
Preliminary Report. Final version to appear in:
LFMTP 2010

c© A. Abel & B. Pientka
This work is licensed under the
Creative Commons Attribution License.

Explicit Substitutions for Contextual Type Theory

Andreas Abel
Theoretical Computer Science, Ludwig-Maximilians-University Munich, Germany

andreas.abel@ifi.lmu.de

Brigitte Pientka
School of Computer Science, McGill University, Montreal, Canada

bpientka@cs.mcgill.ca

In this paper, we present an explicit substitution calculus which distinguishes between ordinary bound
variables and meta-variables. Its typing discipline is derived from contextual modal type theory. We
first present a dependently typed lambda calculus with explicit substitutions for ordinary variables
and explicit meta-substitutions for meta-variables. We then present a weak head normalization pro-
cedure which performs both substitutions lazily and in a single pass thereby combining substitution
walks for the two different classes of variables. Finally, we describe a bidirectional type checking
algorithm which uses weak head normalization and prove soundness.

Keywords: Explicit substitutions, Meta-variables, Logical framework, Contextual modal type
theory

1 Introduction

Over the last decade, reasoning and programming with dependent types has received wide attention
and several systems provide implementations for dependently typed languages (see for example Agda
[BDN09, Nor07], Beluga [PD08, PD10], Delphin [PS08, PS09], Twelf [PS99], etc).

As dependent types become more accepted, it is interesting to better understand how to implement
such systems efficiently. While all the systems mentioned support type checking and moreover provide
implementations supporting type reconstruction for dependent types, there is a surprising lack in docu-
mentation and gap in modelling the theoretical foundations of these implementations. This makes it hard
to reproduce some of the ideas, and prevents them from being widely accessible to a broader audience.

A core question in the implementations for dependently typed systems is how to handle substitutions.
Let us illustrate the problem in the setting of contextual modal type theory [NPP08], where we not only
have ordinary Π-types to abstract over ordinary variables x but also Π2-types which allow us to abstract
over meta-variables X , and we find the following two elimination rules:

∆;Γ `M : Πx:A.B ∆;Γ ` N : A
∆;Γ `M N : [N/x]B

∆;Γ `M : Π2X :A[Ψ].B ∆;Ψ ` N : A

∆;Γ `M (Ψ̂.N) : [[Ψ̂.N/X]]B

In the Π-elimination rule, we do not want to apply the substitution N for x in the type B eagerly
during type checking, but accumulate all the individual substitutions and apply them simultaneously, if
necessary. Similarly, in the Π2-elimination rule, we do not want to replace eagerly the meta-variable X
with N in the type B but accumulate all meta-substitutions and also apply them simultaneously. In fact,
we would like to combine substitution walks for meta-variables and ordinary variables, and simultane-
ously apply ordinary substitution and meta-substitutions to avoid multiple traversals. This will allow us

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

potentially to detect that two terms are not equal without actually performing a substitution, and in the
case of a de Bruijn numbering scheme for variables, we would like to avoid unnecessary renumbering.

Explicit substitutions go back to Abadi et al [ACCL91] and are often central when implementing core
algorithms such as type checking or higher-order unification [DHK00]. Many existing implementations
of proof assistants such as the Twelf system, Delphin, Beluga, Agda or λProlog use explicit substitutions
to combine substitution walks for ordinary variables. A different approach with the same goal of handling
substitutions efficiently is the suspension calculus [NW98, LNQ05].

However, meta-variables are often modeled via references thereby avoiding the need to explicitly
propagate substitutions for meta-variables. Yet there are multiple reasons why we would like to treat
meta-variables non-destructively and be able to handle meta-substitutions explicitly. First, such imple-
mentations may be easier to maintain and may be more efficient. Second, in several applications we
need to abstract over the remaining free meta-variables in the most general solution found by higher-
order unification. For example in type reconstruction we need to store a closed most general type or in
tabled higher-order logic programming [Pie03] we want to store explicitly the answer substitution for the
meta-variables occurring in a query. Abstraction can be expensive since we need to first traverse a term
including the types of all the meta-variables occurring in it and collect all references to meta-variables.
Subsequently, we again need to traverse the term including the types of meta-variables and compute their
appropriate de Bruijn index. A non-destructive implementation of unification could avoid this explicit
abstraction step. To achieve a practical, non-destructive implementation of unification, understanding
the interaction of ordinary substitutions with meta-substitutions and handling both lazily is crucial.

While meta-variables are often only introduced internally, i.e., there is no abstraction over meta-
variables using a Π2-type, some languages such as Beluga have taken the step to distinguish ordinary
bound variables and meta-variables already in the source language. Consequently, we find different
classes of bound variables, bound ordinary variables and bound meta-variables, and different types, Π-
and Π2-types. When type-checking Beluga programs, we would like to combine substitution walks
for these different classes. Understanding how these two substitutions interact is also crucial for type
reconstruction in this setting, since omitted arguments may depend on both kinds of variables.

In this paper, we revisit the ideas of explicit substitutions where we combine substitutions for ordi-
nary variables and meta-variables. In particular, we describe an explicit substitution calculus with first-
class meta-variables inspired by contextual modal type theory [NPP08]. We first present a dependently
typed lambda calculus with explicit substitutions for ordinary variables and explicit meta-substitutions
for meta-variables. We omit here the ability to abstract explicitly over meta-variables which is a straight-
forward addition and concentrate on the interaction of ordinary substitutions and meta-substitutions. We
then present a weak head normalization procedure which performs both substitutions lazily and in a sin-
gle pass thereby combining substitution walks for the two different classes of variables. Finally, we give
an algorithm for definitional equality and present a bidirectional type checking algorithm which employs
weak head normalization and show soundness. In the future, we plan to use the presented calculus as
a foundation for implementing the Beluga language which supports programming and reasoning with
formal systems specified in the logical framework LF.

2 The Calculus: Syntax, Typing, and Equality

Let us first introduce the grammar and typing rules for the dependently typed λ -calculus with meta-
variables based on the ideas in [NPP08]. The system we consider is an extension of the logical framework
LF with first-class meta-variables. We design the calculus as an extension of previous explicit substitution

2

calculi such as [ACCL91, DHK00]. These calculi only support ordinary substitutions but not at the same
time meta-substitutions.

Our calculus supports general closures on the type and term level. Meta-variables (which sometimes
are also called contextual variables) are written as X . Typically, meta-variables occur as a closure [σ]X ,
but we will treat this as a special case of the general closure [σ]N.

To provide a compact representation of the typing rules, we follow the tradition of pure type systems
and introduce sorts and expressions where sorts can be either kind or type and expressions include terms,
types and kinds. A single syntactic category of expressions helps us avoid duplication in the typing and
equality rules for closures [σ]E and [[θ]]E. We will write M, A, K, if indeed expressions can only occur
as terms M, types A or kinds K.

Sorts s ::= kind | type
Expressions E,F ::= s | a |ΠE.F | xn | Xn | λ E | F E | [σ]E | [[θ]]E

Special cases of expressions:

Kinds K ::= type |ΠA.K | [σ]K | [[θ]]K
Types A,B ::= a | A M |ΠA.B | [σ]A | [[θ]]A
Terms M,N ::= xn | Xn | λ M |M N | [σ]N | [[θ]]M (n≥ 1)

Substitutions σ ,τ ::= ↑n | σ ,M | [τ]σ | [[θ]]σ (n≥ 0)

Meta-substitutions θ ::= ⇑n | θ ,M | [[θ]]θ ′ (n≥ 0)

Contexts Γ,Ψ ::= · |Ψ,A
Meta-contexts ∆ ::= · | ∆,Ψ.A

Constants are denoted by letter a, their types/kinds are recorded in a global well-formed signature Σ.
We have two different de Bruijn indices xn and Xn (n ≥ 1), one for numbering bound variables and one
for numbering meta-variables. xn represents the de Bruijn number n and stands for an ordinary bound
variable, while Xn represents the de Bruijn number n but stands for a meta-variable. Due to the two
kinds of substitutions, we also have two kinds of closures; the closure of an expression with an ordinary
substitution σ and the closure of an expression with a meta-substitution θ . Following the treatment of
meta-variables in [NPP08], we describe the type of a meta-variable as Ψ . A which stands for a meta-
variable of type A which may refer to variables in Ψ.

Meta-substitutions provide a term M for a meta-variable X of type Ψ . A. Note that M does not
denote a closed term, but a term of type A in the context Ψ and hence may refer to variables from Ψ. In
previous presentations where we use names for variables, we hence wrote Ψ̂.M/X to be able to rename
the variables in M appropriately. Because bound variables are represented using de Bruijn indices in this
paper, we simply write M/X but keep in mind that M is not necessarily closed.

Our calculus also features closures on the level of substitutions and meta-substitutions. For example,
we allow the closure [σ]τ which will allow us to lazily treat ordinary substitution composition and the
closure [[θ]]σ which will postpone applying θ to the ordinary substitution σ . Similarly, the closure [[θ]]θ ′

for meta-substitutions allows us to lazily compose meta-substitutions. We note the absence of a closure
[σ]θ . Applying an ordinary substitution σ to a meta-substitution θ simply reduces to θ , since all objects
in the meta-substitution are closed objects and cannot be affected by σ . It is hence not meaningful
to include a closure [σ]θ . We also do not introduce a closure of a context Ψ and a meta-substitution
θ . Instead we define [[θ]]Ψ eagerly by simply pushing the meta-substitution θ to each declaration as

3

follows: [[θ]]·= · and [[θ]](Ψ,A) = [[θ]]Ψ, [[θ]]A. The length of a context Γ is denoted by |Γ| and likewise
|∆| for meta-contexts.

Expressions
∆ ` Γ ctx

∆;Γ ` type : kind

∆ ` Γ ctx Σ(a) = K
∆;Γ ` a : K

∆;Γ,A ` E : s
∆;Γ `ΠA.E : s

∆;Γ ` A : type

∆;Γ,A ` x1 : [↑1]A
∆;Γ ` xn : A ∆;Γ ` B : type

∆;Γ,B ` xn+1 : [↑1]A

∆;Γ ` A : type

∆,Γ.A; [[⇑1]]Γ ` X1 : [[⇑1]]A
∆;Γ ` Xn : A ∆;Γ′ ` A′ : type

∆,Γ′ .A′; [[⇑1]]Γ ` Xn+1 : [[⇑1]]A

∆;Γ,A `M : B ∆;Γ,A ` B : type

∆;Γ ` λ M : ΠA.B
∆;Γ ` E : ΠA.F ∆;Γ ` N : A

∆;Γ ` E N : [↑0,N]F

∆;Γ ` σ : Ψ ∆;Ψ ` E : kind

∆;Γ ` [σ]E : kind

∆;Γ ` σ : Ψ ∆;Ψ ` E : F
∆;Γ ` [σ]E : [σ]F

∆ ` θ : ∆′ ∆′;Γ ` E : kind

∆; [[θ]]Γ ` [[θ]]E : kind

∆ ` θ : ∆′ ∆′;Γ ` E : F
∆; [[θ]]Γ ` [[θ]]E : [[θ]]F

∆;Γ ` E : F1 ∆;Γ ` F1 ≡ F2 : s
∆;Γ ` E : F2

Contexts and meta-contexts

` ·mctx

∆;Ψ ` A : type

` ∆,Ψ.A mctx
` ∆ mctx
∆ ` · ctx

∆;Ψ ` A : type

∆ `Ψ,A ctx

Ordinary substitutions
∆ `Ψ,Γ ctx |Γ|= n

∆;Ψ,Γ ` ↑n : Ψ

∆;Γ ` σ : Ψ ∆;Ψ ` A : type ∆;Γ `M : [σ]A
∆;Γ ` (σ ,M) : (Ψ,A)

∆;Γ ` τ : Ψ′ ∆;Ψ′ ` σ : Ψ

∆;Γ ` [τ]σ : Ψ

∆ ` θ : ∆′ ∆′;Γ ` σ : Ψ

∆; [[θ]]Γ ` [[θ]]σ : [[θ]]Ψ
Meta-substitutions

` ∆,∆′ mctx |∆′|= n
∆,∆′ ` ⇑n : ∆

∆ ` θ : ∆′ ∆′;Γ ` A : type ∆; [[θ]]Γ `M : [[θ]]A
∆ ` (θ ,M) : ∆′,Γ.A

∆ ` θ : ∆0 ∆0 ` θ ′ : ∆′

∆ ` [[θ]]θ ′ : ∆′

Figure 1: Typing rules for explicit substitution calculus with first-class meta-variables

2.1 Typing rules

In contrast to [HP05], we present the typing rules for LF in pure type system (PTS) style, to avoid rule
duplication (which would be substantial for the rules of definitional equality given in the next section).

4

We will use the following judgments:

` ∆ mctx Meta-context ∆ is well-typed
∆ ` Ψ ctx Context Ψ is well-typed
∆;Γ ` E : F Expression E has “type” F
∆;Γ ` σ : Ψ Substitution σ has domain Ψ and range Γ

∆ ` θ : ∆′ Contextual Substitution θ has domain ∆′ and range ∆

The judgement ∆;Γ ` E : F subsumes the judgements ∆;Γ ` M : A (term M has type A), ∆;Γ ` A : K
(type family A has kind K) and ∆;Γ ` K : kind (kind K is well-formed).

We present the typing rules in Figure 1 as a type assignment system for expressions E. To improve
readability, we use the letters M,N instead of E when we know that we are dealing with a term, and
similarly A,B for types and K for kinds.

In the typing rule for λM, the hypothesis ∆;Γ,A ` B : type prevents us to form a λ -abstraction
on the type level (for this, we would need B : kind). Lambda on the type level does not increase the
expressiveness [Ada05, HP05]. Unlike the system in [HP05], we do not assume that the meta-context ∆

and the context Γ are well-formed, but ensure that these are well-formed contexts by adding appropriate
typing premises to for example the typing rules for bound variables and meta-variables. We establish
separately that contexts are well-formed (see Lemma 1 on page 9) and that the inference rules are valid
(see Theorem 4 on page 10).

We concentrate here on explaining the typing rules for bound variables and meta-variables. The typ-
ing rules for bound variables essentially peel off one type declaration in the context Γ until we encounter
the variable x1. The typing premises guarantee that the meta-context ∆ and the context Γ and the type A
of the bound variable all are well-typed. The rule for meta-variables are built in a similar fashion as the
typing rules for bound variables peeling off type declarations from the meta-context ∆ until we encounter
the meta-variable X1.

2.2 Definitional Equality

In this section, we describe a typed βη-equality judgement on expressions, ordinary substitutions, and
meta-substitutions. We will use the following judgments:

∆;Γ ` E1 ≡ E2 : F Expressions E1 and E2 are equal at “type” F
∆;Γ ` σ1 ≡ σ2 : Ψ Substitutions σ1 and σ2 are equal at domain Ψ

∆ ` θ1 ≡ θ2 : ∆′ Meta-substitutions θ1 and θ2 are equal at domain ∆′

The judgement ∆;Γ ` E1 ≡ E2 : F subsumes the judgements ∆;Γ ` K1 ≡ K2 : kind (kinds K1 and K2 are
equal), ∆;Γ ` A1 ≡ A2 : K (types A1 and A2 are equal of kind K) and ∆;Γ `M1 ≡M2 : A (terms M1 and
M2 are equal of type A).

These judgements are all congruences, i. e., we have equivalence rules (reflexivity, symmetry, transi-
tivity) and a congruence rule for each syntactic construction. For instance, this is one of congruence rule
for substitutions and the type conversion rule:

∆;Γ `M ≡M′ : [σ]A ∆;Γ ` A : type ∆;Γ ` σ ≡ σ ′ : Ψ

∆;Γ ` (σ ,M)≡ (σ ′,M′) : Ψ,A
∆;Γ ` E ≡ E ′ : F ∆;Γ ` F ≡ F ′ : s

∆; Γ ` E ≡ E ′ : F ′

The remaining rules for definitional equality fall into two classes: the computational laws for ordinary
substitutions (Figure 2) and the computational laws for meta-substitutions (Figure 3). Both sets of rules

5

follow the same principle. They are grouped into identity and composition rules, propagation and re-
duction rules. For ordinary substitutions we also include β -reduction. For meta-substitutions, there
is no equivalent β -reduction rule since we do not support abstraction over meta-variables. However,
we add propagation into ordinary substitutions. Note that pushing a meta-substitution inside a lambda-
abstraction or a Π-type does not require a shift of the indices, since indices of ordinary bound variables
are distinct from indices of meta-variables and no capture can occur. There is no reduction for [σ][[θ]]M:
an ordinary substitution cannot in general be pushed past a meta-substitution, it has to wait for the meta-
substitution to be resolved.

To illustrate the definitional equality rules, we show how to derive ∆;Γ ` [σ ,M]xn+1 ≡ [σ]xn : [σ]A
which also demonstrates that such a rule is admissible. Transitivity is essential to assemble the following
sub-derivations.

Step 1: ∆;Ψ ` xn : A
∆;Ψ,B ` xn+1 : [↑1]A

Weakening

∆;Ψ,B ` xn+1 ≡ [↑1]xn : [↑1]A
Reduction

∆;Γ ` [σ ,M]xn+1 ≡ [σ ,M][↑1]xn : [σ ,M][↑1]A
Congruence

∆;Γ ` [σ ,M]xn+1 ≡ [σ ,M][↑1]xn : [[σ ,M]↑1]A
Composition, Conversion

Step 2:
∆;Γ ` σ ,M : Ψ,B ∆;Ψ,B ` ↑1 : Ψ ∆;Ψ ` xn : A

∆;Γ ` [σ ,M][↑1]xn ≡ [[σ ,M]↑1]xn : [[σ ,M]↑1]A
Composition

D
∆;Γ ` [σ ,M]↑1 ≡ σ : Ψ

∆;Γ ` [[σ ,M]↑1]A≡ [σ]A : type
Congruence

∆;Γ ` [σ ,M][↑1]xn ≡ [[σ ,M]↑1]xn : [σ]A
Conversion

Step 3: D
∆;Γ ` [σ ,M]↑1 ≡ σ : Ψ

∆;Γ ` [[σ ,M]↑1]xn ≡ [σ]xn : [σ]A
Congruence

where

D =

∆;Γ ` σ ,M : Ψ,B

∆;Γ ` [σ ,M]↑1 = [σ]↑0 : Ψ
Pairing ∆;Γ ` σ : Ψ

∆;Γ ` [σ]↑0 ≡ σ : Ψ
Category Laws

∆;Γ ` [σ ,M]↑1 ≡ σ : Ψ
Transitivity

Similarly, we can show that ∆;Γ ` [[θ ,M]]Xn+1 ≡ [[θ]]Xn : [[θ]]A is admissible.

2.2.1 Extensionality Laws

As mentioned earlier, we take into account β -reductions and η-expansions. In particular, we consider
η-rules for ordinary substitutions as well as meta-substitutions.

∆;Γ `M : ΠA.B

∆;Γ `M ≡ λ (([↑1]M) x1) : ΠA.B

∆ ` Γ,A,Γ′ ctx |Γ′|= n

∆;Γ,A,Γ′ ` ↑n ≡ (↑n+1,xn+1) : Γ,A

` ∆,Γ.A,∆′ mctx |∆′|= n

∆,Γ.A,∆′ ` ⇑n ≡ (⇑n+1,Xn+1) : ∆,Γ.A

6

β -Reduction

∆;Γ,A `M : B ∆;Γ,A ` B : type ∆;Γ ` N : A

∆;Γ ` (λM)N ≡ [↑0,N]M : [↑0,N]B

Substitution Propagation: Identity and Composition

∆;Γ ` E : F

∆;Γ ` [↑0]E ≡ E : F

∆;Γ ` σ : Γ′ ∆;Γ′ ` τ : Ψ ∆;Ψ ` E : F
∆;Γ ` [σ][τ]E ≡ [[σ]τ]E : [[σ]τ]F

Substitution Propagation: Constants

∆;Γ ` σ : Ψ

∆;Γ ` [σ]type≡ type : kind

∆;Γ ` σ : Ψ ∆;Γ ` a : K
∆;Γ ` [σ]a≡ a : [σ]K

Substitution Propagation: Variable Lookup

∆;Γ ` σ : Ψ ∆;Ψ ` A : type ∆;Γ `M : [σ]A
∆;Γ ` [σ ,M]x1 ≡M : [σ]A

∆;Γ ` xn+1 : A

∆;Γ ` xn+1 ≡ [↑1]xn : A

Substitution Propagation: Pushing into Expression Constructions

∆;Γ ` σ : Ψ ∆;Ψ,A ` F : s

∆;Γ ` [σ](ΠA.F)≡Π [σ]A. [[↑1]σ ,x1]F : s

∆;Γ ` σ : Ψ ∆;Ψ,A `M : B ∆;Ψ,A ` B : type

∆;Γ ` [σ](λM)≡ λ [[↑1]σ ,x1]M : Π [σ]A. [[↑1]σ ,x1]B

∆;Γ ` σ : Ψ ∆;Ψ ` E : ΠA.F ∆;Ψ ` N : A
∆;Γ ` [σ](E N)≡ [σ]E [σ]N : [σ , [σ]N]F

Substitution Reductions: Pairing and Shifting

∆;Γ ` (σ ,M) : Ψ,Ψ′,A |Ψ′|= n

∆;Γ ` [σ ,M]↑n+1 ≡ [σ]↑n : Ψ

∆;Γ ` σ : Ψ′ ∆;Ψ′ ` (τ,M) : Ψ,A
∆;Γ ` [σ](τ,M)≡ ([σ]τ, [σ]M) : Ψ,A

∆ ` Γ,Γ1,Γ2 ctx |Γ1|= m |Γ2|= n
∆;Γ,Γ1,Γ2 ` [↑n]↑m ≡ ↑n+m : Γ

Substitution Reductions: Category Laws

∆;Γ ` σ : Ψ

∆;Γ ` [↑0]σ ≡ σ : Ψ

∆;Γ ` σ : Ψ

∆;Γ ` [σ]↑0 ≡ σ : Ψ

∆;Γ1 ` σ1 : Γ2 ∆;Γ2 ` σ2 : Γ3 ∆;Γ3 ` σ3 : Γ4

∆;Γ1 ` [σ1][σ2]σ3 ≡ [[σ1]σ2]σ3 : Γ4

Figure 2: Computational Laws I: β and substitutions

7

Meta-Substitution Propagation: Identity and Composition

∆;Γ ` E : F

∆;Γ ` [[⇑0]]E ≡ E : F

∆ ` θ : ∆′ ∆′ ` θ ′ : ∆′′ ∆′′;Γ ` E : F
∆; [[[[θ]]θ ′]]Γ ` [[θ]][[θ ′]]E ≡ [[[[θ]]θ ′]]E : [[[[θ]]θ ′]]F

Meta-Substitution Propagation: Constants and Ordinary Variables

∆ ` θ : ∆′ ∆′ ` Γ ctx

∆; [[θ]]Γ ` [[θ]]type≡ type : kind

∆ ` θ : ∆′ ∆′;Γ ` a : K
∆; [[θ]]Γ ` [[θ]]a≡ a : [[θ]]K

∆ ` θ : ∆′ ∆′;Γ ` xn : A
∆; [[θ]]Γ ` [[θ]]xn ≡ xn : [[θ]]A

Meta-Substitution Propagation: Meta-variable Lookup

∆ ` θ : ∆′ ∆′;Γ ` A : type ∆; [[θ]]Γ `M : [[θ]]A
∆; [[θ]]Γ ` [[θ ,M]]X1 ≡M : [[θ]]A

∆;Γ ` Xn+1 : A

∆;Γ ` Xn+1 ≡ [[⇑1]]Xn : A

Meta-Substitution Propagation: Pushing into Expression Constructions

∆ ` θ : ∆′ ∆′;Γ,A ` F : s
∆; [[θ]]Γ ` [[θ]](ΠA.F)≡Π [[θ]]A. [[θ]]F : s

∆ ` θ : ∆′ ∆′;Γ,A `M : B ∆′;Γ,A ` B : type

∆; [[θ]]Γ ` [[θ]](λM)≡ λ [[θ]]M : Π [[θ]]A. [[θ]]B

∆ ` θ : ∆′ ∆′;Γ ` E : ΠA.F ∆′;Γ ` N : A

∆; [[θ]]Γ ` [[θ]](E N)≡ [[θ]]E [[θ]]N : [↑1, [[θ]]N]F

∆ ` θ : ∆′ ∆′;Γ ` σ : Ψ ∆′;Ψ ` E : F
∆; [[θ]]Γ ` [[θ]][σ]E ≡ [[[θ]]σ][[θ]]E : [[[θ]]σ][[θ]]F

Meta-Substitution Propagation: Pushing into Ordinary Substitutions

∆ ` θ : ∆′ ∆′ ` Γ,Γ′ ctx |Γ′|= n
∆; [[θ]]Γ, [[θ]]Γ′ ` [[θ]]↑n ≡ ↑n : [[θ]]Γ

∆ ` θ : ∆′ ∆′;Γ ` σ : Ψ ∆′;Ψ ` A : type ∆′;Γ `M : [σ]A
∆; [[θ]]Γ ` [[θ]](σ ,M)≡ ([[θ]]σ , [[θ]]M) : [[θ]]Ψ, [[θ]]A

∆ ` θ : ∆′ ∆′;Γ ` τ : Ψ′ ∆′;Ψ′ ` σ : Ψ

∆; [[θ]]Γ ` [[θ]][τ]σ ≡ [[[θ]]τ][[θ]]σ : [[θ]]Ψ
∆ ` θ : ∆′ ∆′ ` θ ′ : ∆′′ ∆′′;Γ ` σ : Ψ

∆; [[[[θ]]θ ′]]Γ ` [[θ]][[θ ′]]σ ≡ [[[[θ]]θ ′]]σ : [[[[θ]]θ ′]]Ψ

Meta-Substitution Reductions: Pairing and Shifting

∆ ` (θ ,M) : ∆0,∆
′
0,Γ.A |∆′0|= n

∆ ` [[θ ,M]]⇑n+1 ≡ [[θ]]⇑n : ∆0

∆ ` θ : ∆′0 ∆′0 ` (θ ′,M) : ∆0,Γ.A
∆ ` [[θ]](θ ′,M)≡ ([[θ]]θ ′, [[θ]]M) : ∆0,Γ.A

` ∆,∆1,∆2 mctx |∆1|= m |∆2|= n
∆,∆1,∆2 ` [[⇑n]]⇑m ≡ ⇑n+m : ∆

Meta-Substitution Reductions: Category Laws

∆ ` θ : ∆0

∆ ` [[⇑0]]θ ≡ θ : ∆0

∆ ` θ : ∆0

∆ ` [[θ]]⇑0 ≡ θ : ∆0

∆1 ` θ1 : ∆2 ∆2 ` θ2 : ∆3 ∆3 ` θ3 : ∆4

∆1 ` [[θ1]][[θ2]]θ3 ≡ [[[[θ1]]θ2]]θ3 : ∆4

Figure 3: Computational Laws II: Meta-substitution

8

2.3 Properties

Next, we prove some standard properties about the presented type assignment system. First, we show
that contexts are indeed well-formed.

Lemma 1 (Context well-formedness)
1. If ∆,∆′ ` J or ∆,∆′;Γ ` J then ` ∆ mctx.

2. If ∆ ` θ : ∆′ or ∆ ` θ ≡ θ ′ : ∆′ then ` ∆′ mctx.

3. If ∆;Γ,Γ′ ` J then ∆ ` Γ ctx.

4. If ∆;Γ ` σ : Ψ or ∆;Γ ` σ ≡ σ ′ : Ψ then ∆ `Ψ ctx.

The height of the output derivation is bounded by the height of the input derivation, in all cases.

Proof. By simultaneous induction over all judgments. 2

The following inversion theorem for typing is standard for PTSs and are necessary due to the type
conversion rule which makes inversion a non-obvious property. It allows us to classify expressions
into terms, types, kinds, and the sort kind. We write ∆;Γ ` E ≡ E ′ if there exists a sort s such that
∆;Γ ` E ≡ E ′ : s.

Theorem 2 (Inversion of typing)
1. There is no derivation of ∆;Γ ` kind : E.

2. If ∆;Γ ` type : E then E = kind.

3. If ∆;Γ ` a : E then ∆;Γ ` E ≡ Σ(a).

4. If ∆;Γ `ΠA.E : F then ∆;Γ ` A : type and ∆;Γ,A ` E : F and either F = kind or ∆;Γ ` F ≡ type.

5. If ∆;Γ ` xn+1 : A then Γ = Γ1,A′,Γ2 with |Γ2|= n and ∆;Γ ` A≡ [↑n+1]A′.

6. If ∆;Γ ` Xn+1 : A then ∆ = ∆1,Γ
′ .A′,∆2 with |∆2|= n and Γ = [[⇑n+1]]Γ′ and ∆;Γ ` A≡ [[⇑n+1]]A′.

7. If ∆;Γ ` λM : C then there are A,B such that ∆;Γ `C ≡ΠA.B and ∆;Γ ` A : type and
∆;Γ,A ` B : type and ∆;Γ,A `M : B.

8. If ∆;Γ ` E N : C then there are A,F such that ∆;Γ ` E : ΠA.F and ∆;Γ ` N : A
and ∆;Γ `C ≡ [↑0,N]F.

9. If ∆;Γ ` [σ]E : F then there are Ψ,F ′ such that ∆;Γ ` σ : Ψ and ∆;Ψ ` E : F ′

and ∆;Γ ` E ≡ [σ]F ′.

10. If ∆;Γ ` [[θ]]E : F then there are ∆′,Γ′,F ′ such that ∆ ` θ : ∆′ and ∆;Γ′ ` E : F ′ and Γ = [[θ]]Γ′

and ∆;Γ ` F ≡ [[θ]]F ′.

Proof. By induction on the typing derivation, peeling off the type conversion steps and combining them
with transitivity. 2

Expression E is a kind if ∆;Γ ` E : kind for some ∆,Γ, it is a type family if ∆;Γ ` E : K for some kind K
and some ∆,Γ, and it is a term if ∆;Γ ` E : A for some A,∆,Γ with ∆;Γ ` A : type.

The following inversion statement for meta-variables under a substitution is crucial for the correct-
ness of algorithmic equality (Sec. 3.2) and bidirectional type checking (Sec. 4).

Corollary 3 If ∆;Γ ` [σ]Xm : A then ∆ = ∆1,Ψ . A′,∆2 with |∆2| = m− 1 and ∆;Γ ` σ : [[⇑m]]Ψ and
∆;Γ ` A≡ [σ][[⇑m]]A′.

9

Theorem 4 (Syntactic Validity)
1. If ∆;Γ ` E : F or ∆;Γ ` E1 ≡ E2 : F then ∆;Γ ` F : s for some sort.

2. If ∆;Γ ` E ≡ E ′ : F then ∆;Γ ` E : F and ∆;Γ ` E ′ : F.

3. If ∆ ` θ ≡ θ ′ : ∆′ then ∆ ` θ : ∆′ and ∆ ` θ ′ : ∆′.

4. If ∆;Γ ` σ ≡ σ ′ : Ψ then ∆;Γ ` σ : Ψ and ∆;Γ ` σ ′ : Ψ.

Proof. By simultaneous induction over all judgments. 2

3 Evaluation and Algorithmic Equality

In this section, we define a weak head normalization strategy together with algorithmic equality. The goal
is to treat ordinary substitutions and meta-substitutions lazily; in particular, we aim to postpone shifting
of substitutions until necessary. For the treatment of LF, an untyped algorithmic equality is sufficient.
The design of the algorithm follows Coquand [Coq91] with refinements from joint work with the first
author [AC07]. In this article, we only show soundness of the algorithm; completeness can be proven
using techniques of the cited works. However, an adaptation to de Bruijn style and explicit substitutions
is necessary; we leave the details to future work.

We first characterize our normal forms by defining normal and neutral expressions where expressions
include terms, types, and kinds. Normal forms are exactly the expressions we can type-check with a
bidirectional algorithm (see Section 4). Note that type checking normal forms is sufficient in practice,
since the input to the type checker, written by a user, is almost always in β -normal form (or can be turned
into normal form by introducing typed let-definitions).

Normal substitutions are built out of normal expressions. However, it is worth keeping in mind that
our typing rules will ensure that they only contain terms and not types, since we do not support type-
level variables. Our normal forms are only β -normal, not necessarily η-long. Only meta-variables are
associated with an ordinary normal substitution, all other closures have been eliminated.

Normal expressions V ::= s |ΠV.V ′ | λV |U
Neutral expressions U ::= a | xn | [ν]Xn |U V

Normal substitutions ν ::= ↑n | (ν ,V)

Next, we define weak head normal forms (whnf). Since we want to treat ordinary substitutions and
meta-substitutions lazily and in particular want to postpone the complete computation of their compo-
sitions, we cannot require that substitutions and meta-substitutions are already in normal form. Hence,
we introduce environments ρ for ordinary substitutions and similarly meta-substitutions η for describing
substitutions and meta-substitutions that are in weak head normal form. Closures are expressions E in an
environment ρ and a meta-environment η . It is convenient to also treat variables xn as closures. These
arise when stepping under a binder in type and equality checking and are the synonym of Coquand’s
generic values [Coq96].

Weak head normal forms W ::= type | [ρ][[η]]ΠA.B | [ρ][[η]]λM | H
Neutral weak head normal forms H ::= a | xn | [ρ]Xn | H L
Closures L ::= xn | [ρ][[η]]E

Environments ρ ::= ↑n | (ρ,L) | [↑n]ρ
Meta-environments η ::= ⇑n | (η ,M)

10

Our weak head normal forms and closures combine substitutions and meta-substitutions and our
whnf-reduction strategy simultaneously treats substitutions and meta-substitutions. Instead of coupling
expressions with two suspended substitutions, we could have introduced a joint simultaneous substi-
tutions and closures built with them. The path taken in this paper builds on the individual substitution
operations instead of defining a new joint substitution operation. To clarify the nature and the interplay of
ordinary substitutions and meta-substitutions it is helpful to consider the typing rule of closures [ρ][[η]]E:

∆;Ψ ` ρ : [[η]]Ψ′ ∆ ` η : ∆′ ∆′;Ψ′ ` E : F
∆;Ψ ` [ρ][[η]]E : [ρ][[η]]F

Intuitively, this means to obtain an expression E ′ which makes actually sense in ∆ and Ψ, we first
compute [[η]]E and subsequently apply the ordinary substitution ρ to arrive at E ′ ≡ ([ρ][[η]]E).

Shift propagation. While we treat shifts in the environment as an explicit operation—to avoid a traversal
when lifting an environment under a binder—, shifting a closure or a neutral weak head normal form can
be implemented inexpensively. Let shifting shiftn L of a closure L be defined by shiftn xm = xn+m and
shiftn ([ρ][[η]]E) = [[↑n]ρ][[η]]E. It is extended to shifting of neutral weak head normal forms H by
shiftn (H L) = (shiftn H) (shiftn L) and shiftn ([ρ]Xm) = [[↑n]ρ]Xm and shiftn a = a.

3.1 Weak head evaluation

Our weak head evaluation strategy will postpone propagation of substitutions into an expression until
necessary. Treating substitutions lazily seems to be beneficial as also supported by the experimental anal-
ysis on lazy vs eager reduction strategies for substitutions by Nadathur and his collaborators [LNQ05].
We present the algorithm for weak head normalization in Figure 4. We define a function whnf L where
L is either a variable xn or a proper closure [ρ][[η]]E. The function whnf is then defined recursively on E.

To support the lazy evaluation of substitutions, our weak head normalization algorithm relies on the
definition of two functions, namely Env η θ and env ρ η σ . Both functions are defined recursively over
the last argument, i.e., Env is inductively defined over θ and env is inductively defined over σ . When we
encounter a closure of [σ]τ (or [[θ]]θ ′ resp.), we compute first the environment corresponding to σ and
subsequently we compute the environment for τ . This strategy allows us to avoid unnecessary shifting
of de Bruijn indices.

In addition, whnf relies on a lookup function to retrieve the i-th element of a substitution which
corresponds to the index i. Such lookup functions are defined for both, ordinary variables and meta-
variables.

Next, we prove that types are preserved when computing weak head normal forms and that the
computation is sound with regard to the specification of definitional equality. Note that at this point
termination is only clear for the lookup and substitution evaluation functions. For whnf and evaluating
application @, soundness is conditional on termination.

Theorem 5 (Subject reduction) Let ∆ ` η : ∆′.

1. If ∆′ ` θ : ∆′′ then ∆ ` Env η θ ≡ [[η]]θ : ∆′′.

2. If ∆′;Ψ ` σ : Ψ′ and ∆;Γ ` ρ : [[η]]Ψ then ∆;Γ ` env ρ η σ ≡ [ρ][[η]]σ : [[η]]Ψ′.

3. If ∆′;Ψ ` Xm : A then ∆; [[η]]Ψ ` Lookup η Xm ≡ [[η]]Xm : [[η]]A.

4. If ∆;Ψ ` xm : A and ∆;Γ ` ρ : Ψ then ∆;Γ ` lookup ρ xm ≡ [ρ]xm : [ρ]A.

11

Meta-substitution evaluation Env η θ computes the meta-environment form of [[η]]θ .

Env ⇑m ⇑n = ⇑m+n

Env (η ,M) ⇑n+1 = Env η ⇑n

Env η (θ ,M) = (Env η θ , [[η]]M)
Env η [[θ]]θ ′ = Env (Env η θ) θ ′

Substitution evaluation env ρ η σ computes the environment form of [ρ][[η]]σ .

env ([↑k]ρ) η σ = [↑k](env ρ η σ)
env ρ η ↑0 = ρ

env ↑k
η ↑n = ↑k+n

env (ρ,L) η ↑n+1 = env ρ η ↑n

env ρ η (σ ,M) = (env ρ η σ , [ρ][[η]]M)
env ρ η ([σ]τ) = env (env ρ η σ) η τ

env ρ η ([[θ]]σ) = env ρ (Env η θ) σ

Meta-variable lookup Lookup η Xm retrieves the binding of Xm in meta-environment η .

Lookup ⇑n Xm = Xn+m

Lookup (η ,E) X1 = E
Lookup (η ,E) Xm+1 = Lookup η Xm

Variable lookup lookup ρ xm computes the closure form of [ρ]xm.

lookup ↑n xm = xn+m

lookup (ρ,L) x1 = L
lookup (ρ,L) xm+1 = lookup ρ xm

lookup ([↑n]ρ) xm = shiftn (lookup ρ xm)

Weak head evaluation whnf L computes the weak head normal form of closure L.

whnf xm = xm

whnf [ρ][[η]]s = s
whnf [ρ][[η]]a = a
whnf [ρ][[η]]xm = whnf (lookup ρ xm)
whnf [ρ][[⇑0]]Xm = [ρ]Xm

whnf [ρ][[η]]Xm = whnf [ρ][[⇑0]](Lookup η Xm)
whnf [ρ][[η]](ΠA.E) = [ρ][[η]](ΠA.E)
whnf [ρ][[η]](λM) = [ρ][[η]](λM)
whnf [ρ][[η]](M N) = (whnf [ρ][[η]]M) @ [ρ][[η]]N
whnf [ρ][[η]][σ]M = whnf [env ρ η σ][[η]]M
whnf [ρ][[η]][[θ]]M = whnf [ρ][[Env η θ]]M

Evaluating application W @ L computes the weak head normalform of W L.

[ρ][[η]](λM) @ L = whnf [ρ,L][[η]]M
H @ L = H L

Figure 4: Weak head evaluation
12

5. Let ∆′;Ψ ` E : F and ∆;Γ ` ρ : [[η]]Ψ.
If whnf [ρ][[η]]E is defined then ∆;Γ ` whnf [ρ][[η]]E ≡ [ρ][[η]]E : [ρ][[η]]F.

6. Let ∆;Γ `W : ΠA.F and ∆;Γ ` L : A. If W @ L is defined then ∆;Γ `W @ L≡W L : [↑0,L]F.

Proof. Each by induction on the trace of the function and inversion on the typing derivations, the first
four statements in isolation and the remaining two simultaneously. 2

3.2 Algorithmic equality

Building on the weak head normalization algorithm introduced in the previous section, we now give an
algorithm for deciding equality of expressions. This is a key piece in the bi-directional type checking
algorithm which we present in Section 4. Two closures, where L = [ρ][[η]]E and L′ = [ρ ′][[η ′]]E ′, are
algorithmically equal if their weak head normal forms are related, i.e., whnf [ρ][[η]]E w∼whnf [ρ ′][[η ′]]E ′.

As we check that two expressions are equal, we lazily normalize them using our weak head normal-
ization algorithm from the previous section and our algorithmic equality algorithm alternates between
applying a whnf step and actually comparing two expressions or substitutions.

The actual equality algorithm is defined using three mutual recursive judgments. 1) checking that
two expressions in whnf are equal 2) checking that two neutral weak head normal forms are equal and 3)
checking that two environments, i.e., ordinary substitutions in whnf, are equal.

W w∼W ′ weak head normal forms W,W ′ are algorithmically equal
H n∼ H ′ neutral weak head normal forms H,H ′ are algorithmically equal

[↑k]ρ r∼ [↑k′]ρ ′ environments ρ,ρ ′ are algorithmically equal under shifts by k,k′ resp.

Many of the algorithmic equality rules are straightforward and intuitive, although a bit veiled by
the abundance of explicit shifting that comes with de Bruijn style. When checking whether two meta-
variables are equal, we need to make sure that respective environments are equal. When we check
whether two lambda-abstractions are equal, we must lift their environments under the lambda-binding.
This amounts to shifting them by one and extending them with a binding for the first variable. To handle
eta-equality, we eta-expand the neutral weak head normal form H on the fly when comparing it to a
lambda-closure.

Comparing two environments for equality simply recursively analyzes the substitutions. In addition,
we handle just-in-time eta-expansion on the level of substitutions (see the last two rules).

Algorithmic equality of neutral weak head normal forms.

a n∼ a xm
n∼ xm

[↑0]ρ r∼ [↑0]ρ ′

[ρ]Xm
n∼ [ρ ′]Xm

H n∼ H ′ whnf L w∼ whnf L′

H L n∼ H ′ L′

Algorithmic equality of weak head normal forms.

s w∼ s

whnf [ρ][[η]]A w∼ whnf [ρ ′][[η ′]]A′ whnf [[↑1]ρ,x1][[η]]B w∼ whnf [[↑1]ρ ′,x1][[η ′]]B′

[ρ][[η]](ΠA.B) w∼ [ρ ′][[η ′]](ΠA′.B′)

H n∼ H ′

H w∼ H

whnf [[↑1]ρ,x1][[η]]M w∼ whnf [[↑1]ρ ′,x1][[η ′]]M′

[ρ][[η]](λM) w∼ [ρ ′][[η ′]](λM′)

13

whnf [[↑1]ρ,x1][[η]]M w∼ (shift1 H) x1

[ρ][[η]](λM) w∼ H

(shift1 H) x1
w∼ whnf [[↑1]ρ,x1][[η]]M

H w∼ [ρ][[η]](λM)

Algorithmic equality of environments.

k +n = k′+n′

[↑k]↑n r∼ [↑k′]↑n′
[↑k+n]ρ r∼ [↑k′]ρ ′

[↑k][↑n]ρ r∼ [↑k′]ρ ′
[↑k]ρ r∼ [↑k′+n′]ρ ′

[↑k]ρ r∼ [↑k′][↑n′]ρ ′

[↑k]ρ r∼ [↑k′]ρ ′ whnf (shiftk L) w∼ whnf (shiftk′ L′)

[↑k](ρ,L) r∼ [↑k′](ρ ′,L′)

[↑k]ρ r∼ [↑k′]↑n′+1 whnf (shiftk L) w∼ xk′+n′+1

[↑k](ρ,L) r∼ [↑k′]↑n′
[↑k]↑n+1 r∼ [↑k′]ρ ′ xk+n+1

w∼ whnf (shiftk′ L′)

[↑k]↑n r∼ [↑k′](ρ ′,L′)

Theorem 6 (Soundness of algorithmic equality)
1. If H n∼ H ′ and ∆;Γ ` H : F and ∆;Γ ` H ′ : F ′ then ∆;Γ ` F ≡ F ′ and ∆;Γ ` H ≡ H ′ : F.

2. If W w∼W ′ and ∆;Γ `W : F and ∆;Γ `W ′ : F then ∆;Γ `W ≡W ′ : F.

3. If [↑k]ρ r∼ [↑k′]ρ ′ and ∆;Γ ` [↑k]ρ : Ψ and ∆;Γ ` [↑k′]ρ ′ : Ψ then ∆;Γ ` [↑k]ρ ≡ [↑k′]ρ ′ : Ψ.

Proof. Simultaneously by induction on the derivation of algorithmic equality and inversion on the typ-
ing. 2

4 Bidirectional Type Checking

In this section, we show how to use our explicit substitution calculus to type-check expressions. As
mentioned in the introduction, accumulating substitution walks in type-checking is one of the key ap-
plications of this work. We only describe the algorithm and leave its theoretical properties for future
work.

We design the algorithm in a bidirectional way [Coq96, AC07] which allows us to omit type annota-
tions at lambda-abstractions. We use the following three judgments:

∆;Γ `V ⇔ s Type normal form V checks against sort s
∆;Γ `V ⇔ L Normal form V checks against “type” closure L
∆;Γ `U ⇒ L The type of neutral normal form U is inferred as closure L

∆;Γ ` ν ⇔ Ψ Normal substitution ν checks against domain Ψ

In these judgements, Γ is a list of type closures L. On ∆ we pose no restrictions; an entry Ψ.A of ∆ is as
before a list of type expressions Ψ and a type expression A.
Inferring the type of neutral normal forms U .

∆;Γ ` a ⇒ [↑0][[⇑0]]Σ(a)

∆;Γ `U ⇒ L whnf L = [ρ][[η]](ΠA.B) ∆;Γ `V ⇔ [ρ][[η]]A
∆;Γ `U V ⇒ [ρ,V][[η]]B

|Γ′|= n

∆;Γ,L,Γ′ ` xn+1 ⇒ shiftn+1 L

∆ = ∆1,Ψ.A,∆2 |∆2|= n ∆;Γ ` ν ⇔ [↑0][[⇑n+1]]Ψ

∆;Γ ` [ν]Xn+1 ⇒ [ν][[⇑n+1]]A

14

Checking the type of normal forms V .

whnf L = [ρ][[η]](ΠA.B) ∆;Γ, [ρ][[η]]A `V ⇔ [↑1
ρ,x1][[η]]B

∆;Γ ` λV ⇔ L
∆;Γ `U ⇒ L whnf L w∼ whnf L′

∆;Γ `U ⇔ L′

Checking well-formedness of types and kinds V .

∆;Γ ` type ⇔ kind

∆;Γ `V ⇔ type ∆;Γ, [↑0][[⇑0]]V `V ′ ⇔ s
∆;Γ `ΠV.V ′ ⇔ s

∆;Γ `U ⇒ L whnf L = type

∆;Γ `U ⇔ type

Checking normal substitutions ν . In this judgement ∆;Γ ` ν ⇔ Ψ, the context Ψ is also in closure form.

|Γ|= n
∆;Γ ` ↑n ⇔ ·

∆;Γ ` ν ⇔ Ψ ∆;Γ `V ⇔ L
∆;Γ ` (ν ,V) ⇔ Ψ,L

5 Conclusion

We have presented an explicit substitution calculus together with algorithms for weak head normal-
ization, definitional equality, and bi-directional type checking where both ordinary variables and meta-
variables are modelled using de Bruijn indices and both kinds of substitutions are handled lazily and
simultaneously.

We also have proven subject reduction and soundness of the definitional equality algorithm. Fi-
nally, we describe a bi-directional type-checking algorithm which treats ordinary substitutions and meta-
substitutions at the same time. In the future, we plan to prove completeness of algorithmic equality and
type checking and to adapt the presented explicit substitutions in the implementation of the programming
and reasoning environment Beluga.

References
[AC07] Andreas Abel and Thierry Coquand. Untyped algorithmic equality for Martin-Löf’s logical framework

with surjective pairs. Fundam. Inform., 77(4):345–395, 2007. TLCA’05 special issue.

[ACCL91] Martı́n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit substitutions.
Journal of Functional Programming, 1(4):375–416, 1991.

[Ada05] Robin Adams. A Modular Hierarchy of Logical Frameworks. PhD thesis, University of Manchester,
2005.

[BDN09] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda - a functional language with
dependent types. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors,
22nd International Conference on Theorem Proving in Higher Order Logics (TPHOLs’09), volume
5674 of Lecture Notes in Computer Science, pages 73–78. Springer-Verlag, 2009.

[Coq91] Thierry Coquand. An algorithm for testing conversion in type theory. In G. Huet and G. Plotkin,
editors, Logical Frameworks, pages 255–279. Cambridge University Press, 1991.

[Coq96] Thierry Coquand. An algorithm for type-checking dependent types. In Mathematics of Program
Construction. Selected Papers from the Third International Conference on the Mathematics of Pro-
gram Construction (July 17–21, 1995, Kloster Irsee, Germany), volume 26 of Science of Computer
Programming, pages 167–177. Elsevier, May 1996.

[DHK00] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher order unification via explicit substitu-
tions. Information and Computation, 157(1-2):183–235, 2000.

15

[HP05] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type theory. ACM
Transactions on Computational Logic, 6(1):61–101, 2005.

[LNQ05] Chuck Liang, Gopalan Nadathur, and Xiaochu Qi. Choices in representation and reduction strategies
for lambda terms in intensional contexts. Journal of Automated Reasoning, 33(2):89–132, 2005.

[Nor07] Ulf Norell. Towards a practical programming language based on dependent type theory. PhD thesis,
Department of Computer Science and Engineering, Chalmers University of Technology, Göteborg,
Sweden, September 2007.

[NPP08] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory. ACM
Transactions on Computational Logic, 9(3):1–49, 2008.

[NW98] Gopalan Nadathur and Debra Sue Wilson. A notation for lambda terms: A generalization of environ-
ments. Theoretical Computer Science, 198(1-2):49–98, 1998.

[PD08] Brigitte Pientka and Joshua Dunfield. Programming with proofs and explicit contexts. In ACM SIG-
PLAN Symposium on Principles and Practice of Declarative Programming (PPDP’08), pages 163–
173. ACM Press, July 2008.

[PD10] Brigitte Pientka and Joshua Dunfield. Beluga: A framework for programming and reasoning with
deductive systems (system description). In Jürgen Giesl and Reiner Hähnle, editors, 5th International
Joint Conference on Automated Reasoning (IJCAR’10), Lecture Notes in Computer Science. Springer-
Verlag, 2010.

[Pie03] Brigitte Pientka. Tabled higher-order logic programming. PhD thesis, Department of Computer Sci-
ence, Carnegie Mellon University, 2003. CMU-CS-03-185.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical framework
for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th International Conference
on Automated Deduction (CADE-16), volume 1632 of Lecture Notes in Artificial Intelligence, pages
202–206. Springer, 1999.

[PS08] Adam B. Poswolsky and Carsten Schürmann. Practical programming with higher-order encodings
and dependent types. In Proceedings of the 17th European Symposium on Programming (ESOP ’08),
volume 4960, page 93. Springer, March 2008.

[PS09] Adam Poswolsky and Carsten Schürmann. System description: Delphin - a functional programming
language for deductive systems. Electronic Notes in Theoretical Computer Science, 228:113–120,
2009.

16

	Introduction
	The Calculus: Syntax, Typing, and Equality
	Typing rules
	Definitional Equality
	Extensionality Laws

	Properties

	Evaluation and Algorithmic Equality
	Weak head evaluation
	Algorithmic equality

	Bidirectional Type Checking
	Conclusion

