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Abstract

In this paper, we study strong normalization of a core language based on System Fω which supports
programming with finite and infinite structures. Finite data such as finite lists and trees is defined
via constructors and manipulated via pattern matching, while infinite data such as streams and
infinite trees is defined by observations and synthesized via copattern matching. Taking a type-
based approach to strong normalization we track size information about finite and infinite data
in the type. This guarantees compositionality. We exploit the duality of pattern and copatterns to
give a unifying semantic framework which allows us to elegantly and uniformly support both well-
founded induction and coinduction by rewriting. The strong normalization proof is structured around
Girard’s reducibility candidates. As such our system allows for non-determinism and does not rely on
coverage. Since System Fω is general enough that it can be the target of compilation for the Calculus
of Constructions, this work is a significant step towards representing observation-centric infinite data
in proof assistants such as Coq and Agda.

1 Introduction

Integrating infinite data and coinduction with dependent types is tricky. For example, in
the Calculus of (Co)Inductive Constructions, the core theory underlying Coq (INRIA,
2012), coinduction is broken, since computation does not preserve types (Giménez, 1996;
Oury, 2008). In Agda (AgdaTeam, 2014), a dependently typed proof and programming
environment based on Martin-Löf Type Theory, inductive and coinductive types cannot be
mixed in a compositional way.1 In previous work (Abel et al., 2013) we have introduced
copatterns as a novel perspective on defining infinite structures that might serve as a new
foundation for coinduction in dependently-typed languages, overcoming the problems in
the present solutions.

1 In Agda (up to version 2.4), one can encode the property “infinitely often” from temporal logic,
but not its dual “eventually forever” (Altenkirch & Danielsson, 2010).
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In the copattern approach, finite data such as finite lists and trees are defined as usual
via constructors and manipulated via pattern matching, while infinite data such as streams
and infinite trees are defined by observations and synthesized via copattern matching. For
example, instead of conceiving streams as built by the constructor cons, we consider the
observations head and tail about streams as primitive. Programs about streams are defined
in terms of the observations head and tail.

Our previous work left the question of termination of recursive function and the produc-
tivity of infinite objects open. Both issues are crucial since we want to program inductive
proofs as recursive functions and coinductive proofs as infinite objects or corecursive func-
tions producing infinite objects. In this article, we adapt type-based termination (Hughes
et al., 1996; Amadio & Coupet-Grimal, 1998; Barthe et al., 2004; Blanqui, 2004; Abel,
2006; Abel, 2008b; Sacchini, 2011; Sacchini, 2013) to definitions by copatterns.

A syntactic termination check would ensure that recursive calls occur only with argu-
ments smaller than the ones of the original call. In type-based termination, inductive types
are tagged with a size expression that denotes the (ordinal) maximal height of the trees
inhabiting it, i. e., an upper bound on the number of constructors in the longest path of the
tree. To prove termination of a recursive function means to show that it can safely handle
arguments of arbitrary size. This can be established by well-founded induction: to show
that a function can handle arguments up to a fixed size a, we may assume it already safely
processes arguments of any smaller size b < a. This induction principle can be turned into
a typing rule for recursive functions, using sized types and size quantification. How can
this be dualized to coinduction? A stream is productive if we can make arbitrarily deep
observations, i. e., if we can take its tail arbitrarily many times. To show that a stream
definition is productive, we also proceed by well-founded induction. To show that it can
safely handle a observations, we may assume that b observations are fine for any b < a.
The number of observations we can safely make is called the depth of the stream, or more
general, of the coinductive structure. One should not be mislead and think of the depth as
“size”; streams do not have a size since they are not tree-structures in memory—they only
exist as processes that continuously yield elements on demand. But it is fruitful to transfer
the concept of depth to (co)recursive functions. The depth of a function is the maximal size
of arguments it can safely handle. As we are only interested in streams of infinite depth in
the end, we care only about functions of infinite depth. Yet to establish productivity and
termination, we need to induct on depth.

The type-based termination approach is in contrast to common approaches taken in
systems such as Coq and Agda (up to version 2.4) which employ a syntactic guardedness
check to ensure that corecursive programs are productive: all corecursive calls must occur
under a constructor. This ensures that the next unit of information can be computed in a
finite amount of time (Sijtsma, 1989). However, this approach has also known limitations:
it is difficult to handle higher-order programs such as g f = cons0( f (g f )) where the
productivity of g depends on the behavior of the function f . It is also not compositional,
i. e., we cannot easily abstract over a constructor cons in a productive program and replace
it with a function f . Both limitations are due to the lack of information we have about f in
the syntactic guardedness check. Types on the other hand already track information about
each argument to a definition and its output. Type-based termination piggy-backs on the
typing analysis and avoids a separate formal system to traverse the definitions. By indexing
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types with sizes, we are able to carry more precise information about input and output
arguments and their relation which is then verified simultaneously while type checking the
definitions.

The contributions of our work are:

• We present Fcop
ω , an extension of System Fω by inductive and coinductive types, sizes

and bounded size quantification, pattern and copattern matching and lexicographic
termination measures.

• In contrast to previous approaches on type-based termination, we use well-founded
induction on ordinals instead of conventional induction that distinguishes between
zero, successor and limit ordinals. Disposing of this case distinction, we operate
within constructive foundations of mathematics (Taylor, 1996).

• Well-founded induction leads to a construction of inductive types by inflationary
iteration, which has been utilized to justify cyclic proofs in the sequent calculus
(Sprenger & Dam, 2003).

• Well-founded induction alleviates the need for a semi-continuity check for sized
types of recursive functions (Hughes et al., 1996; Abel, 2008b) which sometimes
disguises itself as a monotonicity check (Barthe et al., 2004; Blanqui, 2004; Barthe
et al., 2008; Sacchini, 2013). Thus, we put type-based termination on leaner and
easier understandable foundations.

• Since we construct infinite objects by copattern matching, standard rewriting be-
comes strongly normalizing even for corecursive definitions, and productivity be-
comes an instance of termination. Thus, we achieve a unified treatment of recursion
and corecursion that is central to type-based termination.

• Our typing rules are formulated as a bidirectional type-checking algorithm that can
be implemented as such, and has been, in MiniAgda (Abel, 2012). Further, sized
types and copatterns have been integrated into Agda 2.4.

• We prove soundness of Fcop
ω by an untyped term model based on Girard’s reducibility

candidates. The proof exhibits semantic counterparts of pattern and copattern typing
and accounts for incomplete and overlapping rewrite rules.

The paper is structured as follows: In Section 2, we review the idea of copatterns and
describe size-based reasoning using several examples. This will motivate the design of the
overall system and demonstrate the strength of the resulting language. In Section 3 we
present grammar and typing rules of Fcop

ω . From its operational semantics, we construct
a term model based on Girard’s reducibility candidates (Girard et al., 1989) in Section 4
which shows strong normalization of well-typed terms. This result is finally extended to
well-typed rewrite rules in Section 5.

2 Copatterns and Termination

Let us illustrate how to program with copatterns using a simple example of generating a
stream of zeros. A streams s over an element type A is given by the two observations head

and tail: We can inspect the head of s by applying the projection s .head and obtain an
element of A. To obtain the tail of s, we use the projection s .tail. We can then define the
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stream of zeros recursively by the following two clauses:

zeros .head = 0
zeros .tail = zeros

More generally, zeros can be coded as repeat0 with

repeat a .head = a
repeat a .tail = repeat a

The left hand side of each clause is considering the definiendum, here repeat, in a copat-
tern, here · a .head and · a .tail, resp. A copattern consists of a hole, ·, applied to a sequence
of patterns and/or projections. The hole is filled, e. g., by the definiendum. In this case, we
have first a variable pattern, a, and then a projection head/tail.

The definition of repeat is complete because the given copatterns are covering all pos-
sible cases (Abel et al., 2013). In this article, we investigate the termination of definitions
by copatterns if read as rewrite rules, regardless of their completeness. In systems without
the copattern facility, repeat would be defined using a stream constructor cons as follows:

repeat a = cons a (repeat a)

Read as rewrite rule, this equation leads immediately to non-termination; this is why in
the absence of copatterns one speaks about productivity instead of termination (Coquand,
1993). A definition is productive if it unfolds to an infinite stream in all cases—which
certainly holds for repeat a. In the presence of copatterns, productivity is subsumed under
plain termination.

Coming back to our copattern-based definition we see that repeat a terminates in all
contexts since it does not unfold by itself and consumes one projection in each unfold-
ing. For example, projecting the (n+ 1)st element (counting from 0) of repeat a, i. e.,
repeat a .tailn+1 .head reduces in one step to repeat a .tailn .head and after n more steps
to repeat a .head.

There are many formalisms that ensure termination or productivity of recursive defini-
tions. In this article, we adapt type-based termination (Hughes et al., 1996; Barthe et al.,
2004; Abel, 2006) to copatterns, i. e., we will present a type system that only accepts
terminating definitions. There are good reasons to integrate termination checking into
the type system, the foremost one is compositionality. Good type systems are defined
in a compositional way, i. e., one can replace any expression with a different one of the
same type without destroying well-typedness, in particular, one can replace a complex
expression by a variable, abstracting from the concrete behavior or the expression. In
contrast, syntactic termination checks often lack similarly powerful means of abstraction.
For instance, if we abstract the constructor

f a = cons a

in the second, non-copattern definition of repeat, obtaining

repeat a = f a (repeat a),

then syntactic productivity checks such as constructor-counting will fail unless they have
access to the definition of f . Put f into a different module and per-module termination
checking will fail.
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Type-based termination restores compositionality by giving function f a refined type
that not only expresses that it takes an element an a stream and produces a stream, but also
that the generated stream is extended by one element in the front. In this way, productivity
of repeat is guaranteed by the typing of f , without need to reveal its definition. One could
say that type-based termination facilitates termination checking under assumptions.

2.1 Example: Fibonacci

Let us look at programming with copatterns and type-based termination for a more inter-
esting example, the stream of Fibonacci numbers. It can be elegantly implemented in terms
of zipWith f s t which pointwise applies the binary function f to the elements of streams
s and t.

zipWith f s t .head = f (s .head) (t .head)

zipWith f s t .tail = zipWith f (s .tail) (t .tail)

fib .head = 0
fib .tail .head = 1
fib .tail .tail = zipWith (+) fib (fib .tail)

The last equation states in terms of streams that the (n+ 2)nd element of the Fibonacci
stream is the sum of the nth and the (n+ 1)st. It looks like fib is a terminating definition
since fib .tail .tail only refers to fib and fib .tail, thus, one projection is removed in each
recursive call. However, termination of fib is also dependent on good properties of zipWith.
For instance, the following faulty clause for zipWith would make fib .tail .tail .head loop:

zipWith f s t .head = f (s .tail .head) (t .tail .head)

fib .tail .tail .head

= zipWith (+) fib (fib .tail) .head

= (fib .tail .head)+(fib .tail .tail .head)

= (fib .tail .head)+(fib .tail .head)+(fib .tail .tail .head)

= . . .

The problem is that the faulty zipWith adds again one tail projection that has been removed
in going from the original call fib .tail .tail to the recursive call fib .tail, thus, we are left
with the same number of projections, leading to an infinite call cycle.

What we learn from this counterexample is that in order to reason about termination of
stream expressions, we need to trade the naive image of streams as infinite sequences for a
notion of streams that can safely be subjected to α many projections, where α ≤ ω can be
a natural number or (the smallest) infinity ω . We refer to such streams as sized streams, or
streams having depth α . Clearly, if a stream of depth α is required, we can safely supply a
stream of depth β ≥ α , thus, sized streams are subject to contravariant subtyping.

The original zipWith delivers, if called with input streams of depth α , an output stream
of the same depth. This allows us to reason about the termination of fib as follows. We
show that fib is a stream of arbitrary depth α by induction on α ≤ω . Cases α < 2 are easy.
The interesting case is α = n+ 2 when we take two tail projections and then another n
projections, thus, n+2 projections in total. Then we may assume (by induction hypothesis)
that on the rhs taking up to n+1 projections of fib is fine, thus, fib and fib .tail behave well
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under another n projections—they both can be assigned depth n using subtyping. Passing
them to zipWith(+) returns in turn a stream of the same depth n, hence the lhs fib .tail .tail

can be assigned depth n and, consequently, fib depth n+2, which was our goal.
The faulty zipWith, however, needs streams of depth n+1 to deliver a stream of depth n.

Since fib .tail can only safely be assumed to have depth n, not depth n+1, the termination
proof attempt fails, and rightfully so.

In this model proof we assumed that taking a projection will decrease the depth by
exactly one. In the following, we will loosen this assumption and let projections take us to
any strictly smaller depth.

2.2 Type-based termination for copatterns

In this section, we present the key ideas behind Fcop
ω , our polymorphic core language for

type-based termination checking of recursive definitions involving inductive and coinduc-
tive types. We illustrate how the integration of size expressions into the type system cap-
tures and mechanizes the informal reasoning about termination employed in the previous
section.

Size quantification for inductive and coinductive types. Besides quantification over
types ∀A:∗.B we have quantification over sizes ∀i<a.B. To unify these two forms of
quantification we add to the base kind ∗ of types the base kinds <a denoting sets of ordinals
below a and conceive ∀i<a.B as shorthand for ∀i:(<a).B. Thus, size expressions fall in
the same syntactic class as type expressions. We introduce a special ordinal ∞, the closure
ordinal for all (co)inductive types we consider. As far as streams are concerned, ∞ can be
thought of as ω . In general, valid size expressions are of the form a ::= i+n |∞+n where
i is a size variable and n a concrete number (we drop +0).

The type of streams of depth a over element type A will be denoted by StreamaA, and
we consider the following typing rules for the projections:

s : StreamaA
s .head : ∀i<a↑.A

s : StreamaA

s .tail : ∀i<a↑.StreamiA
(1)

These rules state that if you want to project a stream of depth a, you will need to provide
a witness that you are able to do so, i. e., an ordinal i< a↑. In case of tail, this witness serves
also as the depth of the projected stream. For instance, if s : Streami+2A, then s .tail(i+
1) .head i : A. Bound normalization a↑, defined by (i+n)↑ = i+ n and (∞+n)↑ = ∞+ 1,
allows us to turn bounds a≥∞ into ∞+1 and project from the fixpoint Stream∞A without
information loss. For s : Stream∞A we have s .tail∞ : Stream∞A since ∞ < ∞↑ = ∞+ 1,
reflecting that the tail of a fully defined stream has infinite depth as well.

In practice, we often use the following derived rule which eliminates the universal
quantifier and directly compares sizes.

s : StreamaA
s .headb : A

b < a↑
s : StreamaA

s .tailb : StreambA
b < a↑

More generally, following previous work (Abel et al., 2013), we represent coinductive
types as recursive records νR, with R = {d1 : F1; . . . ;dn : Fn} giving (sized) types to the
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projections d1..n as follows:

r : νaR
r .dk : ∀i<a↑.Fk(ν iR)

For instance, with Streami A = ν i{head : λX .A; tail : λX .X} we obtain the typing of
head and tail presented above (1). Considering R as a finite map from projections to type
constructors, we write Rdk for Fk.

Dually, inductive types are recursive variants µS with S = 〈c1 : F1; . . . ;cn : Fn〉 and
constructor typing

t : ∃i<a↑.Fk(µ
iS)

ck t : µaS
.

For instance, finite lists can be defined as follows: ListiA = µ i〈nil : λX .1; cons : λX .A×
X〉. Integrating the quantifier rules, we derive the following inferences for constructors and
destructors:

s : Sc(µ
bS)

cbs : µaS
b < a↑

r : νaR
r .d b : Rd(νbR)

b < a↑.

Specifying termination measures. The polymorphically typed version of zipWith offi-
cially looks as follows, where we write ∀i≤a as abbreviation for ∀i<(a+1):

zipWith : ∀i≤∞. |i| ⇒ ∀A:∗.∀B:∗.∀C:∗.
(A→ B→C)→ StreamiA→ StreamiB→ StreamiC

zipWith i A B C f s t .head j = f (s .head j) (t .head j)
zipWith i A B C f s t .tail j = zipWith j A B C f (s .tail j) (t .tail j)

The first equation has type C and the second one type Stream jC. The kind of j is <i due to
the typing of head and tail, thus, zipWith is well-defined (and terminating) by induction on
its first argument, the size argument. The associated termination measure is located after the
size variable(s) and, in general, a tuple |a,b,c| of size expressions under the lexicographic
order.2 In this case, it is just the unary tuple |i|, meaning that the termination measure is
just the value of size variable i. The measure is not officially part of the type; it is rather
an annotation that allows us to termination check the clauses without having to infer a
termination order.

High-level idea of size-based termination checking. When we check a corecursive def-
inition such as the second clause of zipWith we start with traversing the left hand side
(lhs). We first introduce assumption i≤∞ into the context and now hit the measure annota-
tion |i| in the type. At this point we introduce the assumption zipWith : ∀ j≤∞. | j|<|i| ⇒
∀A:∗.∀B:∗.∀C:∗.(A→B→C)→ Stream jA→ Stream jB→ Stream jC which will be used
to check the recursive call on the right hand side (rhs). It has a constraint | j| < |i|, a
lexicographic comparison of size expression tuples (which here just means j < i), that
is checked before applying zipWith j to A. Continued checking of the lhs introduces

2 The notation for termination measures is taken from Xi (2002)
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further assumptions A,B,C : ∗, f : A → B → C, s : StreamiA, t : StreamiB, and j < i.
Checking the rhs succeeds since the constraint | j|< |i| is satisfied and s .tail j : Stream jA
and t .tail j : Stream jB.

In the following, we abbreviate ∀A:∗ to just ∀A and ∀i≤∞ to just ∀i. With all size and
type-arguments, the definition of the Fibonacci stream becomes:

fib : ∀i. |i| ⇒ StreamiN
fib i .head j = 0
fib i .tail j .head k = 1
fib i .tail j .tail k = zipWith k N N N (+) (fibk) (fib j .tailk)

In the last line, the lhs introduces size variables i and j < i and k < j and an assumption
fib : ∀i′. |i′| < |i| ⇒ Streami′N and expects a rhs of type StreamkN. Since k < j < i, both
recursive calls are valid, and the expressions fibk and fib j .tailk both have type StreamkN.
With zipWithkNNN : StreamkN→ StreamkN→ StreamkN, the rhs is well-typed, and fib

is terminating.

2.3 Example: Stream processor

Ghani, Hancock, and Pattinson (2009) describe programs for continuous stream functions
StreamA→ StreamB in terms of a mixed coinductive-inductive data type SP with two
constructors get : (A → SP) → SP and put : (B× SP) → SP. We use this example to
illustrate how our foundation supports size-based reasoning on such mixed datatypes and
lexicographic termination measures for mutually recursive functions. A stream processor
can either get an element v : A from the input stream and enter a new state, depending on
the read value, or it can put an element w : B on the output stream and enter a new state. To
be productive, it can only read finitely many values from the input stream before writing
a value on the output stream, thus, SP is actually a nesting of a least fixed-point into a
greatest one: SP = νX .µY.(A→ Y )+ (B×X). We express this nesting by the definition
of two data types, an inductive variant SPµ and a coinductive record type SPν .

SPi
µ X = µ i〈get : λY.A→ Y ; put : λY.B×X〉

SPi
ν = ν i{out : λX .SP∞

µ X}

Inside the coinductive type, we use the inductive type SPµ at size ∞ since we want to allow
an arbitrary (finite) number of gets between two puts. We get the following derived rules
for typing constructors and destructors, for b < a↑:

f : A→ SPb
µ X

getb f : SPa
µ X

w : B sp : X
putb(w,sp) : SPa

µ X
sp : SPa

ν

sp .out b : SP∞
µ SPb

ν

In the context of stream processors it is convenient to consider streams as given by a single
destructor force which returns head and tail in a pair, thus, StriA = ν i{force : λX .A×X}.
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Dedicated projections hd and tl can be defined by

hd : ∀i.Stri+1A→ A
hd i s = fst(s .force i)

tl : ∀i.Stri+1A→ StriA
tl i s = snd(s .force i)

with fst and snd the obvious first and second projections from pairs. Via bound normaliza-
tion, facilitating Str∞ = Str∞+1, we obtain instances hd∞ : Str∞A→ A and tl∞ : Str∞A→
Str∞A.

Running a stream processor on an input stream produces an output stream as follows
(informally coded in a Haskell-like language):

run(get f )(v,vs) = run( f v)vs
run(put(w,sp))vs = (w, runspvs)

We represent this function via two mutually recursive functions, one handling SPµ and one
SPν :

runµ : ∀i∀ j. |i, j+1| ⇒ SP j
µ(SPi

ν)→ Str∞A→ B×StriB
runµ i j (get j′ f ) vs = runµ i j′ ( f (hd ∞ vs)) (tl ∞ vs)
runµ i j (put j′(w,sp)) vs = (w, runν i sp vs)

runν : ∀i. |i,0| ⇒ SPi
ν → Str∞A→ StriB

runν i sp vs .force i′ = runµ i′ ∞ (sp .out i′) vs

The recursive runµ handles a sequence of gets terminated by put and emits the head
of a forced stream B× StriB. The tail is produced by the corecursive runν which, upon
forcing, calls runµ again. The termination is guaranteed by the lexicographic measures,
which decrease in each recursive call:

runµ → runµ : |i, j+1| > |i, j′+1| since j > j′

runµ → runν : |i, j+1| > |i,0|
runν → runµ : |i,0| > |i′,∞+1| since i > i′

Note that since we are not doing induction on SPi
ν , but coinduction into Stri, we could

use SP∞
ν instead of SPi

ν in the types of runµ and runν . However, the given types are more
precise: instead of a stream processor of infinite depth, they only require a stream processor
of depth i to produce a stream of depth i.

2.4 Example: breadth-first labelled infinite trees

Jones and Gibbons (1993) present tree labeling as a cyclic program. We will now describe a
modified version for infinite trees and apply type-based termination to it. Figure 1 explains
the core idea of this algorithm. Given a stream vs1 = cons v1 vs2 of labels, we construct
an infinite tree with root v1 (at level 1) and use vs2 to construct the left and right subtree
(both at level 2). To provide labels for all levels, a stream of streams vs1,vs2,vs3, . . . is
used as input and a stream of streams of the remaining labels vs2,vs3, . . . as output. In a
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Output streams

vs2

vs2vs1

vs3

v1

v2 v3

v4 v5 v6 v7

Level 2

Level 3

Level 1

vs3 vs4

Input streams

Fig. 1. Breadth-first labeled infinite tree

Haskell-like language, we would code this as follows:

bfs (cons (cons v vs) vss) = (node v l r, cons vs vss′′)
where (l,vss′) = bfs vss

(r,vss′′) = bfs vss′

The stream vss of streams is created from a single label stream vs by tying the knot:

bf vs = t where (t,vss) = bfs (cons vs vss)

Is this cyclic program productive, or will the creation of tree t get stuck in an infinite
loop? Danielsson has shown productivity by coding an interpreter for stream expressions
in Agda (Danielsson, 2010); we shall succeed by an appropriate size assignment. At this
point, it is worth mentioning that bfs does not fall into the usual scheme of a corecursive
definition such as supported by the Coq proof assistant (INRIA, 2012), since its target is not
a coinductive type, but a tuple type. Our approach, however, breaks out of this restriction
since it unifies recursion and corecursion under measure-based termination on ordinals
(sizes and depths).

Fixing a type V of labels, we define a coinductive type of infinite binary trees, a type of
streams of streams, and a type of results of function bfs.

SSi = Streami(Stream∞V )

Treei = ν i {label : λX .V ; left : λX .X ; right : λX .X}
Resulti = ν∞{tree : λX .Treei; rest : λX .SSi}.

Since Result is not recursive (X is not used), Resulti is just a lazy product of Treei and
SSi. We need a record here instead of a tuple because we want to define bfs by copattern
matching, the copatterns being .tree and .rest for an unused size variable .
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In the following definition of bfs, each of the five components v, l, r, vs, and vss′′ of its
result (node v l r, cons vs vss′′) is given by one equation:

bfs : ∀i. |i| ⇒ SSi→ Resulti

bfs i ss .tree .label j = v
bfs i ss .tree .left j = p1 .tree ∞

bfs i ss .tree .right j = p2 .tree ∞

bfs i ss .rest .head j = vs
bfs i ss .rest .tail j = p2 .rest ∞

where v : V = ss .head j .head ∞

vs : Stream∞V = ss .head j .tail ∞

vss : SS j = ss .tail j
p1 : Result j = bfs j vss
p2 : Result j = bfs j (p1 .rest ∞)

For the sake of readability, and to make the connection to the original program obvious, we
have taken the liberty to name and type the intermediate results v, vs, vss (decomposition
of ss) and p1, and p2 (the pairs created by the recursive calls). Well-definedness of bfs is
apparent since recursive calls are restricted to depth j < i. For well-typedness it is crucial
that the SS of input and output and the output Tree are all considered at the same depth i.

The final step is tying the knot, (t,vss) = bfs (cons vs vss). We define the pair (t,vss) by
recursion, informally by bfp vs = bf (cons vs (bfp vs .rest)). How to assign sizes?

bfp : ∀i. |i| ⇒ Stream∞V → Resulti

bfp i vs = bf i (cons vs (bfp ? vs .rest ∞))

For the recursive call, we need a depth ? smaller than i, but we do not have one. Somehow,
this is reassuring, since bfp in this form is not strongly normalizing: the lhs bfp i vs matches
the subterm bfp ? vs of the rhs. However, we get a depth j < i by pattern matching if we
analyse the result further:

bfp : ∀i. |i| ⇒ Stream∞V → Resulti

bfp i vs .tree .label j = p .tree ∞ .label j
bfp i vs .tree .left j = p .tree ∞ .left j
bfp i vs .tree .right j = p .tree ∞ .right j
bfp i vs .rest .head j = p .rest ∞ .head j
bfp i vs .rest .tail j = p .rest ∞ .tail j

where p : Result j+1

p = bf ( j+1) (cons vs (bfp j vs .rest ∞))

This works, but is a lot of boilerplate code. In previously studied type systems for produc-
tivity (Pareto, 2000; Abel, 2006) with rewriting only under destructors, one assumes size
i+1 on the lhs, which in our notation would simply become

bfp : ∀i. Stream∞V → Resulti

bfp (i+1) vs = bf (i+1) (cons vs (bfp i vs .rest ∞)).

Our present system disallows such matching on sizes, which has some consistency issues
(Abel, 2010) and also requires the result type to be upper semi-continuous in i (which it
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is in this case) (Hughes et al., 1996; Abel, 2008b). However, we can first code a fixpoint
combinator for Result and then use it to define bfp, hiding the unpleasant boilerplate.

fixR : ∀i. |i| ⇒ (∀ j. Result j→ Result j+1)→ Resulti

fixR i f .tree .label j = r .tree ∞ .label j
fixR i f .tree .left j = r .tree ∞ .left j
fixR i f .tree .right j = r .tree ∞ .right j
fixR i f .rest .head j = r .rest ∞ .head j
fixR i f .rest .tail j = r .rest ∞ .tail j

where r : Result j+1

r = f j (fixR j f )

bfp : ∀i. Stream∞V → Resulti

bfp i vs = fixR i f
where f j r = bfs ( j+1) (cons vs (r .rest ∞)).

Clearly, here is no issue with strong normalization, since fixR f does not reduce.

Digression. For which types Ai can we define a fixpoint combinator of type ∀i. (∀ j. A j→
A j+1)→ Ai? We conjecture those are at least the admissible types of Pareto (2000) and
previous work (Abel, 2008b). While in these works admissible types are determined by in-
ference rules derived from by semantic criteria, in our present types system we can “prove”
admissibility by programming the fixed-point principle ourselves! This gives greater flex-
ibility (and we could employ generic programming to derive fixpoint combinators in the
standard cases).

3 Syntax and Typing

In this section, we formally define Fcop
ω , our higher-order polymorphic lambda-calculus

with sized inductive and coinductive types, polarized higher-order subtyping, and defini-
tions by pattern and copattern matching. As in previous work (Abel, 2006) we choose
System Fω rather than System F as basis since the notion of a type constructor is required
(at least, semantically) if one wants to talk about its fixed-points, i. e., about (co)inductive
types.

SizeVar 3 i, j size variable
SizeExp 3 a,b ::= i+n | ∞+n size expression (n≥ 0)
SizeExp+ 3 a+,b+ ::= a | n extended size expression
Measure 3 m ::= · | a+,m measure expression

Pol 3 π ::= ◦ |+ | − | > polarity/variance
SizeCxt 3 Ψ ::= · |Ψ, i:π(<a) size variable context

Fig. 2. Sizes and measures.
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3.1 Sizes

Fig. 2 gives a grammar for sizes, measures, and size contexts. A size expression a consists
of a base, which is either a size variable i or ∞, and an offset, a natural number n.

a ::= i+n | ∞+n

We omit the offset when 0. Each size variable i comes with a bound i< a, which is recorded
in a size context

Ψ ::= · |Ψ, i:π(<a).

A size context is considered as finite map from size variables i to their polarity π (see
below) and their kind <a. We write ≤a for <(a + 1) and size for ≤∞. Given a size

context Ψ, its domain, i. e., the sequence of variables bound by Ψ, is denoted by Ψ̂ .
Extended size expressions a+ include natural numbers n. Measures m are tuples of extended
size expressions. There are a number of trivial judgements concerning well-formedness
and partial ordering of (extended) size expressions and measures (see Figure 3). These
judgements may use the bounds stored in size context Ψ and are all defined as expected;
their inference rules can be found in Fig. A 3.

Ψ ` a size a is well-formed
Ψ ` a < b strict size comparison
Ψ ` a≤ b size comparison

Ψ ` a+ extended size a+ is well-formed
Ψ ` a+ < b+ strict comparison
Ψ ` a+ ≤ b+ comparison

Ψ `n m measure m is a well-formed n-tuple
Ψ `m<m′ strict lexicographic measure comparison
Ψ `m≤m′ lexicographic measure comparison

Ψ ` ∃Ψ′ Ψ′ is consistent for each valuation of Ψ

Fig. 3. Size-related judgements.

In constraint-based systems, strong normalization is usually lost in inconsistent con-
texts.3 While our size contexts Ψ are always consistent, i. e., enjoy a valuation η of the
declared size variables (by natural numbers even), we need sometimes a stronger property
that a size context extension Ψ′ is consistent with a fixed valuation η of Ψ, i. e., Ψ′ must
be consistent even when we apply η to its declared bounds. For instance, i≤∞, j<i is
consistent, but j<i is not a consistent extension of i≤∞ under valuation η(i) = 0, since
there is no solution for j. We write Ψ ` ∃Ψ′ if Ψ′ consistently extends Ψ in this sense.
This judgement is inspired by Blanqui and Riba (2006).

Proposition Ψ ` ∃Ψ′ can be tested by computing a minimal valuation η of Ψ and then
checking whether Ψ′ has a (minimal) valuation under η . In the following, let η be a finite
map from size variables to natural numbers. Then η(a) is an extended size expression. We

3 For instance, in extensional type theory, X : Type, p : X = (X → X) ` (λx:X .xx)(λx:X .xx) : X .
The blame is on the false equality assumption X = X → X which is used for type conversion.
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say η |= Ψ if η(i) < η(a) for all (i < a) ∈ Ψ. A minimal valuation valη(Ψ) for Ψ above
η can be defined as follows:

valη(·) = η

valη(Ψ, j < a) = valη(Ψ) if η( j)< η(a)

Otherwise, if η( j) 6< η(a) :
valη(Ψ, j < i+n) = valη [i 7→η( j)−n+1](Ψ) if i ∈ dom(Ψ)

valη(Ψ, j < i+n) = undefined if i 6∈ dom(Ψ)

Note that if η ′ = valη(Ψ) is defined, then η ′ ≥ η (pointwise), and η ′ |= Ψ. If valη(Ψ) is
undefined and η ′≥η then η ′ 6|=Ψ. In particular, if η(i)= 0 for all i∈ dom(Ψ) and valη(Ψ)

is undefined, then Ψ is inconsistent. To check Ψ ` ∃Ψ′ we let η0(i) = 0 the null-valuation
and η = valη0(Ψ). Then we check whether valη(Ψ

′) is defined.

SKind 3 ι ::= ∗ | o | ι → ι ′ simple kind
Kind 3 κ ::= ∗ |<a | πκ → κ ′ kind with variance information
TyCxt 3 ∆ ::= · | ∆,X :πκ type variable context
Cxt 3 Γ ::= · | Γ, x:A | Γ, x:?A term variable context

TyVar 3 X ,Y,Z, i, j type and size variable
TyAtom 3 K ::= a | X | 1 | × | → | ∀κ | ∃κ type operator
Type 3 F,G,A,B,C ::= K | λX :ι .F | F G type-level lambda-calculus

| µaS | νaR (co)inductive type

Var 3 x,y,z term variable
Cons 3 c constructor (variant label)
Proj 3 d destructor (record label)
Variant 3 S ::= 〈c1:F1; . . . ;cn:Fn〉 variant row (n≥ 0)
Record 3 R ::= {d1:F1; . . . ;dn:Fn} record row (n≥ 0)

MType 3 ′A, ′B ::= ∀Ψ.m⇒ A measured type
CType 3 ?A, ?B ::= ∀Ψ.c⇒ A constrained type
Cond 3 c ::= m<m′ constraint/condition

Fig. 4. Kinds and type constructors.

3.2 Kinds and type constructors

The type constructors of Fω are assigned kinds ι ::= ∗ | ι→ ι ′, with base kind ∗ classifying
all proper types and function kinds ι → ι ′ the (higher-order) type operators. We add a
second base kind ι ::= · · · | o that classifies size expressions, which we locate at the type
level, since they are computationally irrelevant and can be erased during compilation, just
as types.

These simple kinds ι form with the type constructors a simply-“typed” type-level lambda
calculus. We refine these kinds into Fcop

ω -kinds

κ ::= ∗ |<a | κ π→ κ
′

where <a refines o into the kind of size expressions b < a. The polarized function kind
κ

π→ κ ′, also written πκ→ κ ′, allows us to express that the classified type constructor is co-
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variant (π =+), contravariant (π =−), constant (π =>) or of mixed or unknown variance
(π = ◦). The polarities π are partially ordered ◦ ≤+,−≤> according to their information
content (see Figure 5). This and the order on size expressions induce a subkinding relation
Ψ ` κ ≤ κ ′ on kinds of the same structure, i. e., the same underlying simple kind |κ|= |κ ′|.
Here, when comparing two o-kinds (<a) ≤ (<b), we resort to size comparison a ≤ b.
The default variance is ◦ (no information) and we may omit it, writing simply κ → κ ′ or
Ψ, i:(<a), which is further abbreviated by Ψ, i<a.

π ≤ π ′ Lattice of variances and ππ ′ variance composition (commutative).

π ≤ π ◦ ≤ π π ≤>
>π => ◦π = ◦ (if π 6=>) +π = π −−=+

π−1π ′ Variance inverse composition.

>−1
π = ◦ ◦−1◦= ◦ ◦−1

π => (if π 6= ◦) +−1
π = π −−1

π =−π

π−1∆ Variance inverse composition with kinding context.

π
−1·= · π

−1(∆,X :π ′κ) = (π−1
∆),X :(π−1

π
′)κ −∆ =−−1

∆

Fig. 5. Variances (polarities).

Kinding or type variable contexts ∆ ::= · | ∆,X :πκ , which provide scoping and kinding
information for type constructors, generalize size contexts from bounds (<a) to arbitrary
kinds κ . We may use a ∆ where a Ψ is formally required, silently erasing all non-size
variables from ∆. More generally, context restriction ∆ � ~X of context ∆ to a set of variables
~X deletes the bindings for all Y 6∈ ~X from ∆.

Ψ ` κ kind κ is well-formed in Ψ

Ψ ` κ ≤ κ ′ κ is a subkind of κ ′

∆ ` ∆′ kinding context ∆′ is well-formed in ∆

∆ ` ∃∆′ ∆′ is consistent for each valuation of ∆

Fig. 6. Kind-related judgements.

The judgement ∆ ` ∃∆′ (see Figure 6) states that ∆′ is consistent for each valuation of ∆.
Only the size declarations matter here, thus, it is a straightforward extension of Ψ ` ∃Ψ′.

Figure 4 contains a grammar for the type constructors of Fcop
ω . Its core is a simply-

kinded lambda-calculus X | λX :ι .F | F G with constants 1, ×, →, ∀κ , and ∃κ to form
unit, product, function, universal, and existential types. Size expressions a are considered
type constructors so that sizes can be abstracted over and applied. We use the following
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short-hands:

λXF for λX :ι .F if ι inferable
A×B for (×)AB product type
A→ B for (→)AB function type

∀X :κ.A for ∀κ(λX :|κ|.A) universal type
∃X :κ.A for ∃κ(λX :|κ|.A) existential type

∀i<a.A for ∀<a (λ i:o.A) bounded universal
∃i<a.A for ∃<a (λ i:o.A) bounded existential

∀i.A for ∀i:size.A “unbounded” universal
∃i.A for ∀i:size.A “unbounded” existential.

We also write ∀∆.A for the universal abstraction of all type variables of ∆ in type A.
The simple kind annotation ι in λX :ι .F allows us to infer a unique simple kind for

closed type constructors. The simple kind of an open type constructor depends only on the
simple kinds of its free type variables. This property simplifies the interpretation [[F ]] of
type constructors as set-theoretic functions on semantic types we will give later.

For the purpose of type checking, we are only interested in β -normal type constructors.
We write F @ι G for the normalizing application of F to an argument G of simple kind ι .
We may write @κ instead of @|κ|, or even just @.

Sized inductive µaS and coinductive types νaR are given in terms of variant rows S
and record rows R. A variant row S = 〈c1:F1; . . . ;cn:Fn〉 is a finite map from variant labels
ci, called constructors, to type constructors Sci = Fi. Dually, a record row R maps record
labels d, called destructors or projections, to type constructors Rd . Instead of presenting,
for instance, streams as νaX .{head : A; tail : X}, we move the abstraction over X into the
record row as νa{head : λX .A; tail : λX .X}, in order to formulate the typing rules more
conveniently.

Finally, we have constrained types ∀Ψ.m<m′⇒ A that allow its inhabitants to be used
only if the condition m<m′ is fulfilled. We use them to restrict recursive calls to situations
where the termination measure has decreased. Recursive function definitions come with
measured types ′A ::= ∀∆.m ⇒ A. These are not proper types but rather blueprints for
constrained types. The idea is that kinding context ∆ declares some size variables that are
used in measure m (and type A). When we analyze the body of a recursive function of
measure type ′A and the variables of ∆ are in scope (thus, the measure m is well-formed),
we make a copy ′B = ∀∆′.m′ ⇒ A′ of ′A by renaming the variables of ∆ to ∆′. Then, by
measure replacement ′B<m we create the constrained type ∀∆′. m′<m⇒ A′ which is used
to type the recursive occurrences of the function in its body.

Figure 7 lists judgements for well-kindedness and partial ordering of types and type
constructors. The judgements for types A only invoke the judgments for type constructors
F in checking mode at base kind (⇔ ∗). The judgements for constructors are bidirectional
with inference mode that computes the kind κ and checking mode that starts with a given
κ . Bidirectional checking is complete since we are only interested in normal type construc-
tors.

The rules for these judgements are given in figures A 4 and A 5. A thorough discus-
sion of polarized higher-order subtyping, i. e., subtyping for type constructors that take



ZU064-05-FPR jfp15 1 August 2014 16:26

Wellfounded Recursion with Copatterns and Sized Types 17

∆ ` A type A is well-formed
∆ ` F ⇒ κ F has kind κ (inference)
∆ ` F ⇔ κ F has kind κ (checking)

∆ ` Γ typing context Γ is well-formed

∆ ` A≤ A′ A is subtype of A′

∆ ` F ≤π F ′⇒ κ F is higher-order subtype of F ′ (κ inferred)
∆ ` F ≤π F ′⇔ κ F is higher-order subtype of F ′ (κ given)

Fig. 7. Type-related judgements.

variance into account, is available in previous work (Abel, 2008a; Steffen, 1998), we just
recapitulate the basic principle here: A constructor F with X1:π1κ1, . . . ,Xn:πnκn ` F ⇔ κ

is interpreted as an operator

λX1 . . .λXn.F : κ1
π1→ . . .κn

πn→ κ

with variance given as noted in its kinding context. This induces the kinding rules. For
instance, X :−∗, Y :+∗ ` X → Y : ∗ is valid since function space is contravariant in its
domain and covariant in its codomain. In particular, the hypothesis rule X :πκ ` X : κ is
only valid if π ≤ +, i. e., π = ◦ which just states that λX .X : κ → κ is a well-formed
operator, or π =+ which additionally states that λX .X is monotone. Using the hypothesis
rule on π =− or π => is invalid since λX .X is neither an antitone nor a constant operator.

Given a partial order G ≤ G′, its π-parameterized version G ≤π G′ can be defined as
follows:

G ≤+ G′ = G≤ G′

G ≤− G′ = G′ ≤ G
G ≤◦ G′ = G≤ G′ and G′ ≤ G
G ≤> G′ = true

π-variance of a constructor F ⇒ πκ → κ ′ means that F G ≤ F G′ ⇒ κ whenever G ≤π

G′ ⇔ κ . (The reader is advised to play through the four cases for π in his mind.) Theo-
retically, the π-parameterized versions ∆ ` F ≤π F ′ . . . of higher-order subtyping could
be defined from a non-parameterized version ∆ ` F ≤ F ′ . . . , but to avoid the potential
exponential blowup due to duplication of work in case of≤◦, the π-parameterized versions
are taken as primitive.

Exp 3 r,s, t ::= u | v | λ~D term
Intro 3 v ::= () | (t1, t2) | ct | Gt introduction term
App 3 u ::= x | f | r e applicative term
Fun 3 f ,g function name
Elim 3 e ::= t | G | .d elimination

Pat 3 p ::= x | () | (p1, p2) | c p | Q p pattern
Copat 3 q ::= p | X | .d copattern
PatSp 3 q ::=~q pattern spine

DCl 3 D ::= {q→ t} definition clause
Def 3 ~D ::= {D1; . . . ;Dn} definition clauses

Fig. 8. Terms, (co)patterns, and clauses.
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3.3 Terms and (co)patterns

Figure 8 presents the abstract syntax of Fcop
ω terms t, which are categorized into introduc-

tions v, applicative terms u, and anonymous objects λ~D. Introductions (), (t1, t2), ct and
Gt construct tuples and inductive and existential types. Applicative terms x, f , and r e are
identifiers and generalized applications of a term r to an elimination e, which can be a
term s for function elimination, a type G for instantiation of a polymorphic function, or a
destructor .d for projection from a coinductive type.

For each introduction form v we have the corresponding form of pattern p, and for each
elimination form e there is a copattern q. Application copatterns are just patterns p to
match the argument, type application copatterns are just type variables X , and projection
copatterns are simply destructors d that match the same destructor in an elimination. A
sequence of~q of copatterns is called a pattern spine q, in correspondence to an elimination
spine~e.

Generalized lambda abstraction λ~D introduces an object whose behavior is given by the
clauses ~D, each of which consists of a lhs, a (possibly empty) copattern sequence ~q, and
a rhs, a term t. Objects subsume both record and λ expressions of traditional functional
languages. Here are a few simple examples:

λ{x→ t} ordinary λ -abstraction λxt
λ{X → t} type abstraction ΛXt
λ{(x,y)→ x} first projection from pair
λ{X xy→ yX x} elimination of existential
λ{X xy .head → x

;X xy .tail → y} cons for Stream∞X
λ{· → s; · → t} non-deterministic choice s⊕ t

The meaning, given by the operational semantics, is that whenever λ~D is applied to
a sequence of eliminations ~e that match the copatterns ~q of a clause with rhs t under a
substitution σ and a type substitution τ , then (λ~D)~e reduces to tστ , the rhs instantiated
by the substitutions computed from pattern matching. Using ~e /~q↘ σ ;τ for pattern

matching, the basic rule for contraction r 7→ r′ becomes:

~e / qk↘ σ ;τ

λ{−−−⇀q→ t}~e~e ′ 7→ tkστ~e ′

As usual, r is called a redex and r′ its reduct if r 7→ r′. We allow overlapping lhss: a
spine ~e may match different pattern spines q, resulting in different contractions of the
same redex. Also, if no lhs in the clauses ~D matches ~e, the expression λ~D ~e is stuck.
While a coverage checker as described in previous work (Abel et al., 2013) could exclude
overlapping and incomplete clauses in well-typed programs, we do not require coverage in
this paper and confine ourselves to show strong normalization, i. e., the absence of infinite
reduction sequences.

Not all stuck terms are pathological; since we are matching the whole pattern spine
in one go, partially applied functions such as λ{xy → t}s are stuck, but can become
unstuck if more arguments are supplied. The existence of partially applied functions will
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require careful treatment in the normalization proof, because non-contractibility of a non-
introduction term is not preserved under application (as would be in the case of λ -calculus).

Decl 3 δ ::= f : A = ~D declaration
MDecl 3 ′δ ::= f : ′A = ~D declaration with measure
Block 3 β ::= mutualm ~′δ mutual block
Prg 3 P ::= ~β ;u program
Sig 3 Σ ::= ~δ signature

Fig. 9. Declarations, blocks, and programs.

3.4 Declarations and programs

An Fcop
ω program consists of a sequence ~β of mutual blocks and an applicative term

u, the entry point (this could be the name of the main function or a call to the main
function with some initial arguments). Each mutual block mutualm~′δ is a sequence ~′δ

of mutually recursive declarations with a lexicographic termination measure of length
m. Each declaration f : ′A = ~D assigns to a function symbol f its measured type ′A and
its clauses ~D. Measures serve their purpose during checking of the mutual block and are
discarded afterwards. Erasure of measure L′δ M yields a (unmeasured) declaration f : A = ~D;
after checking a mutual block and erasing the measures, the individual declarations of the
block become part of the signature Σ which is used for type-checking and evaluation of the
remainder of the program. An applied function f~e reduces if one of its clauses does:

(λ~D)~e 7→ t
f~e 7→ t

( f : A = ~D) ∈ Σ

The one-step reduction relation t −→ t ′ is the compatible closure of the contraction
relation t 7→ t ′, i. e., t −→ t ′ if t ′ is the result of contracting exactly one redex in (an arbitrary
subterm of) t. Strong normalization of reduction will be shown to hold for well-typed
programs.

∆;Γ ` r⇒C Infer type C for term r
∆;Γ ` t⇔C Term t checks against type C
∆;Γ ` {q→ t}⇔ A Clause {q→ t} checks against type A
∆;Γ ` ~D⇔ A Clauses D check against type A

∆;Γ `∆0 p⇔ A Pattern p checks against type A
∆;Γ | A `∆0 q⇒C Pattern spine q eliminates A into C

Fig. 10. Type checking.

3.5 Type checking

Figure 10 lists the judgements involved in type checking Fcop
ω programs. Type-checking

terms is bidirectional and a straightforward adaption of previous work (Abel et al., 2013)
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∆;Γ ` r⇒C Expression typing (inference mode). In: ∆,Γ,r with ∆ ` Γ. Out: C with ∆ `C

∆;Γ ` f ⇒ Σ( f )
(x:A) ∈ Γ

∆;Γ ` x⇒ A
(x : ∀Ψ. c⇒ A) ∈ Γ ∆ `~a⇔Ψ ∆ ` c[~a/Ψ̂]

∆;Γ ` x~a⇒ A[~a/Ψ̂]

∆;Γ ` r⇒ A→ B ∆;Γ ` s⇔ A
∆;Γ ` r s⇒ B

∆;Γ ` r⇒ ∀κ F ∆ ` G⇔ κ

∆;Γ ` r G⇒ F @κ G

∆;Γ ` r⇒ νaR
∆;Γ ` r.d⇒ ∀ j<a↑.Rd (ν jR)

Switching.

∆ ` A ∆;Γ ` t⇔ A
∆;Γ ` (t : A)⇒ A

∆;Γ ` r⇒ A ∆ ` A≤C
∆;Γ ` r⇔C

∆;Γ ` t⇔C Expression typing (checking mode). In: ∆;Γ, t,C with ∆ ` Γ and ∆ `C. Out:
success/failure.

∆;Γ ` ()⇔ 1
∆;Γ ` t1⇔ A1 ∆;Γ ` t2⇔ A2

∆;Γ ` (t1, t2)⇔ A1×A2

∆;Γ ` t⇔ ∃ j<a↑.Sc (µ
jS)

∆;Γ ` ct⇔ µaS

∆ ` G⇔ κ ∆;Γ ` t⇔ F @κ G
∆;Γ ` Gt⇔ ∃κ F

∆;Γ ` ~D⇔ A

∆;Γ ` λ~D⇔ A

∆;Γ ` D⇔ A and ∆;Γ ` ~D⇔ A definition typing. In: ∆, Γ, A, D or ~D with ∆ ` Γ and Γ ` A.
Out: success/failure.

∆′;Γ′ | A `∆ ~q⇒C ∆ ` ∃∆′ ∆,∆′;Γ,Γ′ ` t⇔C
∆;Γ ` {~q→ t}⇔ A

∆;Γ ` Dk⇔ A for all k

∆;Γ ` ~D⇔ A

Fig. 11. Type checking rules.

∆;Γ `∆0 p⇔ A Pattern typing (linear). In: ∆0, p,A with ∆0 ` A. Out: ∆,Γ with ∆0,∆;Γ ` p⇔ A.

·;x:A `∆0 x⇔ A ·; · `∆0 ()⇔ 1
∆1;Γ1 `∆0 p1⇔ A1 ∆2;Γ2 `∆0 p2⇔ A2

∆1,∆2;Γ1,Γ2 `∆0 (p1, p2)⇔ A1×A2

∆;Γ `∆0 p⇔ ∃ j<a↑.Sc (µ
jS)

∆;Γ `∆0 c p⇔ µaS
∆;Γ `∆0,X :κ p⇔ F @κ X
X :κ,∆;Γ `∆0

X p⇔ ∃κ F

∆;Γ | A `∆0 ~q⇒C Pattern spine typing. In: ∆0,A,~q with ∆0 ` A. Out: ∆,Γ,C with ∆0,∆;Γ `C

and ∆0,∆;Γ,z:A ` z~q⇒C.

·; · | A `∆0 ·⇒ A
∆1;Γ1 `∆0 p⇔ A ∆2;Γ2 | B `∆0 ~q⇒C

∆1,∆2;Γ1,Γ2 | A→ B `∆0 p~q⇒C

∆;Γ | ∀ j<a↑.Rd (ν
jR) `∆0 ~q⇒C

∆;Γ | νaR `∆0 .d~q⇒C
∆;Γ | F @κ X `∆0,X :κ ~q⇒C
X :κ,∆;Γ | ∀κ F `∆0 X~q⇒C

Fig. 12. Pattern Typing.
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to polymorphism, bounded quantification, and constraints. The rules are given in figures 11
and 12, and we briefly explain them.

Inference ∆;Γ ` r⇒C . A function symbol f ’s type Σ( f ) is looked up in the signature,
and a variable x’s type Γ(x) in the typing context. If Γ(x) is a constrained type ∀Ψ. c⇒ A,
the variable x must be immediately applied to size arguments ~a satisfying both Ψ and the
condition c; after all, a constrained type is, for consistency reasons, not a proper type for
an expression. An application r s of a function r of inferred type A→ B has type B if the
argument s checks against type A. Instantiation r G of a polymorphic term r of inferred
type ∀κ F has type F @κ G if G has kind κ . In particular, r could be of type ∀i<a.A, then
G must be a size expression < a to succeed. If r is of coinductive type νaR, then r .d has
type ∀ j<a↑.Rd (ν

jR), see Section 2.3.
There are two rules to switch direction. Checking r against type C succeeds if r’s type is

inferred as A and A is a subtype of C. Also, we can add type ascription (t : A) to the term
language; then inference of (t : A) succeeds and yields A if A is a well-formed type and t
checks against A. While type ascription is needed to bidirectionally type check redexes or
stuck terms, it is dispensable if one confines to checking normal terms (in the sense that
no elimination is applied to a λ in the source program). We will consider type ascriptions
be removed before execution of the program, so they do not pop up in the operational and
denotational semantics.

Checking ∆;Γ ` t⇔C . Introductions and λ s are checked against a given type. Check-
ing a pair Gt of a type expression G and a term t against an existential type ∃kF succeeds
if G has kind κ and t is of the correct instance F @κ G. Checking a constructor term ct
against an inductive type µaS succeeds if t checks against ∃ j < a↑.Sc (µ

jS). This means
that t should be essentially a pair bt ′ of a size b < a↑ and t ′ be a correct argument to
constructor c, i. e., having variant Sc instantiated to µ jS. If a≥ ∞, by bound normalization
b = ∞ is a valid size index, which implies that in a value v in the fixpoint µ∞S all size
witnesses can uniformly be ∞. To check λ~D we check all clauses Dk.

Clause checking ∆;Γ ` {q→ t}⇔ A . We first check that pattern spine q eliminates
indeed type A. As a result, we obtain a kinding context ∆′ which binds the type variables
X contained in q and a typing context Γ′ which binds the pattern variables x contained
in q’s patterns, and a remaining type C of lhs and rhs. We now need to make sure that
∆ ` ∃∆′ such that any valuation of ∆ can be extended to a valuation of ∆′. Complementing
the original contexts ∆;Γ by the pattern contexts ∆′;Γ′ we check the rhs t against C.

Pattern spine checking ∆;Γ | A `∆0 q⇒C . We eliminate type A which is well-formed
in ∆0. If there are no copatterns in q, thus, the clause has an empty lhs, we simply return A
which must be the type of the rhs. If we encounter an application pattern p, the eliminated
type must be a function type A→ B. We check p against A and obtain pattern contexts
∆1;Γ1. We continue to check the remaining copatterns, obtaining more pattern contexts
∆2;Γ2 and a result type C, which we return together with the concatenated pattern contexts.
Concatenation, and thus, pattern spine checking fails if the contexts do not have disjoint
domains. A common variable would mean a non-linear lhs, which we exclude.

If we encounter a projection pattern .d, the eliminated type must be a coinductive type
νaR. Taking projection .d yields type ∀ j<a↑.Rd(ν

jR), thus, we continue to eliminate this
type by applying it to a fresh size variable. The general form of a universal type ∀κ F is
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eliminated by a type variable pattern X ; we record X :κ in the type variable pattern context
and continue eliminating F @κ X .

Pattern typing ∆;Γ `∆0 p⇔ A . This judgement checks pattern p against type A which
is valid in kinding context ∆0, and returns pattern contexts ∆;Γ. Pattern x succeeds against
any type, returning singleton context x:A. The empty tuple () succeeds against the unit
type 1, binding no variables. The pair pattern (p1, p2) succeeds against the product type
A1×A2 if each component pi checks against its type Ai. The resulting pattern contexts
are concatenated, checking for disjointness. A constructor pattern c p checks against an
inductive type µaS if p checks against ∃ j < a↑.Sc (µ

jS). The latter succeeds if p = j p′,
then we add size variable j<a to the pattern context and continue checking p′ against
Sc (µ

jS). This is an instance of checking against the general existential type ∃κ F .
In the next section, we will validate all the typing rules by exhibiting a semantics of

strongly normalizing terms based on Girard’s reducibility candidates (Girard et al., 1989).

4 Semantics

In this section we show strong normalization of Fcop
ω by a term model. Types are interpreted

as reducibility candidates à la Girard adapted to our needs. Our semantic constructions rely
only on the terms and the operational semantics of Fcop

ω , not to the types, kinds, or inference
rules. Based on the operational semantics, semantic types and kinds are constructed that
interpret the syntactic types, yet syntactic types are never used for semantic constructions.4

We consider this conceptual hygiene important from a philosophic perspective: we use
types just as a vehicle to assign properties to our programs; clearly, they have no run-time
significance. While in the end we managed to keep syntactic types out of the semantic
constructions, it was hard to get the semantic counterpart (Lemma 31) of pattern spine
typing (Figure 12) right.

One clarification: Since Fcop
ω has Church-style polymorphism with explicit type abstrac-

tion and application, we can of course not talk about terms and operational semantics
without mentioning syntactic types. However, we never refer to the structure of syntactic
types, they remain abstract, and we could remove everything but type variables from our
type language without altering the construction of semantic types and semantic typing
“judgements”. In particular, in the construction of the semantic universal type ∀∀∀∀∀∀K F =

{r ∈ SN | r G ∈ F (G ) for all G ∈ Type,G ∈ K } there is no connection between the
syntactic type constructor G and the semantic type constructor G (of semantic kind K ).
Type applications serve only to make type-checking decidable, they do not play any role
in evaluation.

Preliminaries. We use partially applied relations to denote sets. For instance, we write
(t −→ ) or simply t−→ for the set {t ′ | t −→ t ′} of reducts of t. Similarly, <α = {β | β <

α}. The identity substitution is denoted by σid.
Let t v t ′ be the compatible closure of bv ∞.

Lemma 1 (Soundness and completeness of matching)

4 Humbly following the masters (Vouillon & Melliès, 2004).
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s / p↘ τ;σ iff sv pτσ .

Strong normalization. Classically, a term t is strongly normalizing if it admits no infinite
reduction sequences t −→ t1 −→ t2 starting with t. Inductively, we define t ∈ SN if all of
its reducts are already in SN:

(t −→ )⊆ SN

t ∈ SN
Naturally, if t ∈ SN then all its reducts and subterms are also strongly normalizing.

We extend the notion SN to other syntactic categories: An elimination e is strongly
normalizing, e ∈ SN, if it either is not a term (but a type G or a projection .d), or if it is
a strongly normalizing term. A definition clause D = {~q→ t} is strongly normalizing if
t ∈ SN.

Simulation. Our typing rules (see Figure 11) state that a definition λ~D : A or ( f : A= ~D) is
well-typed if each of the clauses Dk is of type A, individually. In the absence of a coverage
check, there is no concept of “the clauses make sense together”. We would like to see
this independence of clauses reflected in our semantics. In particular, we would like to
have compositionality, i. e., if each clause of a definition is semantically meaningful (in
particular, does not lead to non-termination), then the clauses are meaningful together. For
functions, our type-checker works exactly like that: each clause is checked individually,
using the termination measure; an interaction between clauses need not be taken into
account.5

One idea is to say that a defined function f : A = ~D reduces non-deterministically to
one of its clauses Dk, however, this immediately destroys strong normalization, because
Dk might mention f . We need to defer unfolding of f until the pattern of one of its clauses
matches. Thus, instead we say that f~e reduces if (λ~D)~e reduces; f is simulated by its
clauses ~D. In general, a term r is simulated by terms ~r, written rB~r , iff each of its
contractions under some eliminations is accounted for by one of the terms~r, formally

∀~e, t. r~e 7→ t =⇒ ∃k. rk~e 7→ t.

Closing reducibility candidates by simulation is one of the new ideas of our proof.

Lemma 2 (Simulation)
1. λ{D1; . . . ;Dn}BλD1, . . . ,λDn.
2. If ( f : A = ~D) ∈ Σ then f Bλ~D.
3. If rB r1, . . . ,rn then r eB r1 e, . . . ,rn e.

Proof
1. Assume (λ~D)~e 7→ t. By inversion, (λDk)~e 7→ t for some k.
2. Assume f~e 7→ t. By inversion (λ~D)~e 7→ t.
3. We have to show ∀~e, t. r e~e 7→ t =⇒ ∃k. rk e~e 7→ t. This holds directly by assumption

rB~r with elimination vector e,~e. �

5 In general, normalization of rewriting is of course not compositional. E. g., the rule f true −→
f false by itself terminates, but adding f false−→ f true destroys normalization.
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4.1 Semantic Types

In order to show strong normalization we model types as sets of strongly normalizing
terms, more precisely, as reducibility candidates à la Girard. We choose reducibility can-
didates over Tait’s saturated sets, since they allow us to show strong normalization in the
absence of standardization and confluence. As a consequence, we can model definitions
with incomplete and overlapping patterns.

A set of terms A is a reducibility candidate (Girard et al., 1989), written A ∈ CR, if the
following conditions hold.

CR1 A ⊆ SN: “each term in A is strongly normalizing”.
CR2 if t ∈A then (t −→ )⊆A : “A is closed under reduction”.
CR3 if t ∈ Ne and (t −→ ) ⊆ A then t ∈ A : “A contains a neutral already if all its

redexes are in A ”.
CR4 if t 6∈ Intro and (t −→ ) ⊆ A and t B~t ∈ A then t ∈ A : “A is closed under

simulation”.

Condition CR4, is new; it introduces multi-clause objects λ~D and function symbols f into
a semantic type (candidate).

Lemma 3 (Multi-clause objects)
1. If λD1, . . . ,λDn ∈A then λ~D ∈A .
2. If ( f : A = ~D) ∈ Σ and λ~D ∈A , then f ∈A .

Proof
1. We show λ~D ∈A by induction on ~D ∈ SN. Since λ{~D}B

−⇀
λD, we may use CR4. It

remains to show that λ~D−→ t implies t ∈A . If λ~D 7→ t, then λDk 7→ t for some k,
and since λDk ∈A we infer t ∈A by CR2. Otherwise the reduction takes place in
some body and we have t = λ~D′ with ~D −→ ~D′. Since λ~D′B

−−⇀
λD′, we conclude by

induction hypothesis.
2. Directly by CR4, since f Bλ~D by Lemma 2 and all reducts of f are reducts of λ~D.
�

In CR3, Ne is a suitable set of so-called neutral terms. These are “good”, i. e., inhabit
a candidate, as soon as all their reducts are good. For Girard’s technique to work, neutral
terms need to include redexes such as (λx.t)s~e and variables x, and need to be closed
under application, i. e., r neutral implies r s neutral. In case of pure lambda calculus, any
term which is not a lambda-abstraction can be considered neutral.

In our setting of matching the whole pattern spine ~q against the eliminations ~e, things
are more subtle. For instance, the partial application λ{xy→ xx}δ with δ = λ{x→ xx} is
stuck (and even in normal form). However, it cannot be neutral and inhabit every candidate
(following CR3), in particular semantic function types, since it reduces to the diverging
term δ δ if applied to one more argument. Thus, we can only accept stuck terms as neutral
which cannot become unstuck by extra eliminations. This leads to the following definition:

Definition 4 (Neutral term, terminally stuck)
1. A applicative term u∈App is terminally stuck if u~e is not a redex for all eliminations

~e.
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2. A term r is neutral, written r ∈ Ne, if it is a redex or terminally stuck.

As Girard’s, our refined notion of neutrality includes redexes, variables, and is closed under
eliminations. Further, if r ∈ Ne then any reduction in r e is either a reduction in r or in e. A
reducibility candidate A is never empty since Var ⊆A by virtue of CR3.

Closure. For a set A ⊆ SN which is closed under reduction let A be the least reducibility
candidate ⊇A . Inductively, A is defined as the closure under neutrals and simulation:

t ∈A

t ∈A

t ∈ Ne (t −→ )⊆A

t ∈A

t 6∈ Intro (t −→ )⊆A tB~t ∈A

t ∈A

A 7→ A is a closure operation, i. e., it is monotone (A ⊆B implies A ⊆B), extensive
(A ⊆A ), and idempotent (A ⊆A ). Note that the closure operator never adds introduction
terms such as (), (t1, t2), ct, or Gt to a term set A . Thus, for introductions v ∈A we have
v ∈A already.

CR is closed under arbitrary intersections and forms, under the inclusion ⊆ order, a
complete lattice with greatest element SN and least element /0.

Semantic types. In the following, let A ,B ∈CR be candidates, P a proposition, K some
index set and F ∈K → CR a family of reducibility candidates. The following operations,
except the conditional P⇒A , construct new candidates from existing ones.

A →→→B = {r ∈ SN | ∀s ∈A .r s ∈B}

∀∀∀∀∀∀K F = {r ∈ SN | ∀G ∈ Type,G ∈K .r G ∈F (G )}

P⇒A = {r ∈ Exp | r ∈A if P}

111 = {()}

A1××××××A2 = {(t1, t2) | t1 ∈A1 and t2 ∈A2}

∃∃∃∃∃∃K F = {Gt | G ∈ Type, ∃G ∈K , t ∈F (G )}

Note that the condition r ∈ SN in the definition of A →→→ B is redundant, since x ∈ A

by CR3 and r x ∈ SN implies r ∈ SN. However, in the definition of ∀∀∀∀∀∀K F it is important
since K could be empty, e. g., K =<0. Conditional types are not first-class; P⇒A only
forms a candidate if P is true, otherwise, it is just a set of expressions.

Lemma 5 (Function space candidate)
If Var ⊆A ⊆ SN and B ∈ CR then A →→→B ∈ CR.

Proof
CR1 Strong normalization: Let r ∈A →→→B. Since x ∈A we have r x ∈B ⊆ SN, thus,

r ∈ SN.
CR2 Closure under reduction: Let r ∈ A →→→B and r −→ r′. Assume s ∈ A and show

r′ s ∈B, which we conclude by CR2 on r s ∈B, since r s−→ r′ s.
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CR3 Closure under neutrals: Let r∈Ne and (r−→ )⊆A →→→B. Since A →→→B⊆ SN we
have r ∈ SN. Assume s ∈ A . We show r s ∈B by CR3, exploiting r s ∈ Ne. Consider
r s −→ t; we show t ∈B by induction on r,s ∈ SN. Since r ∈ Ne, either t = r′ s with
r −→ r′ and we conclude by induction hypothesis on r′ ∈ SN, or t = r s′ with s −→ s′

and we conclude by induction hypothesis on s′ ∈ SN.
CR4 Closure under simulation: Let r 6∈ Intro and (r −→ ) ⊆ A →→→ B and rB~r ∈
A → B. Assume s ∈ A and show r s ∈ B by CR4, exploiting that r s 6∈ Intro and
r sB r1 s, . . . ,rn s ∈B. Assume r s −→ t and show t ∈B by induction on r,s ∈ SN. In
cases t = r′ s or t = r s′ we conclude by induction hypothesis. In the remaining case
r s 7→ t we have rk s 7→ t for some k ∈ 1..n. Since rk s ∈B we conclude t ∈B by CR2.�

Lemma 6 (Semantic typing rules)
The following inferences are trivial consequences of the construction of semantic types:

r ∈A →→→B s ∈A

r s ∈B

r ∈ ∀∀∀∀∀∀K F G ∈K

r G ∈F (G )

() ∈ 111
t1 ∈A1 t2 ∈A2

(t1, t2) ∈A1××××××A2

G ∈K t ∈F (G )
Gt ∈ ∃∃∃∃∃∃K F

Besides definitions (which we will treat in Section 4.5), rules for constructors and destruc-
tors are missing. We will describe semantic (co)inductive types in the next section.

4.2 Ordinals and Fixed-Points

Previous approaches to type-based termination (Hughes et al., 1996; Amadio & Coupet-
Grimal, 1998; Barthe et al., 2004; Blanqui, 2004; Barthe et al., 2008; Sacchini, 2013)
have defined approximants of least µµµαF and greatest fixed-points ννναF of monotone
type constructors F ∈ CR

+→ CR by conventional induction on ordinal α , distinguishing
zero (0), successor (α +1), and limit ordinals (λ ).

µµµ0 F = /0
µµµα+1F = F (µµµα F )

µµµλ F =
⋃

α<λ µµµαF

ννν0 F = SN

νννα+1F = F (νννα F )

νννλ F =
⋂

α<λ ννναF

In this work, we adopt the approach of Sprenger and Dam (2003) for approximations in
µ-calculus and use well-founded induction instead, which amounts to construct µµµαF by
inflationary iteration and ννναF by deflationary iteration.

µµµ
αF =

⋃
β<α

F (µµµβ F ) ννν
αF =

⋂
β<α

F (νννβ F )

In this definition, F does not have to be monotone to obtain an ascending chain of ap-
proximants in case of µµµ and a descending chain for ννν . However, if F is monotone, one
can derive above equations as special cases for α being zero, successor, or limit ordinal, if
such a distinction on ordinals exists. Intuitionistically, this distinction is not valid (Taylor,
1996); by building on well-founded induction, we remain within constructive foundations.

Let α,β ,γ range over ordinals. We write ∀∀∀∀∀∀β<αF (β ) for ∀∀∀∀∀∀<αF and analogously for ∃∃∃∃∃∃.
Let S ∈ Cons ⇀ CR→ CR and R ∈ Proj ⇀ CR→ CR where we write the first argument,
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the constructor c, or the destructor d, resp., as index, thus, Sc and Rd resp. We define the
αth approximants µµµαS ,ννναR ∈ CR of recursive variant and record type as follows.

µµµαS = {ct | c ∈ dom(S ) and t ∈ ∃∃∃∃∃∃β<αSc(µµµβ S )}

ννναR = {r ∈ SN | ∀d ∈ dom(R).r.d ∈ ∀∀∀∀∀∀β<αRd(ννν
β R)}

Since ∃∃∃∃∃∃<αF is monotonic in α for any F , so is µµµαS . Dually ∀∀∀∀∀∀<αF and ννναR are
antitonic in α . We obtain chains:

/0 = µµµ0S ⊆ µµµ1S ⊆ . . . ⊆ µµµγS ⊆ µµµγ+1S ⊆ . . .

SN = ννν0R ⊇ ννν1R ⊇ . . . ⊇ νννγR ⊇ νννγ+1R ⊇ . . .

If µµµαS = µµµγS for some α > γ then µµµβ S = µµµγS for all β > γ and we say that the
chain has become stationary at γ . Since the set Exp of expressions is countable and all
elements of these chains are subsets of Exp, the chains must become stationary latest at the
first uncountable ordinal Ω. We call the ordinal at which all such chains of our language
are stationary the closure ordinal and denote it by ∞∞∞.

Since it does not make sense to inspect chains beyond the closure ordinal, we introduce
bound normalization

α
↑ =

{
∞∞∞+1 if α ≥ ∞∞∞,

α otherwise.

Note that µµµαS = µµµα↑S and ννναR = νννα↑R. In the following we will talk about ordinals
that are as big as ∞∞∞+n for finite n, but not bigger ones, so all ordinals will be in O = {α |
α < ∞∞∞+ω}, a set closed under successor. As size index to a least or greatest fixed point,
only the ordinals in Size = {α | α ≤∞∞∞} are interesting. Thus, if no bound for an ordinal β

is given, we assume β ∈ Size, for instance, we write ∃∃∃∃∃∃β F (β ) instead of ∃∃∃∃∃∃β∈SizeF (β ) or
∃∃∃∃∃∃SizeF .

The stationary point µµµ∞∞∞S is a pre-fixed point in the sense that t ∈Sc(µµµ
∞∞∞S ) implies

c ∞t ∈ µµµ∞∞∞+1S = µµµ∞∞∞S . Dually, ννν∞∞∞R is a post-fixed point as r ∈ ννν∞∞∞R = ννν∞∞∞+1R implies
r.d ∞∈Rd(ννν

∞∞∞R). Note that we do not require R or S to be monotone for the implications
to hold in these directions. Yet we do if we want µµµ∞∞∞S and ννν∞∞∞R to be fixed-points.

Lemma 7 (Pre/post-fixed points)
1. If t ∈ ∃∃∃∃∃∃β≤∞∞∞Sc(µµµ

β S ) then ct ∈ µµµ∞∞∞S .
2. If r ∈ ννν∞∞∞R then r.d ∈ ∀∀∀∀∀∀β≤∞∞∞Rd(ννν

β R).

Proof
1. By definition ct ∈ µµµ∞∞∞+1S = µµµ∞∞∞S .
2. By definition, since r ∈ ννν∞∞∞+1R.

Lemma 8 (Fixed-points)
If Sc,Rd be monotone for all c ∈ dom(S ) and d ∈ dom(R), then

1. µµµ∞∞∞S = {c bt | c ∈ dom(S ),b ∈ Type, t ∈Sc(µµµ∞∞∞S )}, and
2. ννν∞∞∞R = {r | ∀d ∈ dom(R),b ∈ Type. r.d b ∈Rd(ννν

∞∞∞R)}.

Proof
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For 1, it is sufficient to show ⊆, meaning that µµµ∞∞∞S is a post-fixed point. Note that by
definition

µµµ
∞∞∞S =

⋃
β<∞∞∞

{c bt | c ∈ dom(S ),b ∈ Type, t ∈Sc(µµµβ S )},

so we conclude by monotonicity of Sc and the closure operator, using µµµβ S ⊆ µµµ∞∞∞S .
For 2, it is sufficient to show that ννν∞∞∞R is a pre-fixed point. So, if r.d b ∈Rd(ννν

∞∞∞R) for
all d ∈ dom(R) and b ∈ Type, then r ∈ ννν∞∞∞R. It is sufficient to show r.d b ∈Rd(ννν

β R) for
all β < ∞∞∞, and this follows from ννν∞∞∞R ⊆ νννβ R by monotonicity of Rd .

Corollary 9
1. If c bt ∈ µµµ∞∞∞S and Sc is monotone, then t ∈Sc(µµµ

∞∞∞S ).
2. If r.d b ∈Rd(ννν

∞∞∞R) and Rd is monotone, then r ∈ ννν∞∞∞R.

4.3 Kinds

Simple kinds ι are interpreted as sets of semantic types, ordinals, or semantic type con-
structors.

[[∗]] = CR

[[o]] = O

[[ι → ι ′]] = [[ι ]]→ [[ι ′]]

A simple function kind ι → ι ′ is interpreted as the function space [[ι ]]→ [[ι ′]] of the meta-
language (e.g. the set-theoretical function space).

With each simple kind ι we associate a set KI(ι) of semantic kinds K ⊆ [[ι ]]. Semantic
kinds K are pointed preorders. We write ⊥K for the least element of K and F ≤F ′ ∈
K for the preorder relation, omitting “∈K ” when clear from the context of discourse.
Also let

F ≤◦ F ′ :⇐⇒F ≤F ′ and F ′ ≤F

F ≤+ F ′ :⇐⇒F ≤F ′

F ≤− F ′ :⇐⇒F ′ ≤F

F ≤> F ′ :⇐⇒ true.

For the special case of posets, ≤◦ coincides with equality, but we will later encounter
preordered sets, where ≤◦ is just an equivalence relation and not identity.

Lemma 10 (Soundness of variance ordering)
If π ≤ π ′ and F ≤π F ′ then F ≤π ′ F ′.

If K ∈ KI(ι) and K ′ ∈ KI(ι ′) is a pointed preorder then the function space

K →K ′ ∈ KI(ι → ι ′)

K →K ′ = {F ∈ [[ι ]]→ [[ι ′]] | ∀G ∈K . F (G ) ∈K ′}

is a pointed preorder with least element ⊥K →K ′(G ) = ⊥K ′ , pointwise ordered by F ≤
F ′ ∈K →K ′ iff F (G )≤F ′(G ) ∈K ′ for all G ∈K .

For posets K ,K ′ let K
◦→K ′ be just K →K ′, the full function space, K

+→K ′

denote the subspace of monotone functions, K −→K ′ the antitone ones and K
>→K ′ the



ZU064-05-FPR jfp15 1 August 2014 16:26

Wellfounded Recursion with Copatterns and Sized Types 29

constant functions. Clearly, if F ∈K
π→K ′ and G ≤π G ′ ∈K , then F (G )≤F (G ′) ∈

K ′.
Let (<β ) = {α | α < β}. We define the type of semantic kinds KI(ι) associated to

simple kind ι inductively by the rules

CR ∈ KI(∗)
β ∈ O

(<β ) ∈ KI(o)
K ∈ KI(ι) K ′ ∈ KI(ι ′)

K
π→K ′ ∈ KI(ι → ι ′)

.

(Alternatively, KI(ι) could be defined by recursion on ι .) Note that ⊥CR = /0 and ⊥O = 0.

Type environments. We extend the kind erasure |κ| = ι to kinding contexts ∆ in the
obvious way: |·|= · and |∆,X :πκ|= |∆|,X :|κ|. Erased kinding contexts are interpreted as
sets of environments ρ ∈ [[|∆|]] inductively defined by

· ∈ [[·]]
ρ ∈ [[|∆|]] G ∈ [[ι ]]

(ρ,G /X) ∈ [[|∆|,X :ι ]]
.

(Alternatively, [[|∆|]] could be defined by recursion on the length of |∆|.) Environments
ρ can be understood as finite maps from type constructor variables X to an appropriate
semantic object G ∈ [[|∆(X)|]] (an ordinal, a semantic type or a type operator). We will also
use the notation ρ,ρ ′ for environment concatenation.

Semantic kinding contexts. In the following, we define semantic kinding contexts D ∈
KICXT(|∆|) as counterparts of syntactic kinding contexts ∆. Each D induces a preordered
subset [D ] ⊆ [[|∆|]] of (semantic) type environments ρ ∈ [D ] (written just ρ ∈ D). Anal-
ogously to syntactic contexts, semantic kinding contexts are finite maps from type con-
structor variables X to a pair of variance π and semantic kind K which may depend on
“earlier variables” of mixed variance only. This dependency is expressed by D ′ ∈ ◦−1D→
KICXT(|∆′|) in the rule for ΣDD ′ ∈ KICXT(|∆,∆′|) below. It means that D ′ respects
relation in D given by ρ ≤ ρ ′ ∈D , meaning that then D ′(ρ) = D ′(ρ ′). Semantic kinding
contexts D ∈ KICXT(|∆|) are defined inductively by the rules

· ∈ KICXT(·)
K ∈ KI(ι)

(X :πK ) ∈ KICXT(X :ι)

D ∈ KICXT(|∆|) D ′ ∈ ◦−1D → KICXT(|∆′|)
ΣDD ′ ∈ KICXT(|∆,∆′|)

.

Simultaneously with D ∈KICXT(|∆|), we construct a preordered set of type environments;
we define ρ ≤ ρ ′ ∈D by recursion on D ∈ KICXT(|∆|)—an inductive-recursive defini-
tion (Dybjer, 2000).

· ≤ · ∈ · :⇐⇒ true
(G /X) ≤ (G ′/X) ∈ (X :πK ) :⇐⇒ G ≤π G ′ ∈K

(ρ1,ρ2) ≤ (ρ ′1,ρ
′
2) ∈ ΣDD ′ :⇐⇒ ρ1 ≤ ρ ′1 ∈D and ρ2 ≤ ρ ′2 ∈D ′(ρ1)

The last line shows that it is important that D ′ respects D , because how would we otherwise
know that D ′(ρ1) = D ′(ρ ′1), and thus ρ ′2 ∈D ′(ρ1)?
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Inverse application of polarities π−1D is defined simultaneously with KICXT as well,
in analogy to the syntactic variant π−1∆ as given in Figure 5.

π−1(·) = ·
π−1(X :π ′K ) = (X :(π−1π ′)K )

π−1(ΣDD ′) = Σ(π−1D)(π
−1D ′)

Lemma 11 (Well-definedness of partial order on type environments)
If D ∈ KICXT(|∆|) then ρ ≤ ρ ′ ∈D is well-defined. Further, if ρ ≤ ρ ′ ∈D then ρ ≤ ρ ′ ∈
◦−1D and even ρ ≤◦ ρ ′ ∈ ◦−1D .

Proof
By induction on D ∈ KICXT(|∆|). It is even true that ρ ≤ ρ ′ ∈ π

−1
1 D implies ρ ≤ ρ ′ ∈

π
−1
2 D for any π1 ≥ π2 (antitonicity of inverse application). Instantiating this with π1 =+

and π2 = ◦ yields the first statement on orders; for the second we observe that ρ ≤π ρ ′ ∈D

iff ρ ≤ ρ ′ ∈ πD and that ◦◦−1D = ◦−1D . Well-definedness follows in case ΣDD ′ since
ρ1 ≤ ρ ′1 ∈D implies ρ1 ≤◦ ρ ′1 ∈ ◦−1D and thus D ′(ρ1) = D ′(ρ ′1). �

ρ ∈D is now simply defined as ρ ≤ ρ ∈ D . If in singleton contexts (X :πK ) we

restrict K to be of the form <β , we obtain semantic size contexts D ∈ SICXT(|Ψ|) .
Clearly, these are special semantic kinding contexts.

We shall omit |∆| from KICXT(|∆|) when inessential or inferable. We drop singleton
function domains, e.g., we identify ·→KICXT with KICXT. Given a parametrized kinding
context D2 ∈ D → KICXT we can weaken it to WD1D2 ∈ (D1 ×D)→ KICXT where
(WD1D2)(ρ1 ∈ D1,ρ) = D2(ρ). For non-dependent concatenation of semantic kinding
contexts D1 and D2 we introduce the notation (D1,D2) defined as ΣD1(WD1D2). As a
derived rule we have:

D1 ∈ KICXT|∆1| D2 ∈ KICXT|∆2|
(D1,D2) ∈ KICXT|∆1,∆2|

Lemma 12 (Preservation of context well-formedness)
If D ∈ KICXT(|∆|) then π−1D ∈ KICXT(|∆|).

Proof
By induction on D ∈ KICXT(|∆|). The interesting case is concatenation:

D ∈ KICXT(|∆|) D ′ ∈ ◦−1D → KICXT(|∆′|)
ΣDD ′ ∈ KICXT(|∆,∆′|)

By induction hypothesis π−1D ∈ KICXT(|∆|) and π−1D ′(ρ) ∈ KICXT(|∆′|) for all ρ ∈
◦−1D . It remains to show that π−1D ′ respects π−1◦−1D which is equal to (π◦)−1D .
Assume ρ ≤◦ ρ ′ ∈ (π◦)−1D . Since ρ ≤◦ ρ ′ ∈ ◦−1D by antitonicity (π◦ ≥ ◦), we have
D ′(ρ) = D ′(ρ ′) and, thus, π−1D ′(ρ) = π−1D ′(ρ ′) as desired. �

Interpretation of sizes, measures, kinds, and kinding contexts. In the following let ρ ∈
[[|∆0|]] for some erased kinding context |∆0|. (Extended) sizes a+ are interpreted as ordinals



ZU064-05-FPR jfp15 1 August 2014 16:26

Wellfounded Recursion with Copatterns and Sized Types 31

[[a+]]
ρ
∈ O and measures m as ordinal tuples [[m]]

ρ
∈ O∗.

[[i+n]]
ρ

= [[i]]
ρ
+n

[[∞+n]]
ρ

= ∞∞∞+n
[[n]]

ρ
= n

[[a+,m]]
ρ

= ([[a+]]
ρ
, [[m]]

ρ
)

Kinds κ are interpreted as semantic kinds [[κ]]
ρ
∈ KI(|κ|) and kinding contexts ∆ as se-

mantic kinding contexts [[∆]]
ρ
∈ KICXT(|∆|).

[[∗]]
ρ

= CR

[[<b]]
ρ

= <[[b]]
ρ

[[πκ → κ ′]]
ρ

= [[κ]]
ρ

π→ [[κ ′]]
ρ

[[·]]
ρ

= ·
[[∆,X :πκ]]

ρ
= ΣD (X :πK ) where

D = [[∆]]
ρ

K (ρ ′ ∈D) = [[κ]](ρ,ρ ′)

The structurally recursive interpretation [[O]]
ρ

for a kind-level object O ::= a+ | m | κ as
given above is well-defined if ρ(i) ∈ O for all i ∈ FV(O). In the following, we show that
the interpretations fit into the appropriate semantic concepts.

Lemma 13 (Soundness of size (context) formation)
Let `Ψ.

1. Then [[Ψ]] ∈ SICXT(|Ψ|).
2. If Ψ ` a then [[a]] ∈ [[Ψ]]

+→ O.
3. If Ψ ` i < a and ρ ≤ ρ ′ ∈ [[Ψ]] then [[a]]

ρ
≤ [[a]]

ρ ′ ∈ O and ρ(i)≤ ρ ′(i)< [[a]]
ρ

.

Proof
By induction on the length of context Ψ. We demonstrate the case for context extension.

`Ψ ◦−1Ψ ` a
`Ψ, i:π(<a)

By induction hypothesis 1, D := [[Ψ]] ∈ SICXT(|Ψ|). By induction hypothesis 2, [[a]] ∈
[[◦−1Ψ]]→O, thus [[a]]∈◦−1D→O, entailing respect, and ΣD (i:π(<[[a]]))∈SICXT(|Ψ|, i:o).
�

Theorem 14 (Soundness of kind-level judgements)
Let `Ψ and let ρ ≤ ρ ′ ∈D := [[Ψ]].

1. If Ψ ` a+ then [[a+]]
ρ
≤ [[a+]]

ρ ′ ∈ O.
2. If Ψ ` a+ ≤ b+ then [[a+]]

ρ
≤ [[b+]]

ρ ′ ∈ O.
3. If Ψ ` a+ < b+ then [[a+]]

ρ
< [[b+]]

ρ ′ ∈ O.
4. If Ψ `m m then [[m]]

ρ
≤ [[m]]

ρ ′ ∈ Om.
5. If Ψ `m≤m′ then [[m]]

ρ
≤ [[m]]

ρ ′ ∈ O∗.
6. If Ψ `m<m′ then [[m]]

ρ
< [[m]]

ρ ′ ∈ O∗.
7. If Ψ ` κ then [[κ]]

ρ
≤ [[κ]]

ρ ′ ∈ KI(|κ|).
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8. If Ψ ` κ ≤ κ ′ then |κ|= |κ ′| and [[κ]]
ρ
≤ [[κ]]

ρ ′ ∈ KI(|κ|).

Proof
Each by induction on the derivation. �

The following theorem is the reason that we do not allow finitely bounded size variables
i < n in kinding contexts.

Theorem 15 (Context satisfaction)
If ` ∆ then there is some ρ0 ∈ [[∆]].

Proof
We prove the following stronger theorem by induction on ∆: For each α < ∞∞∞ there is some
ρ ∈ [[∆]] such that ρ(i)≥ α for each size variable i declared in ∆.

Case
` ∆ ◦−1∆ `<(∞+n)
` ∆, i : π(<(∞+n))

By induction hypothesis there is some ρ ∈ [[∆]], thus, ρ[i 7→α] is the desired environment.
Case

` ∆ ◦−1∆ `<( j+n)
` ∆, i : π(<( j+n))

By induction hypothesis there is some ρ ∈ [[∆]] with ρ( j) ≥ α + 1, thus, α < ρ( j)+ n
and ρ[i 7→ α] is the desired environment.

Case
` ∆ ◦−1∆ ` κ

` ∆,X :πκ
κ 6= (<a)

Return ρ[X 7→ ⊥[[κ]]ρ ] where ρ is obtained by induction hypothesis. �

Theorem 16 (Conditional context satisfaction)
1. If Ψ ` ∃Ψ′ and ρ ∈ [[Ψ]] then there is some ρ ′ ∈ [[Ψ′]]

ρ
.

2. If ∆ ` ∃∆′ and ρ ∈ [[∆]] then there is some ρ ′ ∈ [[∆′]]
ρ

.

4.4 Type Constructors

In order to interpret type constructors semantically, we need to restrict to well-kinded ones.
However, we do not wish to define the semantics of a type constructor by recursion on
its kinding derivation. After all, since we have subkinding, the kinding derivation is not
unique. This dilemma can be solved by interpreting all type constructors which have a
simple kind. Using simple kind annotations in type function λX :ι .F , we obtain a deter-
ministic simple kinding judgement |∆| ` F : ι . By induction on this judgement, whose
derivation is in one-to-one correspondence with F , we can then define type (constructor)
interpretation [[F ]]

ρ
∈ [[ι ]] for ρ ∈ [[|∆|]].
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Simple kinding is standard, we only present some of the rules to convey the idea. Here,
|∆| shall denote a simple kinding context.

|∆| ` ∀κ : (|κ| → ∗)→∗ |∆| ` X : |∆|(X)

|∆|,X :ι ` F : ι ′

|∆| ` λX :ι .F : ι → ι ′
|∆| ` F : ι → ι ′ |∆| ` G : ι

|∆| ` F G : ι ′

Simple kinding is unique, so we have a partial computable function taking a simple kinding
context |∆| and a type constructor F and computing its simple kind ι , if it exists.

Now given a derivation J :: |∆| ` F : ι and an environment ρ ∈ [[|∆|]] we define the type
interpretation [[J]]

ρ
∈ [[|ι |]] by recursion on J. Since J is completely determined by F and

|∆|, we simply write [[F ]]
ρ

, hiding |∆| as it is implicit in the typing of ρ .

[[X ]]
ρ

= ρ(X)

[[λX :ι .F ]]
ρ
(G ∈ [[ι ]]) = [[F ]]

ρ[X 7→G ]

[[F G]]
ρ

= [[F ]]
ρ
([[G]]

ρ
)

[[1]]
ρ

= 111
[[×]]

ρ
(A ,B) = A ××××××B

[[→]]
ρ
(A ,B) = A →→→B

[[∀κ ]]ρ(F ∈ [[|κ|]]→ CR) = ∀∀∀∀∀∀[[κ]]ρ F

[[∃κ ]]ρ(F ∈ [[κ|]]→ CR) = ∃∃∃∃∃∃[[κ]]ρ F

[[µaS]]
ρ

= µµµ
[[a]]ρ [[S]]

ρ

[[νaR]]
ρ

= ννν
[[a]]ρ [[R]]

ρ

([[S]]
ρ
)c = [[Sc]]ρ

([[R]]
ρ
)d = [[Rd ]]ρ

The interpretation of F depends only on the value of ρ for the free variables of F :

Lemma 17 (Well-definedness)
Let ~X = FV(F). If |∆| ` F : ι then (|∆| � ~X) ` F : ι . If ρ ∈ [[|∆|]] and (ρ ′ � ~X) = (ρ � ~X)

then [[F ]]
ρ
= [[F ]]

ρ ′ .

Theorem 18 (Soundness of type-level judgements)
Let ` ∆ and D := [[∆]] and ρ ≤ ρ ′ ∈D .

1. If ∆ ` F ⇒ κ or ∆ ` F ⇔ κ then |∆| ` F : |κ| and [[F ]]
ρ
≤ [[F ]]

ρ ′ ∈ [[κ]]
ρ

.
2. If ∆ ` F ≤π F ′⇒ κ or ∆ ` F ≤π F ′⇔ κ then |∆| ` F,F ′ : |κ| and [[F ]]

ρ
≤π [[F ′]]

ρ ′ ∈
[[κ]]

ρ
.

Proof
By induction on the kinding or subtyping derivation. �

Lemma 19 (Soundness of normalizing substitution and application)
Let |∆| ` G : ι1.

1. If |∆|,X :ι1 ` F : ι2 then [[[G/X ]ι1F ]]
ρ
= [[F ]]

ρ[X 7→[[G]]ρ ]
.

2. If |∆| ` F : ι1→ ι2 then [[F @ι1 G]]
ρ
= [[F ]]

ρ
([[G]]

ρ
).
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Lemma 20 (Soundness of substitution)
If |∆′| ` F : ι and |∆| ` τ : |∆′| then [[Fτ]]

ρ
= [[F ]][[τ]]ρ

.

The interpretation can be extended to constrained types ?A by adding the case:

[[m<m′⇒ A]]
ρ

= [[m]]
ρ
<[[m′]]

ρ
⇒ [[A]]

ρ

4.5 Patterns, copatterns, λ -abstractions

In this section, we explain patterns and copatterns by developing semantic notions of pat-
tern and pattern spine typing. These provide us with semantic conditions when a definition
λ~D inhabits a semantic type A . As a consequence, we can prove soundness of syntactic
pattern, pattern spine, and expression typing.

Semantic typing. We want to isolate conditions under which objects λ~D are member or a
semantic type A ∈ CR. Let us recapitulate the proof for lambda calculus:

Lemma 21 (Lambda abstraction)
The following implication, written as a rule, holds for A ,B ∈ CR.

∀s ∈A . t[s/x] ∈B

λx.t ∈A →→→B

Proof
First note that t ∈ B because x ∈ A (by CR3), so t ∈ SN (by CR1). By definition of
A →→→B, it is sufficient to show (λx.t)s for arbitrary s ∈ A . Since (λx.t)s is neutral, by
CR3 we only need to show that each of its reducts r is in B. By induction on t ∈ SN and
s ∈ SN, we prove that t[s/x] ∈B implies ((λx.t)s−→ )⊆B. The possible reducts are:

Case r = (λx.t ′)s where t −→ t ′: Since t[s/x]−→ t ′[s/x] and B is closed under reduction
(CR2), we can apply the induction hypothesis on t ′ ∈ SN, yielding ((λx.t ′)s−→ )⊆B.
By neutrality and CR3 we conclude (λx.t ′)s ∈B.

Case r = (λx.t)s′ where s−→ s′: Analogously by induction hypothesis on s′ ∈ SN using
t[s/x]−→∗ t[s′/x] ∈B.

Case r = t[s/x]: By assumption. �

This proof illustrates how Girard-neutrality is used to introduce functions in the semantics,
the interplay of the conditions on reducibility candidates CR1-3, and the typical local
induction on strong normalization. Partially applied functions cannot be introduced with
CR3, but with our extension CR4. We demonstrate this for a simple example, to give some
intuition for the general case (Lemma 30).

Lemma 22 (Partial application)
Let s, t ∈ SN and C ∈ CR. If u′ := λy.t[s/x] ∈ C then u := λ{xy 7→ t}s ∈ C .

Proof
Note that uB u′ since us′ and u′ s′ contract to the same term t[s/x][s′/y]. By CR4, it is
sufficient to show that the reducts r of u are already in C . We show that λy.t[s/x] ∈ C

implies (λ{xy 7→ t}s−→ )⊆ C by induction on s, t ∈ SN. A reduct of u is necessarily of
the form r := λ{xy 7→ t ′}s′ where (t,s)−→ (t ′,s′). Note that λy.t[s/x]−→∗ λy.t ′[s′/x] =:
r′ ∈ C and rB r′, so we can apply the induction hypothesis to get (r −→ )⊆ C . By CR4,
r ∈ C .
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Semantic typing contexts. A semantic typing context E ∈ CXT(·) (E for typing environ-
ment) is a finite map from term variables to semantic types, so E ∈ Var ⇀ CR. We write
· for the empty semantic typing context, x:A for the singleton and E ,E ′ for the disjoint
union. Semantic substitution typing σ ∈ E is defined as σ(x) ∈ E (x) for all x ∈ dom(E ).

A parameterized semantic typing context E ∈ CXT(D) is a family E (ρ) of semantic
typing contexts indexed by semantic type substitutions ρ that belong to a semantic kinding
context D . Each instance E (ρ) is a partial function from variables to semantic types. We
overload the notation for non-parameterized semantic typing contexts by setting ·(ρ) = ·
and (x:A )(ρ) = x:A (ρ) and (E ,E ′)(ρ) = E (ρ),E ′(ρ) with dom(E (ρ))∩dom(E ′(ρ)) =

/0.
For two differently parameterized semantic typing contexts E1 ∈ CXT(D1) and E2 ∈

CXT(D2) we let their disjoint union E1 ∗E2 ∈ CXT(D1,D2) be defined by (E1 ∗E2)(ρ1 ∈
D1,ρ2 ∈D2) = (E1(ρ1),E2(ρ2)). Further, if E ∈ CXT(ΣDD ′) and ρ ∈D we let the partial
application E (ρ, ) ∈ CXT(D ′(ρ)) be defined by E (ρ, )(ρ ′) = E (ρ,ρ ′).

If C (G )(ρ) is a type parameterized by another type G and a type substitution ρ , we let
C X be defined by (C X)(ρ) = C (ρ(X))(ρ \X). In particular, (C X)(G /X ,ρ) = C (G )(ρ),
thus, it is a form of uncurrying. The notations DX and E X are defined analogously.

Given a parameterized semantic type C ∈ D ′ → CR we define weakening WDC ∈
(D ,D ′)→ CR of C by semantic kinding context D as (WDC )(ρ ∈D ,ρ ′) =C(ρ ′). Given
a semantic type family C ∈ (D ,D ′)→ CR and a semantic type substitution ρ ∈D , we let
the partial application C (ρ, )∈D ′→ CR be defined by C (ρ, )(ρ ′) =C (ρ,ρ ′). Semantic
typing under a context is defined by

D ;E ` t ∈ C :⇐⇒ ∀ρ ∈D ,σ ∈ E (ρ),τ. tτσ ∈ C (ρ)

Note that for inconsistent kinding contexts D , semantic kinding in context does not make
any statement about t. In particular, we can only derive t ∈ SN if we have a witness ρ ∈D

of consistency.

Lemma 23 (Partial instantiation)

The following implications hold:

D ,D ′;E ∗E ′ ` t ∈ C

D ′;E ′ ` tτσ ∈ C (ρ, )
ρ ∈D , σ ∈ E (ρ)

ΣX :K D ;E X ` t ∈ C X
D(G );E (G ) ` t[G/X ] ∈ C (G )

G ∈K

Semantic pattern typing. A pattern p is semantically of type A in context E if it acts
as a bidirectional (invertible) map from E to A , i. e., pσ ∈A for all σ ∈ E , and, for any
substitution σ with pσ ∈A we have σ ∈ E . Extending this to type substitutions we define
semantic pattern typing by

A / p↘D ;E :⇐⇒ ∀τ,σ . (∃ρ ∈D . σ ∈ E (ρ)) ⇐⇒ pτσ ∈A .

Here, and in the following, τ denotes a syntactic type substitution. Note that it is uncon-
strained, it needs not bear a relationship with the semantic type substitution ρ .
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One could have expected that semantic pattern typing implies that p matches any intro-
duction term v ∈A . But since we are not interested in pattern coverage, but merely strong
normalization, we do not require this strong guarantee.6

Lemma 24 (Semantic pattern typing)
The following implications, written as rules, hold.

A / x↘ ·;(x:A ) 111 / ()↘ ·; ·
A1 / p1↘D1;E1 A2 / p2↘D2;E2

A1××××××A2 / (p1, p2)↘D1,D2;E1 ∗E2

∃∃∃∃∃∃
β<α↑Sc(µµµ

β S ) / p↘D ;E

µµµαS / c p↘D ;E
F (G ) / p↘D(G );E (G ) for all G ∈K

∃∃∃∃∃∃K F / X p↘ ΣX :K D ;E X

Proof
We spell out the proof for the more interesting rules.

∃∃∃∃∃∃
β<α↑Sc(µµµ

β S ) / p↘D ;E

µµµαS / c p↘D ;E

For µµµαS / c p↘ D ;E , assume (c p)τσ ∈ µµµαS and derive σ ∈ E (ρ) for some ρ ∈ D .
Note that µµµαS = µµµα↑S , thus, by definition, pτσ ∈ ∃∃∃∃∃∃

β<α↑Sc(µµµ
β S ). Using the assump-

tion ∃∃∃∃∃∃
β<α↑Sc(µµµ

β S ) / p↘D ;E , we conclude σ ∈ E (ρ) for some ρ ∈D . For the oppo-
site direction, assume ρ ∈ D and σ ∈ E (ρ). By the hypothesis, pτσ ∈ ∃∃∃∃∃∃

β<α↑Sc(µµµ
β S ),

hence (c p)τσ ∈ µµµαS .

F (G ) / p↘D(G );E (G ) for all G ∈K

∃∃∃∃∃∃K F / X p↘ ΣX :K D ;E X

To prove the conclusion, assume (X p)τσ ∈∃∃∃∃∃∃K F and show σ ∈ (E X)(G /X ,ρ)=E (G )(ρ)

for some G ∈K and ρ ∈D(G ). Since pτσ ∈F (G ) for some G ∈K , we can apply the
hypothesis to obtain σ ∈ E (G )(ρ) for some ρ ∈ D(G ). For the other direction, assume
ρ ′ ∈ ΣX :K D which is necessarily of the form ρ ′ = (G /X ,ρ) with G ∈ K and ρ ∈
D(G ). Further, assume σ ∈ (E X)ρ ′ and show (X p)τσ ∈ ∃∃∃∃∃∃K F . Since σ ∈ E (G )(ρ), by
hypothesis, pτσ ∈F (G ), yielding (X p)τσ ∈ ∃∃∃∃∃∃K F .

Theorem 25 (Soundness of pattern typing)
Let `∆0,∆ and ∆0,∆ `Γ. If ∆;Γ `∆0 p⇔A and ρ0 ∈ [[∆0]] then [[A]]

ρ0
/ p↘ [[∆]]

ρ0
; [[Γ]](ρ0, )

.

Proof
By induction on ∆;Γ `∆0 p⇔ A using the inferences of Lemma 24.

Having understood patterns semantically, we demonstrate how to introduce functions
matching on a single pattern into the semantic function space.

Lemma 26 (Single pattern abstraction)

6 On the contrary, we can live with junk introductions in our semantic types. For instance, it would
not endanger normalization to throw the empty tuple into each semantic type.
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Let E ∈ Var→ CR and B ∈ CR.

A / p↘D ;E D ;E ` t ∈WDB

λ{p→ t} ∈A →→→B

Proof
Assume s ∈A and show λ{p→ t}s−→ r implies r ∈B. The interesting case is s / p↘
τ;σ and r = tτσ . Since s = pτσ ∈ A , we have σ ∈ E (ρ) for some ρ ∈ D , hence r ∈
(WDB)(ρ) = B by assumption. �

Example: If C ∈ [[∗]] and t ∈ ∀∀∀∀∀∀X ∈[[∗]](X →→→ C ) then λ{X x 7→ t X x} ∈ (∃∃∃∃∃∃X ∈[[∗]]X )→→→ C .

Lemma 27 (Case)
Let p1..n be patterns (not necessarily disjoint), Ek ∈ Var→ CR for k = 1..n and B ∈ CR.

∀k : A / pk↘Dk;Ek and ∀ρ ∈Dk,σ ∈ Ek,τ. tkτσ ∈B

λ{p1→ t1, . . . , pn→ tn} ∈A →→→B

Proof
By Lemma 26, λ{pk → tk}inA →→→ B for all k. Since λ{−−−⇀p→ t}B

−−−−−−⇀
λ{p→ t}, the goal

follows by Lemma 3.
Alternatively, for this special situation there is a direct proof: Assume s ∈ A and r :=

λ{p1→ t1, . . . , pn→ tn}s. Since r is neutral it is sufficient to show r−→ r′ implies r′ ∈B.
We proceed by induction on~t,s ∈ SN. If s matches none of ~p, the only redexes are in~t,s.
The interesting case is s / pk ↘ τ;σ and r′ = tkτσ for some (not necessarily unique) k.
Since s = pkτσ ∈A , we have σ ∈ Ek(ρ) for some ρ ∈ Dk, hence r′ ∈B by assumption.
�

Simple record expressions can be introduced into semantic record types with little tech-
nical machinery.

Lemma 28 (Single destructor pattern)

t ∈ ∀∀∀∀∀∀
β<α↑Rd(ννν

β R)

λ{.d→ t} ∈ ννναR

Proof
It is sufficient to show λ{.d→ t}.d′ ∈ ∀∀∀∀∀∀

β<α↑Rd′(ννν
β R) for all d′ ∈ dom(R), by analyzing

the reducts of this neutral term. If d′ 6= d the redex is stuck, only reductions in t are
possible which are covered by t ∈ SN. Otherwise, λ{.d → t}.d −→ t and we conclude
by the assumption.

Lemma 29 (Records)
Let d1..n be projections (not necessarily distinct ones).

for all k = 1..n : tk ∈ ∀∀∀∀∀∀β<α↑Rdk(ννν
β R)

λ{.d1→ t1, . . . , .dn→ tn} ∈ ννναR

Proof
Assume an arbitrary d ∈ dom(R) and let r := λ{.d1 → t1, . . . , .dn → tn}.d. We show r ∈
∀∀∀∀∀∀

β<α↑Rd(ννν
β R) by analyzing the reducts of this neutral term. If d 6∈ ~d the redex is stuck,

only reductions in~t are possible which are covered by~t ∈ SN. Otherwise, some tk is a
possible reduct of r and we conclude by the hypothesis for tk.
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In the following, we work our way up to the general case of multiple clauses with
multiple patterns per clause.

Let P be a proposition depending on the pattern variables and pattern type variables of
a copattern spine ~q. We define the following shorthand for the replacement of the pattern
variables by expressions obtained from matching~q against an elimination list~e:

P[~e/~q ] :⇐⇒ ∃τ,σ . (~e /~q↘ τ;σ) ∧ Pτσ

Semantic pattern spines. A pattern spine ~q has to be understood by its purpose, to serve
as the lhs of a definition. Semantically, ~q eliminates type A into C at contexts D ;E if
any definition λ{~q→ t} that can be formed with ~q is in A as long as the rhs t is in C

under contexts D ;E . We further generalize this to partially applied definitions λ{~q ′~q→
t}~e where~e matches~q ′. We let

A |~q↘D ;E ;C :⇐⇒ ∀t,~e ∈ SN.∀~q ′.
D ;E ` t[~e/~q ′] ∈ C =⇒ λ{~q ′~q→ t}~e ∈A .

For reasoning about semantic pattern spines we will expand the definition of pattern sub-
stitution so the implication becomes

∀τ,σ . (~e /~q ′↘ τ;σ) ∧ (D ;E ` tτσ ∈ C ) =⇒ λ{~q ′~q→ t}~e ∈A .

Lemma 30 (Semantic clause typing)
The following implication holds:

A |~q↘D ;E ;C D ;E ` t ∈ C ρ ∈D

λ{~q→ t} ∈A

Proof
With σid ∈ E (ρ) we have t = tσid ∈C (ρ)⊆ SN. The rest follows by definition of semantic
pattern spine typing with empty ~e and empty ~q ′. Note that we cannot proceed if D is
inconsistent. �

Lemma 31 (Semantic pattern spine typing)
The following implications hold.

A | · ↘ ·; ·;A
A1 / p↘D1;E1 A2 |~q↘D2;E2;C
A1→→→A2 | p~q↘D1,D2;E1 ∗E2;WD1C

∀∀∀∀∀∀
β<α↑Rd (ννν

β R) |~q↘D ;E ;C

ννναR | .d~q↘D ;E ;C
∀G ∈K . F (G ) |~q↘D(G );E (G );C (G )

∀∀∀∀∀∀K F | X~q↘ ΣX :K D ;E X ;C X

Proof
Let us consider these statements:

A | · ↘ ·; ·;A

Assume t,~e∈ SN and~q,σ ,τ such that~e /~q↘σ ;τ and tστ ∈A and show λ{~q→ t}~e∈A .
This follows by CR3 since λ{~q→ t}~e −→ tστ . Formally, an induction on t,~e ∈ SN is
required (cf. proof of Lemma 21).
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A1 / p↘D1;E1 A2 |~q↘D2;E2;C
A1→→→A2 | p~q↘D1,D2;E1 ∗E2;WD1C

Assume~e ∈ SN with~e / ~q ′↘ τ;σ and D1,D2;E1,E2 ` tτσ ∈WC and show λ{~q ′p~q→
t}~e ∈A1→→→A2. Assume s ∈A1.

Case s / p↘ τ1;σ1. Then σ1 ∈ E1(ρ1) for some ρ1 ∈D1 by the first premise of the “rule”.
Since~es /~q ′p↘ τ,τ1;σ ,σ1 and (WC )(ρ1) =C , we have D2;E2 ` t(τ,τ1)(σ ,σ1)∈C .
Thus, by the second premise, λ{~q ′p~q→ t}~es ∈A2.

Case s does not match p. Then λ{~q ′p~q→ t}~es ∈ /0⊆A2 because it is terminally stuck.

∀∀∀∀∀∀
β<α↑Rd (ννν

β R) |~q↘D ;E ;C

ννναR | .d~q↘D ;E ;C
Here we proceed analogously to Lemma 28, considering all possible projections d′ of
record type ννναR. For d = d′ we use the hypothesis, otherwise, we obtain a terminally
stuck term.

∀G ∈K . F (G ) |~q↘D(G );E (G );C (G )

∀∀∀∀∀∀K F | X~q↘ ΣX :K D ;E X ;C X
Assume ~e / ~q ′ ↘ τ;σ and ΣX :K D ;E X ` tτσ ∈ C X and show r := λ{~q ′X~q→ t}~e ∈
∀∀∀∀∀∀K F . First r ∈ SN since t,~e ∈ SN and r is not a redex. Now assume G and G ∈ K .
Since ~eG / ~q ′X ↘ τ,G/X ;σ and D(G );E (G ) ` t(τ,G/X)σ ∈ C (G ), we can conclude
λ{~q ′X~q→ t}~eG ∈F (G ) by the premise. �

Theorem 32 (Soundness of pattern spine typing)
Let ` ∆0,∆ and ∆0,∆ ` Γ.
If ∆;Γ | A `∆0 ~q⇒C and ρ0 ∈ [[∆0]] then [[A]]

ρ0
|~q↘ [[∆]]

ρ0
; [[Γ]](ρ0, )

; [[C]](ρ0, )
.

Proof
By induction on ∆;Γ | A `∆0 ~q⇒C using Lem. 31. �

Semantic declaration and signature well-formedness. Having understood definitons by
clauses λ~D we can now show that any well-typed term inhabits its corresponding semantic
type. For function symbols f , we simply assume it, by postulating a sematically well-
formed signature Σ. We define |= δ and |= Σ by

|= ( f : A = ~D) :⇐⇒ f ∈ [[A]]
|= Σ :⇐⇒ ∀δ ∈ Σ. |= δ .

Theorem 33 (Soundness of expression typing)
Assume |= Σ. Let ` ∆ and ∆ ` Γ and ∆ `C and D = [[∆]] and E (ρ) = [[Γ]]

ρ
and C (ρ) =

[[C]]
ρ

.

1. If ∆;Γ ` r⇒C in Σ then D ;E ` r ∈ C .
2. If ∆;Γ ` t⇔C in Σ then D ;E ` t ∈ C .
3. If ∆;Γ ` ~D⇔C in Σ then D ;E ` λ~D ∈ C .
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Proof
Simultaneously by induction on the typing derivation.

Case Function symbol.

∆;Γ ` f ⇒ Σ( f )
Follows directly by well-formedness of the signature.

Case Type annotation.

∆ ` A ∆;Γ ` t⇔ A
∆;Γ ` (t : A)⇒ A

Assume ρ ∈D and σ ∈ E (ρ) and show (t : A)σ = tσ ∈ [[A]]
ρ

which follows by induction
hypothesis.

Case Subsumption.

∆;Γ ` r⇒ A ∆ ` A≤C
∆;Γ ` r⇔C

Follows by soundness of subtyping.
Case Definition clause.

∆′;Γ′ | A `∆ ~q⇒C ∆ ` ∃∆′ ∆,∆′;Γ,Γ′ ` t⇔C
∆;Γ ` {~q→ t}⇔ A

Let A (ρ) = [[A]]
ρ

and ρ ∈ D and σ ∈ E (ρ) and τ arbitrary and show λ{~q→ tτσ} ∈
A (ρ). We set D ′ = [[∆′]]

ρ
and E ′(ρ ′) = [[Γ′]](ρ,ρ ′) and C ′(ρ ′) = [[C]](ρ,ρ ′). By induction

hypothesis D ′;E ′ ` tτσ ∈ C ′, and by Theorem 32 A (ρ) | ~q ↘ D ′;E ′;C ′ entailing
λ{~q→ tτσ} ∈A (ρ) by Lemma 30. The lemma can be applied since ∆ ` ∃∆′ guarantess
that for each ρ ∈D there is some ρ ′ ∈D ′(ρ).

What remains to be proven is that well-typed programs yield, after measure erasure,
semantically well-formed signatures. This is shown mutual block by mutual block using a
lexicographic induction on ordinals as given by the termination measure assigned to each
block. A formal description of program typing and its soundness proof is given in the next
section.

5 Program typing and soundness

In Section 4 we have constructed semantic expression and pattern typing from the opera-
tional semantics and used it to verify the typing rules for expressions and patterns given
in Section 3. In this section, we treat recursion, which is actually the reason we have set
up the whole size-based semantic framework. First, we present typing rules to introduce
recursive functions, and then we show their soundness.

5.1 Program typing

Figure 13 presents the operations and judgements needed to type-check programs. The
rules describe a type-checking process that is at the core of MiniAgda (Abel, 2010).

A measured type ′A takes the form ∀Ψ.m⇒A where Ψ is a size context and m a termina-
tion measure that can refer to the size variables bound by Ψ. A measured type is wellformed
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′A<m = A Measure replacement and L′AM = A L′δ M = δ L~′δ M = Σ Lβ M = Σ deletion.

(∀Ψ.m′⇒ A)<m = ∀Ψ.m′<m⇒ A

L∀Ψ.m′⇒ AM = ∀Ψ.A

L f : ′A = ~DM = f : L′AM = ~D

L~′δ M =
−⇀
L′δ M

Lmutualm~′δ M =
−⇀
L′δ M

Lletδ M = δ

`m
′A Measured-type well-formedness and ~′δ ` ′δ declaration typing.

`Ψ Ψ ` A Ψ `m m

`m ∀Ψ.m⇒ A
` Ψ̂
−⇀x f ~D ⇔ ∀Ψ. ~′A

<m
→ A

−−−−−−⇀
f : ′A = D ` f : (∀Ψ.m⇒ A) = Ψ̂~D[~f/−⇀x f ]

` β Block, ` ~β in Σ blocks, and ` P program typing.

`m
′A for all ( f :′A = ~D) ∈ ~′δ ~′δ ` ′δ k for all k

`mutualm~′δ

` A ` ~D⇔ A

` let f :A = ~D

` · in Σ

` β in Σ ` ~β in Σ,Lβ M

` β ,~β in Σ

` ~β in · ` u⇒ A in L~β M

` ~β ;u

Fig. 13. Program and signature typing.

`m
′A if m and A are wellformed in context Ψ and the arity of m is m. In particular,

all recursive functions defined in a mutual block should have the same measure arity m.

Measure replacement ′A<m = A turns a measured type given to a recursive function into
a bounded type used for the recursive call(s). For instance,

(∀i. |i| ⇒ StreamiN)<i = ∀ j. | j|<|i| ⇒ Stream jN,

renaming the bound variable i to j to avoid a name clash with the free variable i. After
the termination of a block of mutually recursive functions has been established, the ter-
mination measures are no longer needed. Since they do not contribute to the typing of
the subsequent declarations, they are discarded L M . Note that size information is often
needed for checking later declaration and therefore kept.

A block β is either a non-recursive declaration let f :A = ~D of a new symbol f of
type A by pattern matching clauses ~D, or a list mutualm~′δ of mutually recursive function
declarations f : ′A = ~D. A program P is a sequence of blocks ~β followed by a single
inferable expression u, for instance, just the name of the main symbol. Program checking

` P is rather straightforward. The blocks β are checked ` ~β in Σ in an initially empty
signature Σ of declared symbols, and each checked block is, after erasure of measures,
added to the signature to check the subsequent blocks. Finally, wellformedness of u is
ensured.

The interesting rule is how to type-check a mutual block ~′δ with measure annotations in
the function types. First, we check well-formedness of the measured function types ′A and
ensure that all measures have the same length m. Then we check each individual declaration
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′δ in the mutual block. The form of such a declaration is

f : (∀Ψ. m⇒ A) = Ψ̂~D[~f/−⇀x f ].

This means that f should consist of a list of clauses Ψ̂~D that all start by abstracting over
the size variables Ψ̂ declared in size context Ψ. These are the size variables that can be
used in measure m. Further, before type-checking is completed, the recursive occurrences
of the mutually defined functions ~f are represented as special variables−⇀x f in the clauses ~D;
after type-checking, they get substituted by the actual function symbols. This trick allows
us to type-check the clauses where we give constrained types x f ′ : ∀Ψ′.m′<m⇒ A′ to the
mutually defined functions f ′ : ∀Ψ′.m′⇒A′. Thus, we ensure that recursive-call sequences
are well-founded w. r. t. the termination measure.

To illustrate this process, we recapitulate the definition of the Fibonacci stream:

fib : ∀i. |i| ⇒ StreamiN
fib i .head j = 0
fib i .tail j .head k = 1
fib i .tail j .tail k = zipWith k N N N (+) (fibk) (fib j .tailk)

Here, Ψ = i≤∞ and m = |i| and A = StreamiN. Further, f = fib and ~D consists of three
clauses of which we spell out the last one, D3, as

.tail j .tail k 7→ zipWith k N N N (+) (xfib k) (xfib j .tailk)

Checking this clause amounts to derive ` Ψ̂xfibD3 ⇔ ∀Ψ. ~′A
<m → A, which means

checking

` i xfib .tail j .tail k 7→ zipWith . . .xfib . . . ⇔ ∀i. (∀ j. | j|<|i| ⇒ Stream jN)→ StreamiN.

After checking the left hand side, this becomes

i≤∞, j<i, k< j; xfib : (∀ j. | j|<|i| ⇒ Stream jN) ` zipWith . . .xfib . . . : StreamkN

and leads to two valid instantiations xfib j and xfib k of the recursive call xfib.

5.2 Soundness of program typing

In the following we prove program typing correct by giving a meaning to measured types
and declarations. The correctness of mutually recursive definitions will follow from a
lexicographic induction on ordinals.

A measured type ′A is not a proper type, it does not have a meaning by itself. Bounded

type interpretation [[′A]]<~α assigns it a meaning relative to a tuple of ordinals which has
the same length as the measure m in ′A.

[[∀Ψ.m⇒ A]]<~α = ∀∀∀∀∀∀ρ∈[[Ψ]] ([[m]]
ρ
<~α)⇒ [[A]]

ρ

[[′A]]<~α denotes a constrained type. It is the semantic counterpart of ′A<m, as the following
lemma proves:

Lemma 34 (Soundness of measure replacement)
Let ′A = (∀Ψ.m⇒ A). If `m

′A and ρ ∈ [[Ψ]] then [[′A<m]]
ρ
= [[′A]]<[[m]]ρ .



ZU064-05-FPR jfp15 1 August 2014 16:26

Wellfounded Recursion with Copatterns and Sized Types 43

Proof
Let~α = [[m]]

ρ
. Recall that ′A<m = ∀Ψ′.m′<m⇒A′ where Ψ′ is a renaming of Ψ and m′,A′

are the corresponding renamings of m,A. We thus have [[′A<m]]
ρ
=(∀∀∀∀∀∀ρ ′∈[[Ψ′]]([[m

′]]
ρ ′ <~α)⇒

[[A′]]
ρ ′) = [[′A]]<~α .

In the following, ~b : Ψ shall mean that~b is a list of size expressions that has the same
length as size context Ψ.

Erasure of the measure in ′A turns a bounded quantification into an unbounded one:

Lemma 35 (Soundness of measure erasure)
Let m be the length of the measure in measure-decorated type ′A. Then [[L′AM]] =

⋂
~α∈Om [[′A]]<~α .

Proof
For “⊆”, assume r ∈ [[L′AM]] = [[∀Ψ.A]] and ~α ∈ Om and ρ ∈ [[Ψ]] and~b : Ψ and show r~b ∈
([[m]]

ρ
<~α)⇒ [[A]]

ρ
. This follows from r~b ∈ [[A]]

ρ
, since by definition A ⊆ (P⇒A ) for

all P,A .
For “⊇”, assume r ∈

⋂
~α ∀∀∀∀∀∀ρ∈[[Ψ]] ([[m]]

ρ
<~α)⇒ [[A]]

ρ
and ρ ∈ [[Ψ]] and~b : Ψ and show

r~b ∈ [[A]]
ρ

. Choosing some ~α > [[m]]
ρ

(this is always possible due to the open nature of O),
we conclude by instantiation of the first assumption. �

In order to justify a block of mutually recursive functions, we perform an lexicographic
induction over a tuple ~α of ordinals. This requires us to interpret the declarations of the
mutual block relative to the upper bound ~α on the measure of the recursive calls. Bounded

semantic declaration typing ~′δ |=~α ′δ is defined by

f1:′A1=~D1, . . . , fn:′An=~Dn |=~α f : (∀Ψ.m⇒ A) = ~D

:⇐⇒ if fi ∈ [[′Ai]]
<~α for i = 1..n

and ρ ∈ [[Ψ]] with [[m]]
ρ
≤ α

and ~b : Ψ

then f~b ∈ [[A]]
ρ
.

Corollary 36 (Soundness of measure erasure in declarations)
|= L′δ M iff |=~α ′δ for all α ∈ Om.

Lemma 37 (Soundness of declaration typing)
Let m be the length of the measure in block ~′δ and declaration ′δ . If ~′δ ` ′δ then ~′δ |=~α ′δ

for all ~α ∈ Om.

Proof
Declaration typing ~′δ ` ′δ is derived by rule:

` Ψ̂
−⇀x f ~D ⇔ ∀Ψ.~′A

<m→ A
−−−−−−⇀
f : ′A = D ` f : (∀Ψ.m⇒ A) = Ψ̂~D[~f/−⇀x f ]

We show
−−−−−−⇀
f : ′A = D |=~α f : (∀Ψ.m⇒ A) = Ψ̂~D[~f/−⇀x f ]. By assumption fi ∈ [[′Ai]]

<~α for all i.
Assume ρ ∈ [[Ψ]] with [[m]]

ρ
≤~α and~b : Ψ, and show f~b∈ [[A]]

ρ
. By soundness of definition

typing (Thm. 33), λ Ψ̂
−⇀x f ~D ∈ ∀∀∀∀∀∀ρ∈[[Ψ]]([[~′A]]

<[[m]]ρ →→→ [[A]]
ρ
). Since fi ∈ [[′Ai]]

<~α ⊆ [[′Ai]]
<[[m]]ρ
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for all i by contravariance, this implies that (λ Ψ̂
−⇀x f ~D)~b~f ∈ [[A]]

ρ
. By the simulation f~bB

(λ Ψ̂
−⇀x f ~D)~b~f we have f~b ∈ [[A]]

ρ
.

Theorem 38 (Soundness of block typing)
Let |= Σ. If ` β in Σ then |= Σ,Lβ M.

Proof
Case let-declaration.

` A ` ~D⇔ A in Σ

` let f :A = ~D in Σ

Let A = [[A]]. We have to show f ∈ A relative to signature Σ, f :A = ~D. Since f Bλ~D
and λ~D ∈A by Theorem 33, we conclude by Lemma 3.

Case mutual block. Let n the number of mutual declarations and ′δ k = ( fk : ′Ak = ~Dk)

and ′Ak = ∀Ψk.mk ⇒ Ak for k = 1..n. Note that L~′δ M = ( fk : ∀Ψk.Ak = ~Dk)k=1..n in this
case.

`m
′Ak for k = 1..n ~′δ ` ′δ k in Σ for k = 1..n

`mutualm~′δ in Σ

By soundness of declaration typing (Lemma 37) we have ~′δ |=~α ′δ k for ~α ∈ Om and
k = 1..n. By lexicographic induction on ~α ∈ Om this entails |=~α ′δ k for k = 1..n, using
the reduction rules for f1..n in the extended signature Σ,L~′δ M. This entails |= L′δ kM by
Corollary 36.
We spell out the induction in more detail. Assume ~α ∈ Om and k ∈ {1..n} and show
|=~α ′δ k. By induction hypothesis |=~β ~′δ for all ~β <~α (lexicographic comparison). Using
~′δ |=~α ′δ k solves the goal, but to apply it we have to show fk ∈ [[′Ak]]

<~α for all k. Assume
ρ ∈ [[Ψk]] with [[mk]]ρ <~α and~b : Ψ and show fk~b ∈ [[Ak]]ρ . We conclude by induction

hypothesis for ~β = [[mk]]ρ . �

Corollary 39 (Soundness of program typing)
1. If |= Σ and ` ~β in Σ then |= Σ,L~β M.
2. If ` ~β ; t then t ∈ SN in signature L~β M.

6 Some Subtleties of Constrained Types

In this sections, we present two short examples that illustrate pitfalls concerning (failure
of) strong normalization under unsatisfiable constraints.

6.1 On the context extension check

Here is an example what can go wrong when we omit the check ∆ ` ∃∆′ from definition
typing.

kUnit : ∀A. A→ 1
kUnit A a = ()

badLam : ∀i. |i| ⇒ 1
badLam i = kUnit (∀ j<i. 1) λ{ j→ badLam j}
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Without a separate context check, badLam type-checks since j < i, thus the recursive call
badLam j is valid. But surely, badLam i is the start of an infinite reduction sequence,
leading to an infinite descending chain of sizes i > j > j1 > j2 > .. . . The context check
i ≤ ∞ ` ∃ j<i however fails, since for i = 0 there is no instance for j. Thus badLam is
rejected, rightfully so.

6.2 On first-class constrained types

Treating conditional types c⇒ A as first-class would jeopardize strong normalization, as
the following example shows:

badCond : ∀i. |i| ⇒ 1
badCond i = kUnit (|i|<|i| ⇒ 1) (badCond i)

The recursive call badCond i makes the promise i < i which can never be fulfilled. Thus
badCond i should not appear on the rhs. However, types that combine a quantifier with
a constraint should be fine, e. g., ∀ j. | j|<|i| ⇒ 1, which is equivalent to ∀ j<i.1. Also,
constraints that can never be fulfilled are fine under a quantifier, e. g., ∀ j. |0|<|0| ⇒ 1.
Constraints need to be checked immediately after the quantifier has been eliminated (Blan-
qui & Riba, 2006).

7 Conclusion

Our work provides a uniform type-based approach to proving termination of (co)inductive
definitions. It is centered around patterns and copatterns which allow us to reason about
both finite and infinite data by well-founded induction. Proving strong normalization for
this language is a significant step towards understanding well-founded corecursion in terms
of the depth of observation we can safely make.

As a next step, we plan to extend our work to full dependently typed systems to allow
coinductive definitions to be defined and reasoned with by observations. This will put
coinduction in these systems on a robust foundation. We have already implemented size-
based type checking for patterns and copatterns in MiniAgda (Abel, 2012) and Agda 2.4
which gives us confidence in the approach.
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Barthe, Gilles, Frade, Maria J., Giménez, Eduardo, Pinto, Luis, & Uustalu, Tarmo. (2004). Type-
based termination of recursive definitions. Mathematical structures in computer science, 14(1),
97–141.
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ZU064-05-FPR jfp15 1 August 2014 16:26

48 A. Abel and B. Pientka

SizeVar 3 i, j size variable
SizeExp 3 a,b ::= i+n | ∞+n size expression (n≥ 0)

SizeExp ⊆ SizeExp+ 3 a+,b+ ::= a | n extended size expression (n≥ 0)
SizeExp+ ⊆ Measure 3 m ::= a+ | a+,m measure expression

Cond 3 c ::= m<m′ condition

Pol 3 π ::= ◦ |+ | − | > variance
SKind 3 ι ::= ∗ | o | ι → ι ′ simple kinds
Kind 3 κ ::= ∗ |<a | πκ → κ ′ kinds with variance information

SizeVar ⊆ TyVar 3 X ,Y,Z, i, j type and size variables
TyVar∪SizeExp ⊆ TyAtom 3 K ::= X | a | 1 | × | → type atoms

TyAtom ⊆ Type 3 F,G,A,B,C ::= K | λX :ι .F | F G type-level lambda-calculus
| ∀κ | ∃κ quantifiers
| µaS | νaR variant and record types

MType 3 ′A, ′B ::= ∀Ψ.m⇒C type with measure
CType 3 ?A, ?B ::= ∀Ψ.c⇒C constrained type
Variant 3 S ::= 〈c1:F1; . . . ;cn:Fn〉 variant row (n≥ 0)
Record 3 R ::= {d1:F1; . . . ;dn:Fn} record row (n≥ 0)

Cons 3 c constructor (variant label)
Proj 3 d destructor (record label)
Var 3 x,y,z term variable

Var ⊆ Pat 3 p ::= x | () | (p1, p2) | c p | X p pattern
Pat∪TyPat ⊆ Copat 3 q ::= p | X | .d copattern

PatSp 3 q ::=~q pattern spine

Fun 3 f ,g,h defined function symbol
Elim 3 e ::= t | G | .d eliminations

Var ⊆ App 3 u ::= x | f | r e applicative expressions
Intro 3 v ::= () | (t1, t2) | ct | Gt introductions (checkable)

App∪ Intro ⊆ Exp 3 r,s, t ::= u | (t : A) inferable expressions
| v | λ~D intros, anonymous object (checkable)

DCl 3 D ::= {~q→ t} definition clause
Def 3 ~D,D ::= {D1; . . . ;Dn} definition

Decl 3 δ ::= f : A = ~D declaration
MDecl 3 ′δ ::= f : ′A = ~D declaration with measure
Block 3 β ::= mutualm ~′δ mutual block (m≥ 1)
Prg 3 P ::= ~β ; t program

Sig 3 Σ ::= ~δ signature
SizeCxt 3 Ψ ::= · |Ψ, i:π(<a) size variable context

SizeCxt ⊆ TyCxt 3 ∆ ::= · | ∆,X :πκ type/size variable context
Cxt 3 Γ ::= · | Γ,x:A | Γ,x:?A term variable context

Fig. A 1. Syntax.
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κ
π→ κ ′ for πκ → κ ′ function kind

κ → κ ′ for κ
◦→ κ ′ default variance

≤a for <(a+1) weak bound
size for ≤∞

λXF for λX :ι .F if ι inferable
A×B for (×)AB product type
A→ B for (→)AB function type
∀X :κ.A for ∀κ (λX :|κ|.A) universal type
∃X :κ.A for ∃κ (λX :|κ|.A) existential type
∀ j<a.A for ∀<a (λ j:o.A) bounded universal
∃ j<a.A for ∃<a (λ j:o.A) bounded existential
Sc for F where (c:F) ∈ S type of constructor
Rd for F where (d:F) ∈ R type of destructor

∆,X :κ for ∆,X :◦κ default variance
∆, i<a for ∆, i:◦(<a) default variance

· → A for A context abstraction
∀∆,X :κ.A for ∀∆.∀X :κ.A ∀∆.A

·̂ for · context domain
∆̂,X :πκ for ∆̂,X ∆̂ (variable list)

(t1, t2, . . . , tn) for (t1,(t2, . . . , tn)) n-ary tuples
λx. t for λ{x→ t} lambda abstraction
λ~q. t for λ{~q→ t} single-clause object
~q{~q ′→ t} for {~q~q ′→ t} copattern prefix for clause
~q~D for {~qD1; . . . ;~qDn} copattern prefix for clauses

Fig. A 2. Notational definitions.
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Ψ ` a Well-formed sizes, `Ψ well-formed size contexts, and Ψ ` i < a size bound lookup.

Ψ ` ∞+n
Ψ ` i < a
Ψ ` i+n ` ·

`Ψ ◦−1Ψ ` a
`Ψ, i:π(<a)

(i:π(<a)) ∈Ψ

Ψ ` i < a
π ≤+

∆ `~a⇔Ψ Well-formed size substitution

Ψ ` ·⇔ ·
Ψ′ `~a⇔Ψ Ψ′ ` a < b[~a/Ψ̂]

Ψ′ `~a a⇔Ψ, i : π(<b)

Ψ ` a < b Strict and Ψ ` a≤ b weak size comparison.

n < m
Ψ ` ∞+n < ∞+m

n < m Ψ ` i < a
Ψ ` i+n < i+m

Ψ ` i < ∞

Ψ ` i+n < ∞+m
Ψ ` i < ∞+m

Ψ ` i+n < ∞+(m+n)

Ψ ` a+n≤ b
Ψ, i:π(<a),Ψ′ ` i+n < b

π ≤+
Ψ ` a < b+1

Ψ ` a≤ b

Ψ `1 a+ Extended size and Ψ `k m Ψ `m measure well-formedness.

Ψ `1 n
Ψ ` a
Ψ `1 a

Ψ `1 a+ Ψ `k m

Ψ `k+1 a+,m
Ψ `k m

Ψ `m
k is length of m

Ψ ` a+ < b+ Extending strict and Ψ ` a+ ≤ b+ weak size comparison.

n1 < n2

Ψ ` n1 < n2

n1 < n2

Ψ ` n1 < i+n2 Ψ ` n1 < ∞+n2

Ψ ` a+ < b++1
Ψ ` a+ ≤ b+

Ψ ` c Ψ `m<m′ Strict and Ψ `m≤m′ weak measure comparison.

Ψ ` a+1 < a+2
Ψ ` a+1 ,m1 < a+2 ,m2

Ψ ` a+1 ≤ a+2 Ψ `m1 <m2

Ψ ` a+1 ,m1 < a+2 ,m2

Ψ ` a+1 ≤ a+2 Ψ `m1 ≤m2

Ψ ` a+1 ,m1 ≤ a+2 ,m2

|κ|= ι Kind erasure defined by |∗|= ∗ and |<b|= o and |πκ → κ ′|= |κ| → |κ ′|.

Ψ ` κ Wellformed kinds.

Ψ ` ∗
Ψ ` a

Ψ `<a
−Ψ ` κ Ψ ` κ ′

Ψ ` πκ → κ ′

Ψ ` κ ≤ κ ′ Subkinding.

Ψ ` ∗ ≤ ∗
Ψ ` a≤ b

Ψ ` (<a)≤ (<b)
π ′ ≤ π −Ψ ` κ ′1 ≤ κ1 Ψ ` κ2 ≤ κ ′2

Ψ ` πκ1→ κ2 ≤ π ′κ ′1→ κ ′2

Ψ ` O≤π O′ for O ::= a |m | κ Parametrized size, measure, and kind comparison.

Ψ ` O≤ O′ Ψ ` O′ ≤ O
Ψ ` O≤◦ O′

Ψ ` O≤ O′

Ψ ` O≤+ O′
Ψ ` O′ ≤ O

Ψ ` O≤− O′ Ψ ` O≤> O′

Fig. A 3. Sizes, measures, and kinds.
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∆ ` A Well-formed types (entry point for kinding) and ∆ ` F ⇒ κ kinding (inference mode).

∆ ` A⇒ ∗
∆ ` A ∆ ` 1⇒ ∗ ∆ ` ×⇒ ∗ +→∗ +→∗ ∆ `→⇒ ∗ −→∗ +→∗

∆ ` a
∆ ` a⇒≤a

(X :πκ) ∈ ∆

∆ ` X ⇒ κ
π ≤+

∆ ` F ⇒ κ
π→ κ ′ π−1∆ ` G⇔ κ

∆ ` F G⇒ κ ′

−∆ ` κ

∆ ` ∀κ ⇒ (κ
◦→∗) +→∗

∆ ` κ

∆ ` ∃κ ⇒ (κ
◦→∗) +→∗

∆ ` a ∆ ` S⇔ ∗ ◦→∗
∆ ` µaS⇒ ∗

−∆ ` a ∆ ` R⇔ ∗ ◦→∗
∆ ` νaR⇒ ∗

∆ ` F ⇔ κ Kinding (checking mode).

∆ ` F ⇒ κ ∆ ` κ ≤ κ ′

∆ ` F ⇔ κ ′
|κ|= ι ∆,X :πκ ` F ⇔ κ ′

∆ ` λX :ι .F ⇔ πκ → κ ′

∆ ` Sc⇔ κ for all c ∈ S
∆ ` S⇔ κ

∆ ` Rd ⇔ κ for all d ∈ R
∆ ` R⇔ κ

∆ ` ?A Well-formed constrained types.

∆ `m ∆ `Ψ ∆,Ψ `m′ ∆,Ψ ` A
∆ ` ∀Ψ. m′<m⇒ A

∆ ` ∆′ Well-formed kinding and ∆ ` Γ typing contexts.

∆ ` ·
◦−1∆ ` κ ∆,X :πκ ` ∆′

∆ ` X :πκ,∆′ ∆ ` ·
∆ ` Γ ∆ ` A

∆ ` Γ,x:A
∆ ` Γ ∆ ` ?A

∆ ` Γ,x:?A

Fig. A 4. Kinding
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a↑ Bound normalization defined by (∞+n)↑ = ∞+1 for n≥ 0 and a↑ = a for a ::= i+n.

∆ ` F ≤π F ′⇒ κ for π 6=> Subtyping and type equality (inference mode).

∆ ` K⇒ κ

∆ ` K ≤π K⇒ κ

∆ ` F ≤π F ′⇒ π1κ1→ κ2 π
−1
1 ∆ ` G≤π1π G′⇔ κ1

∆ ` F G≤π F ′G′⇒ κ2

−∆ ` κ ≤−π κ ′ κ ′′ = max−π (κ,κ ′)

∆ ` ∀κ ≤π ∀κ ′ ⇒ (κ ′′
◦→∗) −→∗

∆ ` κ ≤π κ ′ κ ′′ = maxπ (κ,κ ′)

∆ ` ∃κ ≤π ∃κ ′ ⇒ (κ ′′
◦→∗) +→∗

max+ = max◦ = max
max− = min

∆ ` a↑ ≤π a′↑ ∆ ` S≤π S′⇔ ∗ ◦→∗
∆ ` µaS≤π µa′S′⇒ ∗

−∆ ` a↑ ≤−π a′↑ ∆ ` R≤π R′⇔ ∗ ◦→∗
∆ ` νaR≤π νa′R′⇒ ∗

∆ ` F ≤π F ′⇔ κ Subtyping and type equality (checking mode) and ∆ ` A≤ A′ entry point
for subtyping.

∆ ` F ≤> F ′⇔ κ

∆ ` A≤π A′⇒ ∗
∆ ` A≤π A′⇔ ∗

∆,X :π1κ1 ` (F @ X)≤π (F ′ @ X)⇔ κ2

∆ ` F ≤π F ′⇔ π1κ1→ κ2

∆ ` Sc ≤π S′c⇔ κ for all c ∈ S
∆ ` S≤π S′⇔ κ

∆ ` Rd ≤π R′d ⇔ κ for all d ∈ R′

∆ ` R≤π R′⇔ κ

∆ ` A≤+ A′⇒ ∗
∆ ` A≤ A′

Fig. A 5. Subtyping.
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t / p↘ τ;σ Pattern, e / q↘ τ;σ destructor pattern, and ~e /~q↘ τ;σ pattern spine
matching.

t / x↘ ·; t/x () / ()↘ ·; ·
t1 / p1↘ τ1;σ1 t2 / p2↘ τ2;σ2

(t1, t2) / (p1, p2)↘ τ1,τ2;σ1,σ2

t / p↘ τ;σ

ct / c p↘ τ;σ

t / p↘ τ;σ

Gt / X p↘ G/X ,τ;σ G / X ↘ G/X ; · .d / .d↘ ·; ·

· / · ↘ ·; ·
e / q↘ τ;σ ~e /~q↘ τ ′;σ ′

e~e / q~q↘ τ,τ ′;σ ,σ ′

t 7→ t ′ Weak head reduction.

~e /~q↘ τ;σ

λ{~q→ t}~e~e ′ 7→ tτσ~e ′
λDk~e 7→ t ′ for some k

λ~D~e 7→ t ′
λ~D~e 7→ t ′

f~e 7→ t ′
( f :A = ~D) ∈ Σ

t −→ t ′ Reduction of terms, D−→ D′ clauses, and ~D−→ ~D′ definitions.

t 7→ t ′

t −→ t ′
t1 −→ t ′1

(t1, t2)−→ (t ′1, t2)
t2 −→ t ′2

(t1, t2)−→ (t1, t ′2)
t −→ t ′

ct −→ ct ′
t −→ t ′

Gt −→ Gt ′

r −→ r′

r e−→ r′ e
s−→ s′

r s−→ r s′

~D−→ ~D′

λ~D−→ λ~D′
t −→ t ′

{~q→ t} −→ {~q→ t ′}
D−→ D′

~D1,D,~D2 −→ ~D1,D′,~D2

rB~r Term r is simulated by terms~r.

∀~e, t. r~e 7→ t =⇒ ∃k. rk~e 7→ t
rB~r

Fig. A 6. Operational Semantics.
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