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Abstract. In recent years, logical frameworks which support formalizing language specifications to-
gether with their meta-theory have been pervasively used in small and large-scale applications, from
certifying code [2] to advocating a general infrastructure for formalizing the meta-theory and semantics
of programming languages [5]. In particular, the logical framework LF [9], based on the dependently
typed lambda-calculus, and light-weight variants of it like LFi [17] have played a major role in these
applications. While the acceptance of logical framework technology has grown and they have matured,
one of the most criticized points is concerned with the run-time performance. In this tutorial we give
a brief introduction to logical frameworks, describe its state-of-the art and present recent advances in
addressing some of the existing performance issues.

1 Introduction

Logical frameworks [9] provide an experimental platform to specify, and implement formal systems together
with the proofs about them. One of its applications lies in proof-carrying code, where it is successfully
used to specify and verify formal guarantees about the run-time behavior of programs. More generally,
logical frameworks provide an elegant language for encoding and mechanizing the meta-theory and semantics
of programming languages. This idea has recently found strong advocates among programming languages
researchers who proposed the POPLmark challenge, a set of benchmarks to evaluate and compare tool
support to experiment with programming language design, and mechanize the reasoning about programming
languages [5].

In this tutorial, we consider the Twelf system [22], an implementation of the logical framework LF [9].
Encodings in LF typically rely on ideas of higher-order abstract syntax where object variables and binders are
implemented by variables and binders in the meta-language (i.e. logical framework). One of the key benefits
behind higher-order abstract syntax representations is that one can avoid implementing common and tricky
routines dealing with variables, such as capture-avoiding substitution, renaming and fresh name generation.
Moreover, specifications encoded in Twelf can be executed via a higher-order logic programming language
[19] thereby allowing the user to experiment with the implemented formal specifications. Higher-order logic
programming as found in Twelf extends traditional first-order logic programming in three ways: First, we
have a rich type system based on dependent types, which allows the user to define her own higher-order
data-types and supports higher-order abstract syntax[21]. Second, we not only have a static set of program
clauses, but assumptions may be introduced dynamically during proof search. Third, we have an explicit
notion of proof, i.e. the logic programming interpreter does not only return an answer substitution for the
free variables in the query, but the actual proof as a term in the dependently typed lambda-calculus.

These features make Twelf an ideal framework for specifying properties about programming languages
and mechanizing the meta-theory about them. For this reason several projects on proof-carrying code [6, 7,
4] have selected it as their system of choice. The code size in the foundational proof-carrying code project
[1] at Princeton ranges between 70,000 and 100,000 lines of Twelf code, which includes data-type definitions
and proofs. The higher-order logic program, which is used to execute safety policies, consists of over 5,000
lines of code, and over 600 – 700 clauses. Such large specifications have put to test implementations of



logical frameworks and exposed a wide range of new questions and problems. For example, the size of safety
proofs in logical frameworks may be unreasonably large and validating them may take a long time. In
addition, performance of logical frameworks is inadequate for rapid prototyping and large-scale experiments
for two main reasons: redundant computation hampers the execution and many optimizations known and
well-understood in first-order reasoning are still poorly understood in the higher-order setting.

In this tutorial, we give a brief introduction to logical frameworks and describe different algorithms to
overcome some of the existing performance issues and extend its expressive power. First, we describe the
central ideas behind optimizing unification in logical frameworks. In particular, we will consider eliminating
unnecessary occurs-checks [26] and eliminating redundancy of some dependent type arguments [25]. Second
we discuss higher-order term indexing techniques [23] which are for example used in tabled higher-order
logic programming [24] to sustain performance in large-scale examples. All these algorithms are described
using contextual modal type theory [15] which provides a simple clean foundation to justify and explain
concisely complex higher-order issues. We will also discuss experiments with our algorithms within the
logical framework Twelf which demonstrate that these optimizations taken together constitute a significant
step toward exploring the full potential of logical frameworks in practical applications. Although the main
focus of this work has been the logical framework Twelf, we believe the presented optimizations are applicable
to any higher-order reasoning system such as λProlog [13] or Isabelle[18].

2 Optimizing higher-order pattern unification

Unification lies at the heart of logic programming, theorem proving, and type-reconstruction. Thus, its per-
formance affects in a crucial way the global efficiency of each of these applications. This need for efficient
unification algorithms has led to many investigations in the first-order setting. However, the efficient imple-
mentation of higher-order unification, especially for dependently typed λ-calculus, is still poorly understood
limiting the potential impact of higher-order reasoning systems such as Twelf [22], Isabelle [18], or λProlog
[13].

The most comprehensive study on efficient and robust implementation techniques for higher-order uni-
fication so far has been carried out by Nadathur and colleagues for the simply-typed λ-calculus in the
programming language λProlog [14]. Higher-order unification is implemented via Huet’s algorithm [10] and
special mechanisms are incorporated into the WAM instruction set to support branching and postponing
unification problems. To only perform an occurs-check when necessary, the compiler distinguishes between
the first occurrence and subsequent occurrences of a variable and compiles them into different WAM instruc-
tions. While for the first occurrence of a variable the occurs-check may be omitted, full unification is used
for all subsequent variables. This approach seems to work well in the simply-typed setting, however it is not
clear how to generalize it to dependent types. In addition, it is well known, that Huet’s algorithm is highly
non-deterministic and requires backtracking. An important step toward efficient implementations, has been
the development of higher-order pattern unification [12, 20]. For this fragment, higher-order unification is
decidable and deterministic. As was shown in [11], most programs written in practice fall into this fragment.
Unfortunately, the complexity of this algorithm is still at best linear [27] in the sum of the sizes of the terms
being unified, which is impractical for any useful programming language or practical framework.

In [26], the author and Pfenning present an abstract view of existential variables in the dependently typed
lambda-calculus based on contextual modal type theory. This allows us to distinguish between existential
variables, which are represented as contextual modal variables, and bound variables, which are described by
ordinary variables. This leads to a simple clean framework which allows us to explain a number of features
of the current implementation of higher-order unification in Twelf [22] and provides insight into several
optimizations such as lowering and raising. In particular, it explains one optimization called linearization,
which eliminates many unnecessary occurs-checks. Terms are compiled into linear higher-order patterns and
some additional variable definitions. Linear higher-order patterns restrict higher-order patterns in two ways:
First, all existential variables occur only once. Second, we impose some further syntactic restrictions on
existential variables, i.e. they must be applied to all distinct bound variables. This is in contrast to higher-
order patterns, which only require that existential variables are applied to some bound variables. Linear



higher-order patterns can be solved with an assignment algorithm which resembles first-order unification
(without the occurs check) closely and is constant time. Experimental results show that a large class of
programs falls into the linear higher-order pattern fragment and can be handled with this algorithm. This
leads to significant performance improvement (up to a factor of 5) in many example applications including
those in the area of proof-carrying code.

Most recently, we have explored a different optimization to higher-order unification where we skip some
redundant implicit type arguments during unification [25]. Unlike our prior optimization which is restricted
to proof search, skipping some redundant type arguments during unification is a general optimization and
hence impacts not only the proof search performance, but also any other algorithm relying on unification
such as type-reconstruction, coverage checking, termination checking etc.

Our experimental results show that although the size of redundant arguments is large and there is a
substantial number of them, their impact on run-time performance is surprisingly limited (roughly 20%
improvement). Our experimental results also demonstrate that optimizations such as eliminating the occurs
checks are more important than previously thought. These results provide interesting insights into efficient
implementations of dependently typed systems in general, and can provide guidance for future implementa-
tions.

3 Higher-order term indexing

Efficient data-structures and implementation techniques play a crucial role in utilizing the full potential of
a reasoning environment in real-world applications. In logic programming, for example, we need to select
all clauses from the program which unify with the current goal. In tabled logic programming we memoize
intermediate goals in a table and reuse their results later in order to eliminate redundant and infinite
computation. Here we need to find all entries in the table such that the current goal is a variant or an
instance of the table entry and re-use the associated answers. If there is no such table entry, we need to add
the current goal to the table.

To address this problem, different indexing techniques have been proposed for first-order terms (see
[28] for a survey), however term indexing techniques for higher-order languages are essentially non-existent
thereby limiting the application and the potential impact of higher-order reasoning systems.

We have designed and implemented higher-order term indexing techniques based on substitution trees
[23]. Substitution tree indexing is a highly successful technique in first-order theorem proving, which allows
the sharing of common sub-expressions via substitutions. This work extends first-order substitution tree
indexing [8] to the higher-order setting.

Consider specifying well-know equivalence preserving transformation in first-order logic. In this example,
we must represent formulas such as ∀x.(A(x) ∧ B) or ∀x.(C ∧ D(x)). These formulas can be represented
as terms using higher-order abstract syntax. The first one corresponds to (all λx.(A x and B)) and the
second one to (all λx.(C and D x)). Inspecting the terms closely, we observe that they share a lot of
structure which can be described by the following skeleton: (all λx.(∗1 and ∗2)). We can obtain the first
term by instantiating ∗1 with the term (A x) and ∗2 with the term B. Similarly we can obtain the second
term by by instantiating ∗1 with the term C and ∗2 with the term (D x). Note that ∗1 and ∗2 are instantiated
with open terms which are allowed to refer to the bound variable x. Our goal is to share subexpressions
even in the presence of binders and instantiate holes denoted by ∗ by replacement. How could this be done?
Computing the skeleton of two terms relies on finding the most specific generalization of two terms. However
in the higher-order setting, the most specific generalization of two terms may not exist in general. Moreover,
retrieving all terms, which unify or match, needs to be simple and efficient – but higher-order unification is
undecidable in general. Although, most specific generalizations exist for higher-order patterns and higher-
order pattern unification [12, 20] is decidable, experience with these algorithms demonstrates that they may
not be efficient in practice [26]. Therefore, it is not obvious that they are suitable for higher-order term
indexing techniques.

Instead, we use linear higher-order patterns as a basis for higher-order term indexing [26]. This allows us
to reduce the problem of computing most specific generalizations for higher-order terms to an algorithm



which resembles closely its first-order counterpart [23]. Contextual modal type theory provides a clean
theoretical framework to describe and reason about holes and instantiations with open terms. This technique
has been implemented to speed-up the execution of the tabled higher-order logic programming engine in
Twelf. Experimental results demonstrate that higher-order term indexing leads to substantial performance
improvements (by up to a factor of 10), illustrating the importance of indexing in general [23].

4 Conclusion

We have developed several important techniques using contextual modal type theory as a uniform framework.
This allows a clean concise theoretical description which clarifies many higher-order issues related to bound
variable dependencies. Moreover we have implemented and experimentally evaluated our techniques within
the logical framework Twelf. Our results show that the presented techniques taken together considerably
improve the performance of higher-order reasoning systems. This a first step toward exploring the full
potential of logical frameworks in practice and apply it to new areas such as security and authentication
[3]. However, the presented techniques are just a first step toward narrowing the performance gap between
higher-order and first-order systems. There are many more optimizations which have been already proven
successful in the first-order setting and we may be able to apply to higher-order languages.

Finally, the application of logical frameworks to certified code raises new question, which traditionally
have not played a central role in logic programming. One of the main ideas in certified code is not only to
verify that a program is safe, but also to efficiently transmit and then check the proof. In [16, 29] the authors
explore the novel use of higher-order logic programming for checking the correctness of a certificate. To reduce
the proof size, the certificate encodes the non-deterministic choices of a higher-order logic programming
interpreter as a bit-string. To reconstruct and check the proof, we rerun a deterministic higher-order logic
programming interpreter guided by the certificate.

Last but not least, programming language researchers [5] have recently strongly emphasized the need
for formalizing and experimenting with programming language designs. Higher-order logic programming
environments are ideally suited for this kind of endeavor, since they allow high-level declarative descriptions
and execution of formal specifications. Our community also has already a lot of experience in verifying meta-
properties such as determinism, termination, or totality which provide valuable insights into properties of
these formal specifications. Hence, we see exciting opportunities for encoding and experimenting with the
meta-theory and semantics of programming languages within higher-order logic programming environments
and applying logic programming technology to this domain.
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