
Overcoming Performance Barriers:
efficient proof search in logical frameworks

Brigitte Pientka

School of Computer Science

McGill University

Montreal, Canada

Overcoming Performance Barriers: – p.1/38

Outline

• Logical frameworks and applications
• Efficient proof search in logical frameworks

- Optimizing higher-order unification
- Higher-order term indexing

• Conclusion and future work

Overcoming Performance Barriers: – p.2/38

Logical frameworks

• Meta-languages for deductive systems
• High-level specification (e.g. logics, type systems)
• Direct implementations (e.g. proof search, type checking)
• Meta-reasoning (e.g. cut elim., type preservation)

• Examples:
λProlog[Nadathur’99], Twelf[Pf’99], Isabelle[Paulson86]

• Other higher-order systems: Coq, PVS, Nuprl, HOL, ...

Overcoming Performance Barriers: – p.3/38

Higher-order logic programming

• Higher-order data-types: dependently typed λ-calculus

Overcoming Performance Barriers: – p.4/38

Higher-order logic programming

• Higher-order data-types: dependently typed λ-calculus

• Dynamic program clauses: Clauses may contain
nested universal quantifiers and implications

Overcoming Performance Barriers: – p.4/38

Higher-order logic programming

• Higher-order data-types: dependently typed λ-calculus

• Dynamic program clauses: Clauses may contain
nested universal quantifiers and implications

• Result of query execution: Evidence for a proof
together with answer substitution

Overcoming Performance Barriers: – p.4/38

Higher-order logic programming

• Higher-order data-types: dependently typed λ-calculus

• Dynamic program clauses: Clauses may contain
nested universal quantifiers and implications

• Result of query execution: Evidence for a proof
together with answer substitution

• Theoretical foundation based on uniform proofs
[Miller et. al. 91], [Pf’91]

Overcoming Performance Barriers: – p.4/38

Higher-order logic programming

• Higher-order data-types: dependently typed λ-calculus

• Dynamic program clauses: Clauses may contain
nested universal quantifiers and implications

• Result of query execution: Evidence for a proof
together with answer substitution

• Theoretical foundation based on uniform proofs
[Miller et. al. 91], [Pf’91]

• Extensions to tabled higher-order logic
programming [Pie’03, Pie’05]

Overcoming Performance Barriers: – p.4/38

Example

• Object logic: First-order logic formula

A ::= P | A ⊃ A | A ∨ A | ¬A | ∀x.A | ∃x.A | . . .

• Specifying equivalence preserving
transformations

• Sample rules:

A ⊃ B ↔ ¬A ∨ B

∀x.(A(x) ∨ B) ↔ (∀x.A(x)) ∨ B

∀x.(A(x) ⊃ B) ↔ (∃x.A(x)) ⊃ B

if x is not free in B
Overcoming Performance Barriers: – p.5/38

Specification in LF

• Based on higher order abstract syntax:
i : type. o : type
neg : o → o
imp : o → o → o. all : (i → o) → o.
or : o → o → o. exists : (i → o) → o.

• Transforming propositions:
A ⊃ B ↔ ¬A ∨ B

eq imp: eq (A imp B) ((not A) or B)

• A: i → o and B: o are meta-variables
also sometimes called existential variables or logic variables

Overcoming Performance Barriers: – p.6/38

Specification in LF

• Based on higher order abstract syntax:
i : type. o : type
neg : o → o
imp : o → o → o. all : (i → o) → o.
or : o → o → o. exists : (i → o) → o.

• Transforming propositions:
∀x.(A(x) ⊃ B) ↔ (∃x.A(x)) ⊃ B

eq all: eq (all (λx. (A x) imp B)) ((exists (λx. A x)) imp B).

• A: i → o and B: o are meta-variables
also sometimes called existential variables or logic variables

Overcoming Performance Barriers: – p.6/38

Specification in LF

• Based on higher order abstract syntax:
i : type. o : type
neg : o → o
imp : o → o → o. all : (i → o) → o.
or : o → o → o. exists : (i → o) → o.

• Transforming propositions:
∀x.(A(x) ⊃ B) ↔ (∃x.A(x)) ⊃ B

eq all: eq (all (λx. (A x) imp B)) ((exists (λx. A x)) imp B).

• A: i → o and B: o are meta-variables
also sometimes called existential variables or logic variables

Overcoming Performance Barriers: – p.6/38

Application: certified code

proof
Certificate

Program

Generate Certificate Check Certificate

Code ConsumerCode Producer

Safety policy Safety policy

• Foundational proof-carrying code : [Appel, Felty 00]

• Temporal-logic proof carrying code [Bernard,Lee02]

• Foundational typed assembly language : [Crary 03]

• Distributed access control: [Bauer,Reiter’05]

Overcoming Performance Barriers: – p.7/38

Application: certified code

proof
Certificate

Program

Generate Certificate Check Certificate

Code ConsumerCode Producer

Safety policy Safety policy

Large-scale applications
• Typical code size: 70,000 – 100,000 lines

includes data-type definitions and proofs

• Higher-order logic program: 5,000 lines
• Over 600 – 700 clauses

Overcoming Performance Barriers: – p.7/38

Application: certified code

proof
Certificate

Program

Generate Certificate Check Certificate

Code ConsumerCode Producer

Safety policy Safety policy

Special-purpose logical frameworks :
• Efficient representation and validation of proofs

[Necula,Lee98] [Reed’04]

• Proof checking via “higher-order” logic
programming [Necula’01], [Wu’03]

Overcoming Performance Barriers: – p.7/38

Application: Verified Software

• Neglected aspect: language we write programs in
• We need tools to

• Model and specify programming languages
• Experiment easily with language extensions
• Mechanically check their meta-theoretic properties

• POPLmark Challenge [Pierce et al 05]
“Mechanically check every POPL paper by 2010!”

Logical framework allows us to represent,
execute, and reason about formal systems.

Overcoming Performance Barriers: – p.8/38

State of the art

• Logical frameworks are widely used.
• Many challenges remain:

• Higher-order systems are not efficient enough in practice.
• Complexity of higher-order issues poorly understood.
• Higher-order systems lack automatic support.
• . . .

Overcoming Performance Barriers: – p.9/38

State of the art

• Logical frameworks are widely used.
• Many challenges remain:

• Higher-order systems are not efficient enough in practice.
• Complexity of higher-order issues poorly understood.
• Higher-order systems lack automatic support.
• . . .

Overcoming Performance Barriers: – p.9/38

This talk

Eliminating some performance problems
• Optimizing higher-order unification
• Higher-order term indexing

This is a significant step towards
efficient proof search in logical frameworks

Overcoming Performance Barriers: – p.10/38

Outline

• Logical frameworks and applications
• Efficient proof search in logical frameworks

- Optimizing higher-order unification
- Higher-order term indexing

• Conclusion and future work

Overcoming Performance Barriers: – p.11/38

Outline

• Logical frameworks and applications
• Efficient proof search in logical frameworks

- Optimizing higher-order unification
- Higher-order term indexing

• Conclusion and future work

Overcoming Performance Barriers: – p.11/38

Problem 1

“For any programming language to be practical,
basic operations should take constant time.
Unification ... may be thought of as the basic
operation...” [Sicstus Prolog Manual]

Overcoming Performance Barriers: – p.12/38

Problem 1

“For any programming language to be practical,
basic operations should take constant time.
Unification ... may be thought of as the basic
operation...” [Sicstus Prolog Manual]

Higher-order unification is undecidable!

Overcoming Performance Barriers: – p.12/38

Problem 1

“For any programming language to be practical,
basic operations should take constant time.
Unification ... may be thought of as the basic
operation...” [Sicstus Prolog Manual]

Higher-order unification is undecidable!

For decidable fragment [Miller91, Pfenning91]:
at best linear [Qian93]!

Overcoming Performance Barriers: – p.12/38

Basic operation: unification

• Example 1:
eq (A imp B) ((not A) or B)

eq (p imp q) ((not C) or q)

Success
A = p, B = q, C=A

• Example 2:
eq (A imp B) ((not A) or B)

eq C ((not C) or q)

Failure(occurs-check!)
C = (A imp B),
A = C, B = q

• Occurs check is expensive!
• No occurs check is necessary

if every meta-variable occurs only once!

Overcoming Performance Barriers: – p.13/38

Basic operation: unification

• Example 1:
eq (A imp B) ((not A) or B)

eq (p imp q) ((not C) or q)

Success
A = p, B = q, C=A

• Example 2:
eq (A imp B) ((not A) or B)

eq C ((not C) or q)

Failure(occurs-check!)
C = (A imp B),
A = C, B = q

• Occurs check is expensive!
• No occurs check is necessary

if every meta-variable occurs only once!

Overcoming Performance Barriers: – p.13/38

Basic operation: unification

• Example 1:
eq (A imp B) ((not A) or B)

eq (p imp q) ((not C) or q)

Success
A = p, B = q, C=A

• Example 2:
eq (A imp B) ((not A) or B)

eq C ((not C) or q)

Failure(occurs-check!)
C = (A imp B),
A = C, B = q

• Occurs check is expensive!

• No occurs check is necessary
if every meta-variable occurs only once!

Overcoming Performance Barriers: – p.13/38

Basic operation: unification

• Example 1:
eq (A imp B) ((not A) or B)

eq (p imp q) ((not C) or q)

Success
A = p, B = q, C=A

• Example 2:
eq (A imp B) ((not A) or B)

eq C ((not C) or q)

Failure(occurs-check!)
C = (A imp B),
A = C, B = q

• Occurs check is expensive!
• No occurs check is necessary

if every meta-variable occurs only once!

Overcoming Performance Barriers: – p.13/38

Higher-order pattern unification

• Meta-variables must be applied to
some distinct bound variables
(all λ x. ((A x) imp B)) – ok ((C T) imp B) – not ok!

• Closed instantiation for meta-variables!
eq (all λ y. ((p y) imp (p y)) imp q) C

·

=

eq (all λ x. (A x) imp B) ((exists λx. A x) imp B)

• Solution: A = λ z. (p z) imp (p z)

B = q

C = ((exists (λx. A x)) imp B)

= (imp (exists (λx. imp (p x) (p x))) q)

Overcoming Performance Barriers: – p.14/38

Higher-order pattern unification

• Meta-variables must be applied to
some distinct bound variables
(all λ x. ((A x) imp B)) – ok ((C T) imp B) – not ok!

• Closed instantiation for meta-variables!
eq (all λ y. ((p y) imp (p y)) imp q) C

·

=

eq (all λ x. (A x) imp B) ((exists λx. A x) imp B)

• Solution: A = λ z. (p z) imp (p z)

B = q

C = ((exists (λx. A x)) imp B)

= (imp (exists (λx. imp (p x) (p x))) q)

Overcoming Performance Barriers: – p.14/38

Higher-order pattern unification

• Meta-variables must be applied to
some distinct bound variables
(all λ x. ((A x) imp B)) – ok ((C T) imp B) – not ok!

• Closed instantiation for meta-variables!
eq (all λ y. ((p y) imp (p y)) imp q) C

·

=

eq (all λ x. (A x) imp B) ((exists λx. A x) imp B)

• Solution: A = λ z. (p z) imp (p z)

B = q

C = ((exists (λx. A x)) imp B)

= (imp (exists (λx. imp (p x) (p x))) q)
Overcoming Performance Barriers: – p.14/38

Higher-order pattern unification

• Meta-variables must be applied to
some distinct bound variables
(all λ x. ((A x) imp B)) – ok ((C T) imp B) – not ok!

• Closed instantiation for meta-variables?
eq (all λ y. ((p y) imp (p y)) imp (p y)) C

·

=

eq (all λ x. (A x) imp B) ((exists λx. A x) imp B)

• Failure A = λ z. (p z) imp (p z)

B = ? There is no closed instantiation for B!

C = . . .

Overcoming Performance Barriers: – p.15/38

Higher-order pattern unification

• Meta-variables must be applied to
some distinct bound variables
(all λ x. ((A x) imp B)) – ok ((C T) imp B) – not ok!

• Closed instantiation for meta-variables?
eq (all λ y. ((p y) imp (p y)) imp (p y)) C

·

=

eq (all λ x. (A x) imp B) ((exists λx. A x) imp B)

• Failure A = λ z. (p z) imp (p z)

B = ? There is no closed instantiation for B!

C = . . .

Overcoming Performance Barriers: – p.15/38

Subtle issues due to bound variables

• Which bound variables are allowed to occur in a
term that instantiates a meta-variable?
– A depends on bound variable x

– B does not depend on bound variable x

– Computing dependencies may be expensive!

• No check is necessary, if meta-variable depends
on all distinct bound variables.

Overcoming Performance Barriers: – p.16/38

Subtle issues due to bound variables

• Which bound variables are allowed to occur in a
term that instantiates a meta-variable?
– A depends on bound variable x

– B does not depend on bound variable x

– Computing dependencies may be expensive!

• No check is necessary, if meta-variable depends
on all distinct bound variables.

Overcoming Performance Barriers: – p.16/38

Linearization

• Linear terms:
- every meta-variable occurs only once

- every meta-variable depends on
all distinct bound variables

• Every clause head is transformed
into a linear term and variable definitions

Overcoming Performance Barriers: – p.17/38

Linearization

• Linear terms:
- every meta-variable occurs only once

- every meta-variable depends on
all distinct bound variables

• Every clause head is transformed
into a linear term and variable definitions

Overcoming Performance Barriers: – p.17/38

Linearization

• Linear terms:
- every meta-variable occurs only once

- every meta-variable depends on
all distinct bound variables

• Every clause head is transformed
into a linear term and variable definitions

• Example:
eq (A imp B) ((not A) or B)

⇐⇒

eq (A imp B) ((not A’) or B’) and A’ ·

= A and B’ ·

= B

Overcoming Performance Barriers: – p.17/38

Linearization

• Linear terms:
- every meta-variable occurs only once

- every meta-variable depends on
all distinct bound variables

• Every clause head is transformed
into a linear term and variable definitions

• Example:
eq (all λ x. (A x) imp B) ((exists λ x . (A x)) imp B)

⇐⇒

eq (all λ x. (A x) imp (B’ x)) ((exists λ x. A’ x) imp B)

A’ ·

= A and ∀ x. (B’ x) ·

= B
Overcoming Performance Barriers: – p.17/38

Why does linearization work?

• Linearization is performed statically.

• Many problems are already linear.
constant time assignment algorithm

• Unification often fails.
Failure can be very expensive in higher-order unification,
even in the decidable fragment.

Overcoming Performance Barriers: – p.18/38

Why does linearization work?

• Linearization is performed statically.

• Many problems are already linear.
constant time assignment algorithm

• Unification often fails.
Failure can be very expensive in higher-order unification,
even in the decidable fragment.

Overcoming Performance Barriers: – p.18/38

Why does linearization work?

• Linearization is performed statically.

• Many problems are already linear.
constant time assignment algorithm

• Unification often fails.
Failure can be very expensive in higher-order unification,
even in the decidable fragment.

Overcoming Performance Barriers: – p.18/38

Foundational PCC

example standard opt reduction
mul2 9.52 sec 5.51 sec 42.86%
div2 153.61 sec 121.96 sec 20.63%
pack 1075.61 sec 197.07 sec 81.65%
divx 1133.15 sec 333.69 sec 70.50%
listsum ∞ 1073.33 sec 100%

∞ = process does not terminate in 6h

Intel Pentium 1.6GHz, RAM 256MB,
SML New Jersey 110, Twelf 1.4.

Overcoming Performance Barriers: – p.19/38

Evaluation

• Performance improvement is substantial
20% – 82% runtime improvement; in some case 100%!

– 63% of the time there are no variable defs.

– 80% of the calls to unification failed

• Benchmarks (simply typed):
– Meta-interpreter for linear ordered logic: 60%

– Classical natural deduction (NK): 42%

• Benchmarks (dependently typed):
– Compiler translations : 99.95%, in some cases 100%

– Translating proofs into cut-free proofs: 43% - 52%

Overcoming Performance Barriers: – p.20/38

Contribution and related work

• Foundation for meta-variables based on modal
logic (joint work with F. Pfenning)(CADE’03)

– Extends earlier work by [Dowek et al. 95]

– Contextual modal type theory and applications
(joint work with A. Nanevski, F. Pfenning, 2005)

• Related work: λProlog (Teyjus-compiler) [Nadathur,
Mitchell 99]

– General higher-order unification
(highly non-deterministic)

– WAM with special higher-order support

Overcoming Performance Barriers: – p.21/38

Optimizing unification further

• Eliminating redundant type arguments [IJCAR’06]

– Dependently typed terms have implicit type arguments

– Some implicit type arguments in a term M are uniquely
determined by the overall type of M .

– These implicit arguments can be skipped during
unification!

• Early empirical study [Michaylov,Pfenning’92]

Overcoming Performance Barriers: – p.22/38

Experiments and evaluation

• Compiler translation:
• Substantial number of redundant type arguments

(up to 1496)
• Substantial size of skipped arguments (av 30, max 185)
• Run-time improvement: 11.19% - 21.87%

• Proof translations:
• Substantial number of redundant type arguments

(up to 264387)
• Size of skipped arguments (av 7)
• Run-time improvement: 3% - 10%

Overcoming Performance Barriers: – p.23/38

Contribution and related work

• Performance improvement up to 20%
• Numerous redundant type arguments
• Theoretical justification [IJCAR06]

• Related Work: λ-Prolog : redundant type
arguments due to polymorphism [Nadathur, Qi’05]

– incorporated into the WAM

– no experimental comparison

Overcoming Performance Barriers: – p.24/38

Outline

• Logical frameworks and applications
• Efficient proof search in logical frameworks

- Optimizing higher-order unification
- Higher-order term indexing

• Conclusion and future work

Overcoming Performance Barriers: – p.25/38

Outline

• Logical frameworks and applications
• Efficient proof search in logical frameworks

- Optimizing higher-order unification
- Higher-order term indexing

• Conclusion and future work

Overcoming Performance Barriers: – p.25/38

Problem 2

“...an automated reasoning program’s rate of drawing
conclusions falls off sharply both with time and with an
increase in the size of the database of retained
information.” [Wos92]

Overcoming Performance Barriers: – p.26/38

Problem 2

“...an automated reasoning program’s rate of drawing
conclusions falls off sharply both with time and with an
increase in the size of the database of retained
information.” [Wos92]

\ space

500

1000

time

conclusions (= proof steps)
number of

Overcoming Performance Barriers: – p.26/38

Problem 2

“...an automated reasoning program’s rate of drawing
conclusions falls off sharply both with time and with an
increase in the size of the database of retained
information.” [Wos92]

ideal performance

\ space

500

1000

time

conclusions (= proof steps)
number of

Overcoming Performance Barriers: – p.26/38

Indexing
Set of terms

eq (all λ x. ((A x) or B)) ((all λ x. A x) or B)
eq (A imp B) ((not A) or B)
eq (not (A and B)) ((not A) or (not B))

How can we efficiently store and retrieve data?

• Share term structure
• Share common operations
• Even below a binder!

eq (all λ x. (A x) imp B) ((exists λ x. A x) imp B)

eq (all λ x. (A x) or B) ((all λ x. A x) or B)

Overcoming Performance Barriers: – p.27/38

Indexing
Set of terms

eq (all λ x. ((A x) or B)) ((all λ x. A x) or B)
eq (A imp B) ((not A) or B)
eq (not (A and B)) ((not A) or (not B))

How can we efficiently store and retrieve data?

• Share term structure
• Share common operations

• Even below a binder!
eq (all λ x. (A x) imp B) ((exists λ x. A x) imp B)

eq (all λ x. (A x) or B) ((all λ x. A x) or B)

Overcoming Performance Barriers: – p.27/38

Indexing
Set of terms

eq (all λ x. ((A x) or B)) ((all λ x. A x) or B)
eq (A imp B) ((not A) or B)
eq (not (A and B)) ((not A) or (not B))

How can we efficiently store and retrieve data?

• Share term structure
• Share common operations
• Even below a binder!

eq (all λ x. (A x) imp B) ((exists λ x. A x) imp B)

eq (all λ x. (A x) or B) ((all λ x. A x) or B)

• Even below a binder!
eq (all λ x. (A x) imp B) ((exists λ x. A x) imp B)

eq (all λ x. (A x) or B) ((all λ x. A x) or B)

Overcoming Performance Barriers: – p.27/38

Indexing
Set of terms

eq (all λ x. ((A x) or B)) ((all λ x. A x) or B)
eq (A imp B) ((not A) or B)
eq (not (A and B)) ((not A) or (not B))

How can we efficiently store and retrieve data?

• Share term structure
• Share common operations
• Even below a binder!

eq (all λ x. (A x) imp B) ((exists λ x. A x) imp B)

eq (all λ x. (A x) or B) ((all λ x. A x) or B)

Overcoming Performance Barriers: – p.27/38

Step 1: Linearization
Set of linear terms Constraints

(1) eq (all λ x. ((A x) or (B’ x))) ((all λ x. A’ x) or B) A = A’, ∀ x. B’ x ·

= B
(2) eq (A imp B) ((not A’) or B’) A’ ·

= A, B ·

= B’
(3) eq (not (A and B)) ((not A’) or (not B’)) A’ ·

= A, B ·

= B’

• Linearize every terms
Factor out “hard” sub-expressions

• Uniform naming for variables

Overcoming Performance Barriers: – p.28/38

Step 2: Common sub-expression
Set of linear terms Constraints

(1) eq (all λ x. ((A x) or (B’ x))) ((all λ x. A’ x) or B) ∀ x. B’ x ·

= B, A = A’
(2) eq (A imp B) ((not A’) or B’) A’ ·

= A, B ·

= B’
(3) eq (not (A and B)) ((not A’) or (not B’)) A’ ·

= A, B ·

= B’

• Factor out common sub-expressions!
eq (A imp B) ((not A’) or B’)

eq (not (A and B)) ((not A’) or (not B’))
eq i1 ((not A’) or i2)

Overcoming Performance Barriers: – p.29/38

Step 2: Common sub-expression
Set of linear terms Constraints

(1) eq (all λ x. ((A x) or (B’ x))) ((all λ x. A’ x) or B) ∀ x. B’ x ·

= B, A = A’
(2) eq (A imp B) ((not A’) or B’) A’ ·

= A, B ·

= B’
(3) eq (not (A and B)) ((not A’) or (not B’)) A’ ·

= A, B ·

= B’

• Factor out common sub-expressions!
eq (A imp B) ((not A’) or B’)

eq (not (A and B)) ((not A’) or (not B’))
eq i1 ((not A’) or i2)

• In general the most specific common
generalization does not exist!
Key: linearization

Overcoming Performance Barriers: – p.29/38

Higher-order substitution trees
Set of linear terms

(1) eq (all λ x. ((A x) or (B’ x))) ((all λ x. A’ x) or B)
(2) eq (A imp B) ((not A’) or B’)
(3) eq (not (A and B)) ((not A’) or (not B’))

Compose
substitutions!

eq i1 (i2 or i3) /i0

(not A’) / i2

B’ / i3,

A imp B / i1

(2)

(not B’) / i3,

not (A and B) / i1

(3)

all λ x. (A x) or (B’ x) / i1
all λ x. (A’ x) / i2

B / i3

(1)

Overcoming Performance Barriers: – p.30/38

Parser for formulas

iterative memoization

#tok deepening noindex index reduction

20 0.98 sec 0.13 sec 0.07 sec 46%

58 ∞ 2.61 sec 1.25 sec 52%

117 ∞ 10.44 sec 5.12 sec 51%

235 ∞ 75.57 sec 26.08 sec 66%

∞ = process does not terminate in 6h

Intel Pentium 1.6GHz, RAM 256MB,
SML New Jersey 110, Twelf 1.4.

Overcoming Performance Barriers: – p.31/38

Refinement type-checking

example noindex index reduction orig

First sub 3.19 sec 0.46 sec 86%

answer mult 7.78 sec 0.89 sec 89%

square 9.02 sec 0.98 sec 89%

Not mult 2.38 sec 0.38 sec 84%

provable plus 6.48 sec 0.85 sec 87%

square 9.29 sec 1.09 sec 88%

All sub 6.88 sec 0.71 sec 90%

answers mult 9.06 sec 0.98 sec 89%

square 10.30 sec 1.08 sec 90%

Overcoming Performance Barriers: – p.32/38

Refinement type-checking

example noindex index time red. orig

First sub 3.19 sec 0.46 sec 86% 0.15 sec

answer mult 7.78 sec 0.89 sec 89% 0.15 sec

square 9.02 sec 0.98 sec 89% 0.16 sec

Not mult 2.38 sec 0.38 sec 84% 13.50 sec

provable plus 6.48 sec 0.85 sec 87% ∞

square 9.29 sec 1.09 sec 88% ∞

All sub 6.88 sec 0.71 sec 90% 5.59 sec

answers mult 9.06 sec 0.98 sec 89% ∞

square 10.30 sec 1.08 sec 90% ∞

Overcoming Performance Barriers: – p.33/38

Contribution and related work

• Contribution:

– Higher-order term indexing (key: linearization, η-longform)

– Indexing substantially improves performance
runtime reduced between 46% and 90% (ICLP’03)

– Application: Small proof witness [ICLP’05]

– Application: Propositional theorem proving [CADE’05]

Overcoming Performance Barriers: – p.34/38

Contribution and related work

• Contribution:

– Higher-order term indexing (key: linearization, η-longform)

– Indexing substantially improves performance
runtime reduced between 46% and 90% (ICLP’03)

– Application: Small proof witness [ICLP’05]

– Application: Propositional theorem proving [CADE’05]

• Related Work:

– Substitution trees for first-order terms [Graf95]

– (Higher-order) automata-driven indexing [Necula,Rahul01]
imperfect filter, full higher-order unification to check
candidates

Overcoming Performance Barriers: – p.34/38

Outline

• Logical frameworks and applications
• Efficient proof search in logical frameworks

- Optimizing higher-order unification
- Higher-order term indexing

• Conclusion and future work

Overcoming Performance Barriers: – p.35/38

Conclusion

• This is opens many new opportunities
– to experiment and develop large-scale systems.

for example: proof-carrying code, POPLmark
– to explore the full potential of logical frameworks

new applications: authentication, security

• Efficient proof search techniques are critical
– to sustain performance.
– to reduce response time to the developer.

Overcoming Performance Barriers: – p.36/38

Future work

Narrowing the performance gap further
• Mode, determinism, termination analysis

[Schrijvers et al. 02]

• Exploiting properties of local theories
(joint work with Xi Li(McGill))

Tabled higher-order logic programming [Pie’03, Pie’05]

• Strongly connected components (SCC) [Swift, Sagonas98]

• Model-checking over high-level specifications
[Ramakrishnan’97]

Overcoming Performance Barriers: – p.37/38

Finally ...

if you want to find out more:

http://www.cs.mcgill.ca/˜bpientka

email: bpientka@cs.mcgill.ca

Overcoming Performance Barriers: – p.38/38

	Outline
	Logical frameworks
	Higher-order logic programming
	Example
	Specification in LF
	Application: certified code
	Application: Verified Software
	State of the art
	This talk
	Outline
	Problem 1
	Basic operation: unification
	Higher-order pattern unification
	Higher-order pattern unification
	Subtle issues due to bound variables
	Linearization
	Why does linearization work?
	Foundational PCC
	Evaluation
	Contribution and related work
	Optimizing unification further
	Experiments and evaluation
	Contribution and related work
	Outline
	Problem 2
	Indexing
	Step 1: Linearization
	Step 2: Common sub-expression
	Higher-order substitution trees
	Parser for formulas
	Refinement type-checking
	Refinement type-checking
	Contribution and related work
	Outline
	Conclusion
	Future work
	Finally ...

