1 ` θ′2 ⇐ Σ′ by soundness theorem 5.2
R1 = [[θ1, θ

′

1]]R by weakening
R2 = [[θ2, θ

′

2]]R by weakening
ρ1 = [[θ1]]ρ by i.h.
ρ2 = [[θ2]]ρ by i.h.
ρ1 = [[θ1, θ

′
1]]ρ by weakening lemma

ρ2 = [[θ2, θ
′

2]]ρ by weakening lemma
(ρ1, Ψ̂.R1/i) = ([[θ1, θ

′

1]]ρ, [[θ1, θ
′

1]]Ψ̂.R/i) by rule
(ρ2, Ψ̂.R2/i) = ([[θ2, θ

′
2]]ρ, [[θ2, θ

′
2]]Ψ̂.R/i) by rule

(ρ1, Ψ̂.R1/i) = [[θ1, θ
′

1]](ρ, Ψ̂.R/i) by contextual substitution definition
(ρ2, Ψ̂.R2/i) = [[θ2, θ

′

2]](ρ, Ψ̂.R/i) by contextual substitution definition
(∆,Σ) ` ρ⇐ Σ2 by i.h.
(∆,Σ,Σ′) ` ρ⇐ Σ2 by weakening
(∆,Σ,Σ′); Ψ ` R ⇐ P by weakening
(∆,Σ,Σ′) ` (ρ, Ψ̂.R/i) ⇐ (Σ2, i::P [Ψ]) by rule
∆,Σ1) ` (θ1, θ

′

1) ⇐ (Σ,Σ′) by typing rules
∆,Σ1) ` (θ2, θ

′
2) ⇐ (Σ,Σ′) by typing rules

Theorem 5.6 Completeness for mslg of contextual substitutions.

If (∆,Σ) ` θ1 ⇐ Σ′ and (∆,Σ) ` θ2 ⇐ Σ′ and θ1 and θ2 are incompatible and

ρ1 = [[θ1]]ρ and ρ2 = [[θ2]]ρ then (∆,Σ) ` ρ1 t ρ2 : Σ1 =⇒ ρ/(Σ∗, θ∗1 , θ
∗

2) such that

Σ∗ ⊆ Σ′, θ∗1 ⊆ θ1, θ
∗
2 ⊆ θ2.

Proof. Induction on the structure of ρ.

Case. ρ = ·

ρ1 = [[θ1]](·) by assumption
ρ1 = · and Σ1 = · by inversion
ρ2 = [[θ2]](·) by assumption
ρ2 = · and Σ1 = · by inversion
(∆,Σ) ` · t · : · =⇒ ·/(·, ·, ·) by rule
· ⊆ Σ1, · ⊆ θ1, · ⊆ θ2

Case. ρ = (ρ′, Ψ̂.R/i)

ρ′1 = [[θ1]](ρ
′, Ψ̂.R/i)

ρ′1 = ([[θ1]](ρ
′), Ψ̂.[[θ1]]R/i) by contextual substitution definition

ρ′1 = (ρ1, Ψ̂.R1/i)
ρ1 = [[θ1]]ρ

′

R1 = [[θ1]]R
ρ′2 = [[θ2]](ρ

′, Ψ̂.R/i)
ρ′2 = ([[θ2]](ρ

′), Ψ̂.[[θ2]]R/i) by contextual substitution definition
ρ′2 = (ρ2, Ψ̂.R2/i)
ρ2 = [[θ2]]ρ

′

R2 = [[θ2]]R
(∆,Σ); Ψ ` R1 tR2 : P =⇒ R/(Σ∗, θ∗1 , θ

∗
2) by completeness lemma 5.3

Σ∗ ⊆ Σ′, θ∗1 ⊆ θ1, θ
∗

2 ⊆ θ2

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 25

(∆,Σ) ` ρ1 t ρ2 : Σ1 =⇒ ρ′/(Σ∗∗, θ∗∗1 , θ∗∗2) by i.h.
Σ∗∗ ⊆ Σ′, θ∗∗1 ⊆ θ1, θ

∗∗

2 ⊆ θ2
(∆,Σ) ` (ρ1, Ψ̂.R1/i) t (ρ2, Ψ̂.R2/i) : (Σ1, i::P [Ψ])
=⇒ (ρ′, Ψ̂.R/i)/((Σ∗∗,Σ∗), (θ∗∗1 , θ∗1), (θ∗∗2 , θ∗2)) by rule
(Σ∗∗,Σ∗) ⊆ Σ′, (θ∗∗1 , θ∗1) ⊆ θ1, (θ∗∗2 , θ∗2) ⊆ θ2

5.3 Insertion into substitution tree

In this Section we describe the final layer, namely the traversal of the substitution
tree to insert a substitution δ. To insert the contextual substitution δ into a sub-
stitution tree, we need to traverse the index tree and compute at each node N with
substitution ρ the mslg between ρ and δ. Before we describe the traversal more
formally, we give a more formal definition of substitution trees.

Node N ::= (Σ`ρ � C)
Children C ::= [N,C] | nil

A tree is a node N with a contextual substitution ρ and a list of children C.
If the list of children is empty, we have reached a leaf. In general, we will write
∆ ` N : Σ′ where N = (Σ`ρ � C) which means that (∆,Σ) ` ρ : Σ′ and all the
children Ni in C, ∆ ` Ni : Σ.

To insert a new substitution δ into the substitution tree N , we proceed in two
steps. First, we inspect all the children Ni of a parent node N , whereNi = Σi`ρi �

Ci and check if ρi is compatible with δ. This compatibility check has three possible
results:

(1) (∆,Σi) ` ρi t δ : Σ =⇒ idΣ/(Σ
′, ρi, δ) :

This means ρi and δ are not compatible, and idΣ is just a renaming of the
meta-variables in Σ to Σ′.

(2) (∆,Σi) ` ρi t δ : Σ =⇒ ρi/(Σi, idΣi
, θ2)

This means δ is an instance of ρi and we continue to insert θ2 into the children
Ci. In this case [[θ2]]δ is equivalent to ρi and we call δ fully compatible with ρi.

(3) (∆,Σi) ` ρi t δ : Σ =⇒ ρ′/(Σ′′, θ1, θ2)
ρi and δ are compatible, but we need to replace node Ni with a new node
Σ′′

`ρ′ � C ′ where C ′ contains two children, the child node Σi`θ1 � Ci and
the child node Σi`θ2 � nil. In this case we call δ partially compatible with ρi.

The idea is to iterate through the list of children and collect all nodes which
are fully compatible or at least partially compatible. If there is a fully compatible
child N , we continue to our insertion considering following node N . If there are
no fully compatible children but a partially compatible node N we need to split
N . If no node is compatible, we simply create a new node with the substitution
we intended to insert. To simplify the algorithms we only consider trees with at
least one entry and a default identity substitution at the root. The substitution
tree which contains as the only entry the term Ψ̂.R for example, is a tree with
the default identity substitution Ψ̂.i0[id]/i0 at the root and one child with the
substitution Ψ̂.R/i0.

The filtering process to collect all nodes which are fully and partially compatible
can be formalized by using the following judgment. We will distinguish between

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

26 · Brigitte Pientka

the fully compatible children, which we collect in V , and the partially compatible
children, which we collect in S.

Fully compatible children V ::= · | V, (N, θ)
Partially compatible children S ::= · | S, (N,Σ`ρ, θ1, θ2)

Note that it is not quite enough to just identify the children nodes N which are
fully compatible or partially compatible. Instead, we need to track more informa-
tion. For example, if we identify a child node N where N = Σ′ ` ρi � Ci is fully
compatible with δ, then this means that δ is an instance of ρi and there exists a
contextual substitution θ s.t. [[θ]]ρi = δ. Similarly, if we identify a child node N
where N = Σ′ ` ρi � Ci is partially compatible with δ, then this means that mslg
between ρi and δ is the contextual substitution ρ, and ρi = [[θ1]]ρ and δ = [[θ2]]ρ.

Then we can define the following judgment:

∆ ` C t δ : Σ =⇒ (V, S)

Given some children C and a contextual substitution δ, where the domain of
each child in C and of the contextual substitution δ is Σ, we can compute fully
compatible children V and the partially compatible children S.
δ is a contextual substitution such that ∆ ` δ ⇐ Σ, and for all the children

Ci = (Σi`ρi � C ′) in C, we have ∆,Σi ` ρi ⇐ Σ. Then V and S describe all the
children from C which are compatible with δ. We distinguish three cases.

∆ ` nil t δ : Σ =⇒ (nil, nil)

∆ ` C t δ : Σ =⇒ (V, S) ∆,Σ1 ` ρ1 t δ : Σ =⇒ idΣ/(Σ, ρ1, δ)

∆ ` [(Σ1`ρ1 � C1), C] t δ : Σ =⇒ (V, S)
NC

∆ ` C t δ : Σ =⇒ (V, S) ∆,Σ1 ` ρ1 t δ : Σ =⇒ ρ1/(Σ1, idΣ1
, θ2) ρ1 6= idΣ1

∆ ` [(Σ1`ρ1 � C1), C] t δ : Σ =⇒ ((V, ((Σ1`ρ1 � C1), θ2)), S)
FC

∆ ` C t δ : Σ =⇒ (V, S) ∆,Σ1 ` ρ1 t δ : Σ =⇒ ρ/(Σ2, θ1, θ2) ρ 6= ρ1 6= idΣ2

∆ ` [(Σ1`ρ1 � C1), C] t δ : Σ =⇒ (V, (S , ((Σ1`ρ1 � C1),Σ2`ρ, θ1, θ2))
PC

The NC rule describes the case where the child Ci is not compatible with δ.
Rule FC describes the case where δ is fully compatible with the child Ci and
the rule PC describes the case where δ is partially compatible with Ci. Before
we describe the traversal of the substitution tree, we prove some straightforward
soundness properties about these rules. The first lemma essentially states that
δ is an instance of all nodes collected in V . Moreover, for every node Ni with
substitution ρi in S, there exists a rho′ which is the most specific generalization of
ρi and δ.

Lemma 5.7.

If ∆ ` C t δ : Σ =⇒ (V, S) and ∆ ` δ : Σ and for any (Σi`ρi � C ′) ∈ C with

∆,Σi ` ρi : Σ then

(1) for any (Ni, θ2) ∈ V where Ni = (Σi ` ρi � Ci), we have [[θ2]]ρi = δ.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 27

(2) for any (Ni,Σ
′ ` ρ′, θ1, θ2) ∈ S where Ni = (Σi ` ρi � Ci), we have [[θ2]]ρ

′ = δ
and [[θ1]]ρ

′ = ρi.

Proof. By structural induction on the first derivation and by using the previous
soundness lemma for mslg of substitutions (lemma 5.5).

Case. D =
∆ ` nil t δ : Σ =⇒ (nil, nil)

.

Trivially true.

Case. D =

∆ ` C t δ : Σ =⇒ (V, S)
∆,Σ1 ` ρ1 t δ : Σ =⇒ idΣ/(Σ, ρ1, δ)

NC
∆ ` [(Σ1`ρ1 � C1), C] t δ : Σ =⇒ (V, S)

By i.h., for any (Ni, θ2) ∈ V , Ni = (Σi ` ρi � Ci), we have [[θ2]]ρi = δ and for
any (Ni,Σ

′ ` ρ′, θ′1, θ
′

2) ∈ S where Ni = (Σi ` ρi � Ci), we have [[θ′2]]ρ
′ = δ and

[[θ′1]]ρ
′ = ρi.

Case. D =

∆ ` C t δ : Σ =⇒ (V, S)
∆,Σ1 ` ρ1 t δ : Σ =⇒ ρ1/(Σ1, idΣ1

, θ2)
FC

∆ ` [(Σ1`ρ1 � C1), C] t δ : Σ =⇒ ((V , (Σ1`ρ1 � C1)), S)

By i.h., for any (Ni, θ2) ∈ V , Ni = (Σi ` ρi � Ci), we have [[θ2]]ρi = δ and for
any (Ni, (Σ

′ ` ρ′, θ′1, θ
′

2)) ∈ S where Ni = (Σi ` ρi � Ci), we have [[θ′2]]ρ
′ = δ

and [[θ′1]]ρ
′ = ρi. By soundness lemma 5.5, [[θ2]]ρ1 = δ, therefore for any (Ni, θ

′) ∈
(V, ((Σ1`ρ1 � C1), θ2)), where Ni = (Σi ` ρi � Ci) we have [[θ′]]ρi = δ.

Case.

D =

∆ ` C t δ : Σ =⇒ (V, S)
∆,Σ1 ` ρ1 t δ : Σ =⇒ ρ∗/(Σ2, θ1, θ2)

PC
∆ ` [(Σ1`ρ1 � C1), C] t δ : Σ =⇒ (V, (S , ((Σ1`ρ1 � C1),Σ2`ρ

∗, θ1, θ2))

By i.h., for any (Ni, θ
′

2) ∈ V , Ni = (Σi ` ρi � Ci), we have [[θ′2]]ρi = δ and for
any (Ni, (Σ

′ ` ρ′, θ′1, θ
′

2)) ∈ S where Ni = (Σi ` ρi � Ci), we have [[θ′2]]ρ
′ = δ and

[[θ′1]]ρ
′ = ρi. By soundness lemma 5.5, [[θ2]]ρ

∗ = δ and [[θ1]]ρ
∗ = ρ1, therefore for any

(Ni,Σ
′ ` ρ′, θ′1, θ

′
2) ∈ (S , ((Σ1`ρ1 � C1),Σ2`ρ

∗, θ1, θ2)), where Ni = (Σi ` ρi �

Ci) we have [[θ′1]]ρ
′ = ρi and [[θ′2]]ρ

′ = δ.

Next, we show insertion of a substitution δ into a substitution tree N . The main
judgment is the following:

∆ ` N t δ : Σ =⇒ N ′ Insert δ into the substitution tree N

If N is a substitution tree and δ is not already in the tree, then N ′ will be the
new substitution tree after inserting δ into N . We write [N ′

i/Ni]C to indicate that
the i-th node Ni in the children C is replaced by the new node N ′

i . Recall that
the substitution δ which is inserted into the substitution tree N does only refer to
meta-variables in ∆ and does not contain any internal meta-variables. Therefore,
a new leaf with substitution δ must have the following form: ·`δ � nil. Similarly,
if we split the current node and create a new leaf ·`θ2 � nil (see rule “Split current

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

28 · Brigitte Pientka

node”).

Create new leaf

∆ ` C t δ : Σ =⇒ (·, ·)

∆ ` (Σ′
`ρ � C) t δ : Σ =⇒ (Σ′

`ρ � (C, (·`δ � nil))

Recurse

∆ ` C t δ : Σ =⇒ (V, S) Ni ∈ C (Ni, θ2) ∈ V ∆ ` N t θ2 =⇒ N ′

∆ ` (Σ′
`ρ � C) t δ : Σ =⇒ (Σ′

`ρ � [N ′/Ni]C

Split current node

∆ ` C t δ : Σ =⇒ (·, S) Ni ∈ C Ni = (Σi`ρi � Ci) (Ni,Σ
∗
`ρ, θ1, θ2) ∈ S

∆ ` (Σ′
`ρ � C) t δ : Σ =⇒ (Σ′

`ρ � [(Σ∗
`ρ � ((Σi`θ1 � Ci), (·`θ2 � nil)))/Ni]C)

The above rules always insert a substitution δ into the children C of a node
Σ`ρ � C. We start inserting a substitution Ψ̂.R/i0 into the empty substitution
tree which contains the identity substitution Ψ̂.i0[id]/i0 and has an empty list of
children. After the first insertion, we obtain the substitution tree which contains the
identity substitution Ψ̂.i0[id]/i0 and the child of this node contains the substitution
Ψ̂.R/i0. In other words, we require that the top node of a substitution tree contains
a redundant identity substitution which allows us to treat insertion of a substitution
δ into a substitution tree uniformly. This leads us to the following soundness
statement where we show that if we insert a substitution δ into the children C,
then there exists a child Ci = Σi`ρi � C ′

i in C and a path from ρi to ρn, where ρn
is at a leaf such that [[ρn]][[ρn−1]] . . . ρi = δ.

Theorem 5.8 Soundness of insertion.

If ∆ ` (Σ′
`ρ′ � C) t δ : Σ =⇒ (Σ′

`ρ′ � C ′) then there exists a child Ci =
(Σi`ρi � C ′) and a path from ρi to ρn such that [[ρn]][[ρn−1]] . . . ρi = δ.

Proof. By induction on the first derivation using the previous lemma 5.7.

6. RETRIEVAL

In general, we can retrieve all terms from the index which satisfy some property.
This property may be finding all terms from the index which unify with a given
term M or finding all terms N from the index, s.t. a given term M is an instance
or variant of N . One advantage of substitution trees is that all these retrieval
operations can be implemented with only small changes. A key challenge in the
higher-order setting is to design efficient retrieval algorithms which will perform
well in practice. We will show three retrieval algorithms: Variant, unifiable and
Instance. All the algorithms can be described as variances from each other.

6.1 Instance checking for linear higher-order patterns

First, we presented an instance checking algorithm for linear higher-order patterns.
We treat again internal meta-variables differently than global meta-variables. The
principal judgment are as follows:

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 29

∆2; (∆,Σ); Γ `M1
.
= M2 : A/(θ, ρ) M2 is an instance of M1

∆2; (∆,Σ); Γ ` R1
.
= R2 : P/(θ, ρ) R2 is an instance of R1

∆2; (∆,Σ); Γ ` S1
.
= S2 : A > P/(θ, ρ) S2 is an instance of S2

Again we assume that M1 (R1, S1 resp.) must be well-typed in the modal context
∆,Σ and the bound variable context Γ. M2 (R2, S2 resp.) are well-typed in the
modal context ∆2 and the bound variable context Γ. In other words M1 only
contains internal meta-variables and is stored in the index, while M2 is given,
and that the meta-variables occurring in M1 are distinct from the meta-variables
occurring in M2. More formally this is stated as (∆1,Σ); Γ `M1 ⇐ A and ∆2; Γ `
M2 ⇐ A and ∆ = (∆2,∆1). ρ is the substitution for some internal meta-variables in
Σ while θ is the substitution for some meta-variables in ∆1. Moreover, we maintain
that [[θ, ρ]]M1 is syntactically equal to M2. We will treat Σ as a linear context in the
formal description given below. This will make it easier to prove the relationship
between insertion and retrieval later on.

∆2; (∆,Σ); Γ, x:A1 `M1
.
= M2 : A2 / (θ, ρ)

∆2; (∆,Σ); Γ ` λx.M1
.
= λx.M2 : A1 → A2 / (θ, ρ)

lam

∆2; (∆,Σ); Γ ` R1
.
=
·
R2 : P / (θ, ρ)

∆2; (∆,Σ); Γ ` R1
.
= R2 : P / (θ, ρ)

coe

∆2; (∆, i::P [Γ]); Γ ` i[idΓ]
.
=
·
R : P / (·, (Γ̂.R/i))

meta-1

u::P [Φ] ∈ ∆

∆2; (∆,Σ); Γ ` u[π]
.
=
·
R : P / (Γ̂.([π]

−1
R/u), ·)

meta-2

∆2; (∆,Σ); Γ S1
.
=
·
S2 : A > P / (θ, ρ)

∆2; (∆,Σ); Γ ` H · S1
.
=
·
H · S2 : a / (θ, ρ)

head

∆2; (∆, ·); Γ nil
.
=
·

nil : P > P / (·, ·)
Snil

∆2; (∆,Σ1); Γ `M1
.
=
·
M2 : A1 / (θ1, ρ1)

∆2; (∆,Σ2); Γ S1
.
=
·
S2 : A2 > P / (θ2, ρ2)

∆2; (∆,Σ1,Σ2); Γ (M1;S1)
.
=
·

(M2;S2) : A1 → A2 > P / ((θ1, θ2), (ρ1, ρ2))
Scons

Note that we need not worry about capture in the rule for lambda expressions
since meta-variables and bound variables are defined in different contexts. In the
rule Scons, we are allowed to union the two substitutions θ1 and θ2, as the linearity
requirement ensures that the domains of both substitutions are disjoint2. Note

2It is possible to formalize the linearity criteria on the meta-variables declared in ∆ in the same
way we enforce linearity on the internal meta-variables in Σ.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

30 · Brigitte Pientka

that the case for matching an meta-variable u[π] with another term R is simpler
and more efficient than in the general higher-order pattern case. In particular, it
does not require a traversal of R (see rules meta-1 and meta-2). Since the inverse

of the substitution π can be computed directly and will be total, we know [π]
−1
R

exists and can simply generate a substitution Γ̂.[π]
−1
R/u. The algorithm can be

easily specialized to retrieve variances by requiring in the meta-2 rule that R must
be u[π]. To check unifiability we need to add the dual rule to meta-2 where we
unify R with an meta-variable u[π]. The only complication is that R may contain
internal meta-variables which are defined later on the path in the substitution tree.
Now we show soundness and completeness of the retrieval algorithm. We first show
soundness and completeness of the instance algorithm for terms.

Theorem 6.1 Soundness.

(1) If ∆2; (∆1,Σ); Γ `M1
.
= M2 : A/(θ, ρ) for some ∆1 and ∆2 where (∆1,Σ); Γ `

M1 ⇐ A and ∆2; Γ `M2 ⇐ A then [[θ, ρ]]M1 = M2.

(2) If ∆2; (∆1,Σ); Γ ` R1
.
=
·
R2 : P/(θ, ρ) where (∆1,Σ); Γ ` R1 ⇒ P1 and

∆2; Γ ` R2 ⇒ P2 and P1 = P2 = P then [[θ, ρ]]R1 = R2.

(3) If ∆2; (∆1,Σ); Γ ` S1
.
= S2 > A ⇒ P/(θ, ρ) where (∆1,Σ); Γ ` S1 > A ⇒ P

and ∆2; Γ ` S2 > A⇒ P then [[θ, ρ]]S1 = S2.

Proof. Simultaneous structural induction on the first derivation. The proof is
straightforward, and we give a few cases here.

Case. D = mvar-1
∆2; (∆1, i::P [Γ]); Γ ` i[idΓ]

.
=
·
R : P / (·, (Γ̂.R/i))

(∆1, i::P [Γ]); Γ ` i[idΓ] : P by assumption
∆2; Γ ` R ⇒ P1 by assumption
R = R by reflexivity
[[Ψ̂.R/i]](i[idΓ]) = R by substitution definition

Case. D =
u::Φ`P ∈ ∆

mvar-2
(∆,Σ); Γ ` u[π]

.
=
·
R : P / (Γ̂.([π]

−1
R/u), ·)

∆1; Γ ` u[π] ⇒ P where u::Φ`P ∈ ∆1 by assumption
∆2; Γ ` R ⇒ P1 and P1 = P by assumption
[π]([π]

−1
R) = R by property of inversion

[[Γ̂.[π]−1R/u]](u[π]) = R by substitution definition

Case. D =
∆2; (∆1,Σ); Γ, x:A1 `M1

.
= M2 : A2 / (θ, ρ)

lam
∆2; (∆1,Σ); Γ ` λx.M1

.
= λx.M2 : A1 → A2 / (θ, ρ)

(∆1,Σ); Γ ` λx.M1 ⇐ A1 → A2 by assumption
(∆1,Σ); Γ, x:A1 `M1 ⇐ A2 by inversion
∆2; Γ ` λx.M2 ⇐ A1 → A2 by assumption

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 31

∆2, ; Γ, x:A1 `M2 ⇐ A2 by inversion
[[θ, ρ]]M1 = M2 by i.h.

Case. D = ∆2; (∆1,Σ1,Σ2); Γ (M1;S1)
.
= (M2;S2) : A1 → A2 > P

/ ((θ1, θ2), (ρ1, ρ2))
∆2; (∆1,Σ1); Γ `M1

.
= M2 : A1 / (θ1, ρ1)

∆2; (∆1,Σ2); Γ S1
.
= S2 : A2 > P / (θ2, ρ2) by inversion

(∆1; Σ1,Σ2); Γ ` (M1;S1) < A1 → A2 ⇒ P by assumption
(∆1; Σ1); Γ `M1 ⇐ A1 by inversion
(∆1; Σ2); Γ ` S1 < A2 ⇒ P
∆2; Γ `M2 ⇐ A1 by inversion
∆2; Γ ` S2 < A2 ⇒ P
[[θ1, ρ1]]M1 = M2 by i.h.
[[θ2, ρ2]]S1 = S2 by i.h.
[[θ1, θ2, ρ1, ρ2]]M1 = M2 by weakening (using linearity condition)
[[θ1, θ2, ρ1, ρ2]]S1 = S2 by weakening (using linearity condition)
[[θ1, θ2, ρ1, ρ2]](M1 S1) = [[id∆2

θ1, θ2, ρ1, ρ2]](M2 S2) by rule
and substitution definition

For completeness we show that if the term M2 is an instance of a linear term
M then the given algorithm will succeed and return substitution θ∗ for the meta-
variables and a substitution ρ∗ for the internal meta-variables occurring in M . This
establishes a form of local completeness of the given retrieval algorithm. We will
show later a global completeness theorem, which states that any time we compute
the msgl of a term M1 and M2 to be M , then we can show that M2 is in fact an
instance of M . More generally, we show that any time we insert a substitution
Γ̂.M2/i0 we can also retrieve it.

Theorem 6.2 Completeness of instance algorithm for terms.

(1) If (∆1,Σ); Γ ` M1 ⇐ A and ∆2; Γ `M2 ⇐ A and ∆2 ` θ : ∆1 and ∆2 ` ρ : Σ
and [[θ, ρ]]M1 = M2 then ∆2; (∆1,Σ); Γ `M1

.
= M2 : A/(θ∗, ρ) where θ∗ ⊆ θ.

(2) If (∆1,Σ); Γ ` R1 ⇒ A and ∆2; Γ ` R2 ⇒ A and ∆2 ` θ : ∆1 and ∆2 ` ρ : Σ
and [[θ, ρ]]R1 = R2 then ∆2; (∆1,Σ); Γ ` R1

.
=
·
R2 : A/(θ∗, ρ) where θ∗ ⊆ θ.

(3) If (∆1,Σ); Γ ` S1 : A > P and ∆2; Γ ` S2 : A > P and ∆2 ` θ : ∆1 and

∆2 ` ρ : Σ and [[θ, ρ]]S1 = S2 then ∆2; (∆1,Σ); Γ ` S1
.
= S2 : A > P/(θ∗, ρ)

where θ∗ ⊆ θ.

Proof. Simultaneous structural induction on the first typing derivation.

Case. D =
(∆1,Σ); Γ, x:A1 `M1 : A2

(∆1,Σ); Γ ` λx.M1 : A1 → A2

∆2; Γ ` λx.M2 ⇐ A1 → A2 by assumption
∆2; Γ, x:A1 `M2 ⇐ A2 by inversion
[[θ, ρ]](λx.M1) = λx.M2 by assumption
λx.[[θ, ρ]](M1) = λx.M2 by substitution definition
[[θ, ρ]](M1) = M2 by syntactic equality
∆2; (∆1,Σ); Γ, x:A1 `M1

.
= M2 : A2/(θ

∗, ρ∗) by i.h.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

32 · Brigitte Pientka

θ∗ ⊆ θ and ρ∗ ⊆ ρ
∆2; (∆1,Σ); Γ ` λx.M1

.
= λx.M2 : A1 → A2/(θ

∗, ρ∗) by rule

Case. D =
(∆1, i::P [Γ]); Γ ` i[idΓ] ⇒ P

i::P [Γ]; Γ ` i[idΓ] ⇒ P by rule
∆2; Γ ` R2 ⇒ P by assumption
[[θ, ρ]](i[idΓ]) = R2 by assumption
Γ̂.R2/i ∈ ρ by assumption
∆2; (∆1, i::P [Γ]); Γ ` i[idΓ]

.
= R2 : P/(·, Γ̂.R2/i) by rule

· ⊆ id∆ and (Γ̂.R2/i) ⊂ ρ

Case. D =
u::Φ`P ∈ ∆1

(∆1, ·); Γ ` u[π] ⇒ P

u::Φ`P ; Γ ` u[π] ⇒ P by rule
∆1 = ∆′

1, u::Φ`P,∆′′

1

∆2; Γ ` R2 ⇒ P by assumption
θ = (θ1, Γ̂.R/u, θ2) by assumption
[[θ, ρ]](u[π]) = M2 by assumption
[π]R = R2 by substitution definition

R = [π]
−1
R2 and [π]([π]

−1
R2) = R2 by inverse substitution property

∆2, u::Φ`P ; Γ ` u[π]
.
= R2 : P/(Γ̂.[π]−1R2/u, ·) by rule

(Γ̂.[π]
−1
R2/u) ⊆ θ and · ⊆ ρ

Case. D =
(∆1,Σ); Γ `M1 ⇐ A1 (∆1,Σ); Γ S1 : A1 → A > P

(∆1,Σ); Γ (M1;S1) : A > P

[[θ, ρ]](M1;S1) = S′ by assumption
[[θ, ρ]](M1) ; [[θ, ρ]](S1) = S′ by substitution definition
S′ = (M2;S2) by inversion
[[θ, ρ]](M1) = M2 by inversion
[[θ, ρ]](S1) = S2 by inversion
∆2; Γ ` (M2;S2) : A > P by assumption
∆2; Γ `M2 ⇐ A1 by inversion
∆2; Γ ` S2 : A1 → A > P
∆2; (∆1,Σ1); Γ `M1

.
= M2 : A1/(θ

∗

1 , ρ1) and θ∗1 ⊆ θ by i.h.
∆2; (∆1,Σ2); Γ ` S1

.
= S2 : A1 → A > P/(θ∗2 , ρ2) and θ∗2 ⊆ θ by i.h.

(∆,Σ); Γ ` (M1;S1)
.
= (M2;S2) : A > P/((θ∗1 , θ

∗

2), (ρ1, ρ2)) by rule
(θ∗1 , θ

∗

2) ⊆ θ by subset property

6.2 Instance checking for contextual substitutions

The instance algorithm for terms can be straightforwardly extended to instances of
substitutions. We define the following judgment for it:

∆2; (∆1,Σ) ` ρ1
.
= ρ2 : Σ′/(θ, ρ) ρ2 is an instance of ρ1

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 33

We assume that ρ1 is a contextual substitution from a modal context Σ′ to a
modal context ∆,Σ, and and ρ2 is a contextual substitution from Σ′ to the modal
context ∆2. Our goal is to check whether ρ2 is an instance of ρ1. The result of
this is the contextual substitution ρ for the meta-variables in Σ and the contextual
substitution θ for the meta-variables in ∆ such that [[θ, σ]]ρ1 is syntactically equal
to ρ2. Again we enforce the linearity criteria for internal meta-variables in Σ but
leave it implicit for the meta-variables in ∆1.

∆2; (∆1, ·) ` ·
.
= · : ·/(·, ·)

∆2; (∆1,Σ
′′

1) ` ρ1
.
= ρ2 : Σ2/(θ, ρ) ∆2; (∆1,Σ

′

1); Γ `M1
.
= M2 : A/(θ′, ρ′)

∆2; (∆1,Σ
′

1,Σ
′′

2) ` (ρ1, Ψ̂.R1/i)
.
= (ρ2, Ψ̂.R2/i) : (Σ2, i::(Γ`A))/((θ, θ′), (ρ, ρ′)

Next, we show soundness of retrieval for substitutions.

Theorem 6.3 Soundness of retrieval for substitutions.

If (∆,Σ) ` ρ1
.
= ρ2 : Σ′/(θ, ρ) and (∆1,Σ) ` ρ1 ⇐ Σ′ and ∆2 ` ρ2 : Σ′ and

(∆1,∆2) = ∆ and all the variables in Σ, ∆1 and ∆2 are distinct then [[θ, ρ]]ρ1 = ρ2.

Proof. Structural induction on the first derivation and using previous lemma
6.1.

Finally, we show the global completeness of the mslg and instance algorithm
which relates insertion and retrieval. We show that if the mslg of object M1 and
M2 returns the contextual substitutions θ1 and θ2 together with the mslgM , then in
fact the retrieval algorithm shows that M1 is an instance of L under θ1 and M2 is an
instance of L under θ2. This guarantees that any time we insert a termM2 we can in
fact retrieve it. We assume here that the set of meta-variables in M1 is distinct from
the set of meta-variables in M2 which simplifies this proof slightly, since essentially
the most specific generalization contains only internal meta-variables.

Theorem 6.4 Interaction between mslg and instance algorithm.

(1) If (∆1,Σ); Γ ` M1 ⇐ A and ∆2; Γ ` M2 ⇐ A and (∆2,∆1),Σ; Γ ` M1 tM2 :
A =⇒M/(Σ′, ρ1, ρ2) then

(∆1; Σ
′; Γ `M

.
= M1 : A/(·, ρ1) and

∆2; ; Σ
′); Γ `M

.
= M2 : A/(·, ρ2).

(2) If (∆1,Σ); Γ ` R1 ⇒ A1 and ∆2; Γ ` R2 ⇒ A2 and A1 = A2 = A and

(∆2,∆1),Σ; Γ ` R1 t R2 : A =⇒ R/(Σ′, ρ1, ρ2) then

∆1; Σ
′; Γ ` R

.
=
·
R1 : A/(·, ρ1) and

∆2; Σ
′; Γ ` R

.
=
·
R2 : A/(·, ρ2).

(3) If (∆1,Σ); Γ ` S1 > P : A and ∆2; Γ ` S2 : A > P and (∆2,∆1),Σ; Γ `
S1 t S2 : A > P =⇒ S/(Σ′, ρ1, ρ2) then

∆1; Σ
′; Γ ` S

.
= S1 : A > P/(·, ρ1) and

∆2; Σ
′; Γ ` S

.
= S2 : A > P/(·, ρ2).

Proof. Simultaneous structural induction on the first derivation. Let ∆ =
∆2,∆1.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

34 · Brigitte Pientka

Case. D =
(∆2,∆1,Σ); Γ, x:A1 `M1 tM2 : A2 =⇒M/(Σ′, ρ1, ρ2)

(∆,Σ); Γ ` λx..M1 t λx..M2 : A1 → A2 =⇒ λx..M/(Σ′, ρ1, ρ2)

∆1; Σ
′; Γ, x:A1 `M

.
= M1 : A2/(·, ρ1) by i.h.

∆1; Σ
′; Γ ` λx.M

.
= λx.M1 : A1 → A2/(·, ρ1) by rule

∆2; Σ
′; Γ, x:A1 `M

.
= M2 : A2/(·, ρ2) by i.h.

∆2; Σ
′; Γ ` λx.L

.
= λx.M2 : A1 → A2/(·, ρ2) by rule

Case. D =
u::(Φ`P) ∈ ∆

(∆,Σ); Γ ` u[π] tR : P =⇒ i[idγ]/(i::P [Γ], Γ̂.u[π]/i, Γ̂.R/i)

∆1; i::P [Γ]; Γ ` i[idγ]
.
= R : P/(·, Γ̂.R/i) by rule meta-1

∆1; i::P [Γ]; Γ ` i[idγ]
.
= u[π] : P/(·, Γ̂.u[π]/i) by rule meta-1

Case. D = (∆,Σ); Γ ` H1 · S1 tH2 · S2 : P =⇒ i[idΓ]/
((i::Γ`P), (H1 · S1/i), (H2 · S2/i))

H1 6= H2 and i must be new by inversion
∆1; Σ; Γ ` i[idΓ]

.
= H1 · S1 : P/(·, Γ̂.H1 · S1/i) by meta-1

∆2; Σ; Γ ` i[idΓ]
.
= H2 · S2 : P/(·, Γ̂.H2 · S2/i) by meta-1

Case. D = (∆,Σ); Γ ` (M1;S1)t (M2;S2) : A1 → A2 > P =⇒
(M ;S)/((Σ1,Σ2), (ρ1, ρ2), (ρ

′
1, ρ

′
2))

(∆,Σ); Γ `M1 tM2 : A1 =⇒M/(Σ1, ρ1, ρ
′

1) by inversion
(∆,Σ); Γ ` S1 tS2 : A2 > P =⇒ S/(Σ2, ρ2, ρ

′

2)
∆1; Σ1; Γ `M

.
=
·
M1 : A1/(·, ρ1) by i.h.

∆2; Σ1; Γ `M
.
=
·
M2 : A1/(·, ρ

′
1) by i.h.

∆1; Σ2; Γ ` S
.
= S1 : A2 > P/(·, ρ2) by i.h.

∆2,Σ2; Γ ` S tS2 : A2 > P/(·, ρ2) by i.h.
∆1; Σ1,Σ2; Γ ` (M ;S) t (M1;S1) : A1/(·, (ρ1, ρ

′

1)) by rule
∆2,Σ1, Sigma2; Γ ` (M ;S) t (M2;S2) : A1/(·, (ρ2, ρ

′

2)) by rule

Theorem 6.5 Insertion and retrieval for substitutions.

If ∆2,∆1,Σ ` ρ1 t ρ2 : Σ′ =⇒ ρ/(Σ′′, θ1, θ2) then ∆1; Σ
′′ ` ρ

.
= ρ1 : Σ′/(·, θ1) and

∆2; Σ
′′ ` ρ

.
= ρ2 : Σ′/(·, θ2)

Proof. Structural induction on the first derivation and use of lemma 6.4.

Next, we show how to traverse the tree, to find a path [[ρn]][[ρn−1]] . . . ρ1 such
that ρ2 is an instance of it and return a contextual substitution θ such that
[[θ]][[ρn]][[ρn−1]] . . . ρ1 = ρ2. Traversal of the tree is straightforward.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 35

∆,Σ ` ρ
.
= ρ2 : Σ′/(θ′, ρ′) ∆ ` C

.
= ρ′ : Σ/θ

∆ ` [(Σ`ρ � C), C ′]
.
= ρ2 : Σ′/(θ′, θ)

there is no derivation such that∆,Σ ` ρ
.
= ρ2 : Σ′/(θ′, ρ′)

∆ ` C ′ .
= ρ : Σ/θ

∆ ` [(Σ`ρ � C), C ′]
.
= ρ2 : Σ′/θ

Theorem 6.6 Soundness of retrieval.

If ∆ ` C
.
= ρ′ : Σ′/θ then there exists a child Ci with substitution ρi in C such that

the path [[θ]][[ρn]][[ρn−1]] . . . [[ρi]] = ρ′.

Proof. By structural induction on the first derivation and use of lemma 6.3.

Finally, we show that if we insert ρ into a substitution tree and obtain a new
tree, then we are able to retrieve ρ from it.

Theorem 6.7 Interaction between insertion and retrieval.

If ∆ ` (Σ ` ρ � C) t ρ2 : Σ =⇒ (Σ ` ρ � C ′) then ∆ ` C
.
= ρ2/id∆.

Proof. Structural induction on the derivation using lemma 6.5.

7. EXTENSION TO DEPENDENTLY TYPED TERMS

Substitution trees are especially suited for indexing dependently typed terms, since
they provide more flexibility than indexing techniques such as discrimination tries
which only allow us to share common prefixes. To illustrate this point, we define a
data-structure for lists consisting of characters and we keep track of the size of the
list by using dependent types.

char : type. list : char → type.
a : char . nil : list 0.
b : char . cons : Πn:int .char → list n→ list (n+ 1).
test : Πn:int .list n→ type.

The size of lists is an explicit argument to the predicate test. Hence test takes in
two arguments, the first one is the size of the list and the second one is the actual
list. The list constructor cons takes in three arguments. The first one denotes the
size of the list, the second argument denotes the head and the third one denotes
the tail. To illustrate, we give a few examples. We use gray color for the explicit
arguments.

test 4 (cons 4 a (cons 3 a (cons 2 a (cons 1 b nil))))
test 5 (cons 5 a (cons 4 a (cons 3 a (cons 2 a (cons 1 b nil)))))
test 6 (cons 6 a (cons 5 a (cons 4 a (cons 3 b (cons 2 a (cons 1 b nil))))))

If we use non-adaptive indexing techniques such as discrimination tries, we pro-
cess the term from left to right and we will be able to share common prefixes. In
the given example, such a technique discriminates on the first argument, which de-
notes the size of the list and leads to no sharing between the second argument. The
substitution tree on the other hand allows us to share the structure of the second
argument. The most specific linear generalization in this example is

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

36 · Brigitte Pientka

test i1[id] (cons i2[id] a (cons i3[id] a (cons i4[id] a (cons i5[id] i6[id] nil)))).

This allows us to skip over the implicit first argument denoting the size and index-
ing on the second argument, the actual list. It has been sometimes argued that it is
possible to retain the flexibility in non-adaptive indexing techniques by reordering
the arguments to test. However, this only works easily in an untyped setting and it
is not clear how to maintain typing invariants in a dependently typed setting if we
allow arbitrary reordering of arguments. Hence higher-order substitution trees offer
a adaptive compact indexing data-structure while maintaining typing invariants.

However, there are unique challenges of designing and implementing higher-order
substitution trees for dependently typed terms. First, our substitution tree is de-
signed for linear higher-order patterns. However, transforming dependently typed
terms into linear higher-order patterns may result in ill-typed terms – or better
linear higher-order patterns are only well-typed modulo variable definitions.

We may think of linear terms as a representation which is only used internally, and
all linear terms are well-typed modulo variable definitions. Then we can show that
approximate types (e.g. types where dependencies have been erased) are preserved
in substitution trees, and all intermediate variables introduced are only used within
this data-structure, but do not leak outside. As a consequence, we will always
obtain a dependently typed term after composing the contextual substitutions in
one branch of the substitution tree and solving the variable definitions.

8. RELATED WORK AND CONCLUSION

We have presented a higher-order term indexing technique, called higher-order sub-
stitution trees. We only know of two other attempts to design and implement a
higher-order term indexing technique. L. Klein [Klein 1997] developed in his mas-
ter’s thesis a higher-order term indexing technique for simply typed terms where
algorithms are based on a fragment of Huet’s higher-order unification algorithm,
the simplification rules. Since the most specific linear generalization of two higher-
order terms does not exist in general, he suggests to maximally decompose a term
into its atomic subterms. This approach results in larger substitution trees and
stores redundant substitutions. In addition, he does not use explicit substitutions
leading to further redundancy in the representation of terms. As no linearity cri-
teria is exploited, the consistency checks need to be performed eagerly, potentially
degrading the performance.

Necula and Rahul briefly discuss the use of automata driven indexing for higher-
order terms in [Necula and Rahul 2001]. Their approach is to ignore all higher-order
features when maintaining the index, and return an imperfect set of candidates.
Then full higher-order unification on the original terms is used to filter out the
ones which are in fact unifiable in a post-processing step. They also implemented
Huet’s unification algorithm, which is highly nondeterministic. Although they have
achieved substantial speed-up for their application in proof-carrying code, it is
not as general as the technique we have presented here. The presented indexing
technique is designed as a perfect filter for linear higher-order patterns. For objects
which are not linear higher-order patterns, we solve variable definitions via higher-
order unification, but avoid calling higher-order unification on the original term.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

Higher-order term indexing using substitution trees · 37

Higher-order substitution trees provide a very flexible term indexing structure.
However, in general there may be multiple ways to insert a term and no optimal
substitution trees exist. For example, in the substitution tree given earlier we
compare the substitution for the third argument before the substitutions for the
first argument when looking up the term (3) and term (4). While we traverse the
term (1) and (2) from left to right. This feature leads to very compact substitution
trees and better memory usage and retrieval times.

We have implemented and successfully used higher-order substitution trees in the
context of higher-order tabled logic programming. The table is a dynamically built
index, i.e. when evaluating a query we store intermediate goals encountered during
proof search. In our implementation for the tabled logic programming engine,
we observed performance improvements up to a factor of 10 for some examples
[Pientka 2003b; 2003a]. One interesting use of indexing is in indexing the actual
higher-order logic program. For this we can build the index statically. Although the
general idea of substitution trees is also applicable in this setting there are several
important optimizations. For example, we can compute an optimal substitution
tree via unification factoring [Dawson et al. 1995] for a static set of terms to get
the best sharing among clause heads. In the future, we plan to adopt and optimize
substitution tree indexing for indexing higher-order logic programming clauses.

REFERENCES

Abadi, M., Cardelli, L., Curien, P.-L., and Lèvy, J.-J. 1990. Explicit substitutions. In
Conference Record of the Seventeenth Annual ACM Symposium on Principles of Programming
Languages, San Francisco, California. ACM, 31–46.

Dawson, S., Ramakrishnan, C. R., Skiena, S., and Swift, T. 1995. Principles and practice
of unification factoring. ACM Transactions on Programming Languages and Systems 18, 6,
528–563.

Dowek, G., Hardin, T., and Kirchner, C. 1995. Higher-order unification via explicit substitu-
tions. In Proceedings of the Tenth Annual Symposium on Logic in Computer Science, D. Kozen,
Ed. IEEE Computer Society Press, San Diego, California, 366–374.

Graf, P. 1995. Substitution tree indexing. In Proceedings of the 6th International Conference on
Rewriting Techniques and Applications, Kaiserslautern, Germany. Lecture Notes in Computer
Science (LNCS) 914. Springer-Verlag, 117–131.

Hanus, M. and Prehofer, C. 1999. Higher-order narrowing with definitional trees. Journal of
Functional Programming 9, 1, 33–75.

Iliano Cervesato, F. P. 2003. A linear spine calculus. Journal of Logic and Computation 13, 5,
639–688.

Klein, L. 1997. Indexing für Terme höherer Stufe. Diplomarbeit, FB 14, Universität des Saar-
landes, Saarbrücken, Germany.

Miller, D. 1991a. A logic programming language with lambda-abstraction, function variables,

and simple unification. Journal of Logic and Computation 1, 4, 497–536.

Miller, D. 1991b. Unification of simply typed lambda-terms as logic programming. In Eighth
International Logic Programming Conference. MIT Press, Paris, France, 255–269.

Nanevski, A., Pfenning, F., and Pientka, B. 2006. A contextual modal type theory. ACM
Transactions on Computational Logic (accepted, to appear in 2007), 56 pages.

Necula, G. and Rahul, S. 2001. Oracle-based checking of untrusted software. In 28th ACM
Symposium on Principles of Programming Languages (POPL’01). 142–154.

Pfenning, F. 1991. Unification and anti-unification in the Calculus of Constructions. In Sixth
Annual IEEE Symposium on Logic in Computer Science. Amsterdam, The Netherlands, 74–85.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

38 · Brigitte Pientka

Pfenning, F. and Schürmann, C. 1999. System description: Twelf — a meta-logical framework

for deductive systems. In Proceedings of the 16th International Conference on Automated De-
duction (CADE-16), H. Ganzinger, Ed. Springer-Verlag Lecture Notes in Artificial Intelligence
(LNAI) 1632, Trento, Italy, 202–206.

Pientka, B. 2002. A proof-theoretic foundation for tabled higher-order logic programming. In
18th International Conference on Logic Programming, Copenhagen, Denmark, P. Stuckey, Ed.
Lecture Notes in Computer Science (LNCS), 2401. Springer-Verlag, 271 –286.

Pientka, B. 2003a. Higher-order substitution tree indexing. In 19th International Conference on
Logic Programming, Mumbai, India, C. Palamidessi, Ed. Lecture Notes in Computer Science
(LNCS 2916). Springer-Verlag, 377–391.

Pientka, B. December 2003b. Tabled higher-order logic programming. Ph.D. thesis, Department
of Computer Sciences, Carnegie Mellon University. CMU-CS-03-185.

Pientka, B. and Pfennning, F. July 2003. Optimizing higher-order pattern unification. In
19th International Conference on Automated Deduction, Miami, USA, F. Baader, Ed. Lecture
Notes in Artificial Intelligence (LNAI) 2741. Springer-Verlag, 473–487.

Ramakrishnan, I. V., Sekar, R., and Voronkov, A. 2001. Term indexing. In Handbook of
Automated Reasoning, A. Robinson and A. Voronkov, Eds. Vol. 2. Elsevier Science Publishers
B.V., 1853–1962.

Sarkar, S., Pientka, B., and Crary, K. 2005. Small proof witnesses for lf. In 21st International
Conference on Logic Programming, Sitges, Spain, M. Gabbrielli and G. Gupta, Eds. Lecture
Notes in Computer Science (LNCS), vol. 3668. Springer-Verlag, 387–401.

Watkins, K., Cervesato, I., Pfenning, F., and Walker, D. 2002. A concurrent logical frame-
work I: Judgments and properties. Tech. Rep. CMU-CS-02-101, Department of Computer
Science, Carnegie Mellon University. Forthcoming.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.

