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Logical frameworks

• Meta-languages for deductive systems
• High-level specification (e.g. logics, type systems)
• Direct implementations (e.g. proof search, type checking)
• Meta-reasoning (e.g. cut elim., type preservation)

• Examples:
λProlog[Nadathur’99], Twelf[Pf’99], Isabelle[Paulson86]

• Other higher-order systems: Coq, PVS, Nuprl, HOL, ...
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Higher-order logic programming

• Higher-order data-types: dependently typed λ-calculus
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Higher-order logic programming

• Higher-order data-types: dependently typed λ-calculus

• Dynamic program clauses: Clauses may contain
nested universal quantifiers and implications

• Result of query execution: Evidence for a proof
together with answer substitution

• Theoretical foundation based on uniform proofs
[Miller et. al. 91], [Pf’91]

• Extensions to tabled higher-order logic
programming [Pie’03, Pie’05]

Overcoming Performance Barriers: – p.4/38



Example

• Object logic: First-order logic formula

A ::= P | A ⊃ A | A ∨ A | ¬A | ∀x.A | ∃x.A | . . .

• Specifying equivalence preserving
transformations

• Sample rules:

A ⊃ B ↔ ¬A ∨ B

∀x.(A(x) ∨ B) ↔ (∀x.A(x)) ∨ B

∀x.(A(x) ⊃ B) ↔ (∃x.A(x)) ⊃ B

if x is not free in B
Overcoming Performance Barriers: – p.5/38



Specification in LF

• Based on higher order abstract syntax:
i : type. o : type
neg : o → o
imp : o → o → o. all : (i → o) → o.
or : o → o → o. exists : (i → o) → o.

• Transforming propositions:
A ⊃ B ↔ ¬A ∨ B

eq imp: eq (A imp B) ((not A) or B)

• A: i → o and B: o are meta-variables
also sometimes called existential variables or logic variables
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Application: certified code

proof
Certificate

Program

Generate Certificate Check Certificate

Code ConsumerCode Producer 

Safety policy Safety policy 

• Foundational proof-carrying code : [Appel, Felty 00]

• Temporal-logic proof carrying code [Bernard,Lee02]

• Foundational typed assembly language : [Crary 03]

• Distributed access control: [Bauer,Reiter’05]
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Application: certified code

proof
Certificate

Program

Generate Certificate Check Certificate

Code ConsumerCode Producer 

Safety policy Safety policy 

Large-scale applications
• Typical code size: 70,000 – 100,000 lines

includes data-type definitions and proofs

• Higher-order logic program: 5,000 lines
• Over 600 – 700 clauses

Overcoming Performance Barriers: – p.7/38



Application: certified code

proof
Certificate

Program

Generate Certificate Check Certificate

Code ConsumerCode Producer 

Safety policy Safety policy 

Special-purpose logical frameworks :
• Efficient representation and validation of proofs

[Necula,Lee98] [Reed’04]

• Proof checking via “higher-order” logic
programming [Necula’01], [Wu’03]
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Application: Verified Software

• Neglected aspect: language we write programs in
• We need tools to

• Model and specify programming languages
• Experiment easily with language extensions
• Mechanically check their meta-theoretic properties

• POPLmark Challenge [Pierce et al 05]
“Mechanically check every POPL paper by 2010!”

Logical framework allows us to represent,
execute, and reason about formal systems.
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State of the art

• Logical frameworks are widely used.
• Many challenges remain:

• Higher-order systems are not efficient enough in practice.
• Complexity of higher-order issues poorly understood.
• Higher-order systems lack automatic support.
• . . .
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This talk

Eliminating some performance problems
• Optimizing higher-order unification
• Higher-order term indexing

This is a significant step towards
efficient proof search in logical frameworks
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Problem 1

“For any programming language to be practical,
basic operations should take constant time.
Unification ... may be thought of as the basic
operation...” [Sicstus Prolog Manual]
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Problem 1

“For any programming language to be practical,
basic operations should take constant time.
Unification ... may be thought of as the basic
operation...” [Sicstus Prolog Manual]

Higher-order unification is undecidable!

For decidable fragment [Miller91, Pfenning91]:
at best linear [Qian93]!
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Basic operation: unification

• Example 1:
eq (A imp B) ((not A) or B)

eq (p imp q) ((not C) or q)

Success
A = p, B = q, C=A

• Example 2:
eq (A imp B) ((not A) or B)

eq C ((not C) or q)

Failure(occurs-check!)
C = (A imp B),
A = C, B = q

• Occurs check is expensive!
• No occurs check is necessary

if every meta-variable occurs only once!
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Higher-order pattern unification

• Meta-variables must be applied to
some distinct bound variables
(all λ x. ((A x) imp B)) – ok ((C T) imp B) – not ok!

• Closed instantiation for meta-variables!
eq (all λ y. ((p y) imp (p y)) imp q) C

·

=

eq (all λ x. (A x) imp B) ((exists λx. A x) imp B)

• Solution: A = λ z. (p z) imp (p z)

B = q

C = ((exists (λx. A x)) imp B)

= (imp (exists (λx. imp (p x) (p x))) q)
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Subtle issues due to bound variables

• Which bound variables are allowed to occur in a
term that instantiates a meta-variable?
– A depends on bound variable x

– B does not depend on bound variable x

– Computing dependencies may be expensive!

• No check is necessary, if meta-variable depends
on all distinct bound variables.
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Linearization

• Linear terms:
- every meta-variable occurs only once

- every meta-variable depends on
all distinct bound variables

• Every clause head is transformed
into a linear term and variable definitions
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Linearization

• Linear terms:
- every meta-variable occurs only once

- every meta-variable depends on
all distinct bound variables

• Every clause head is transformed
into a linear term and variable definitions

• Example:
eq (A imp B) ((not A) or B)

⇐⇒

eq (A imp B) ((not A’) or B’) and A’ ·

= A and B’ ·

= B
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Linearization

• Linear terms:
- every meta-variable occurs only once

- every meta-variable depends on
all distinct bound variables

• Every clause head is transformed
into a linear term and variable definitions

• Example:
eq (all λ x. (A x) imp B) ((exists λ x . (A x)) imp B)

⇐⇒

eq (all λ x. (A x) imp (B’ x)) ((exists λ x. A’ x) imp B)

A’ ·

= A and ∀ x. (B’ x) ·

= B
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Why does linearization work?

• Linearization is performed statically.

• Many problems are already linear.
constant time assignment algorithm

• Unification often fails.
Failure can be very expensive in higher-order unification,
even in the decidable fragment.
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Foundational PCC

example standard opt reduction
mul2 9.52 sec 5.51 sec 42.86%
div2 153.61 sec 121.96 sec 20.63%
pack 1075.61 sec 197.07 sec 81.65%
divx 1133.15 sec 333.69 sec 70.50%
listsum ∞ 1073.33 sec 100%

∞ = process does not terminate in 6h

Intel Pentium 1.6GHz, RAM 256MB,
SML New Jersey 110, Twelf 1.4.
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Evaluation

• Performance improvement is substantial
20% – 82% runtime improvement; in some case 100%!

– 63% of the time there are no variable defs.

– 80% of the calls to unification failed

• Benchmarks (simply typed):
– Meta-interpreter for linear ordered logic: 60%

– Classical natural deduction (NK): 42%

• Benchmarks (dependently typed):
– Compiler translations : 99.95%, in some cases 100%

– Translating proofs into cut-free proofs: 43% - 52%
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Contribution and related work

• Foundation for meta-variables based on modal
logic (joint work with F. Pfenning)(CADE’03)

– Extends earlier work by [Dowek et al. 95]

– Contextual modal type theory and applications
(joint work with A. Nanevski, F. Pfenning, 2005)

• Related work: λProlog (Teyjus-compiler) [Nadathur,
Mitchell 99]

– General higher-order unification
(highly non-deterministic)

– WAM with special higher-order support
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Optimizing unification further

• Eliminating redundant type arguments [IJCAR’06]

– Dependently typed terms have implicit type arguments

– Some implicit type arguments in a term M are uniquely
determined by the overall type of M .

– These implicit arguments can be skipped during
unification!

• Early empirical study [Michaylov,Pfenning’92]
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Experiments and evaluation

• Compiler translation:
• Substantial number of redundant type arguments

(up to 1496)
• Substantial size of skipped arguments (av 30, max 185)
• Run-time improvement: 11.19% - 21.87%

• Proof translations:
• Substantial number of redundant type arguments

(up to 264387)
• Size of skipped arguments (av 7)
• Run-time improvement: 3% - 10%
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Contribution and related work

• Performance improvement up to 20%
• Numerous redundant type arguments
• Theoretical justification [IJCAR06]

• Related Work: λ-Prolog : redundant type
arguments due to polymorphism [Nadathur, Qi’05]

– incorporated into the WAM

– no experimental comparison
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Problem 2

“...an automated reasoning program’s rate of drawing
conclusions falls off sharply both with time and with an
increase in the size of the database of retained
information.” [Wos92]
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Problem 2
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increase in the size of the database of retained
information.” [Wos92]

ideal performance
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Indexing
Set of terms

eq (all λ x. ((A x) or B)) ((all λ x. A x) or B)
eq (A imp B) ((not A) or B)
eq (not (A and B)) ((not A) or (not B))

How can we efficiently store and retrieve data?

• Share term structure
• Share common operations
• Even below a binder!

eq (all λ x. (A x) imp B ) ((exists λ x. A x) imp B)

eq (all λ x. (A x) or B ) ((all λ x. A x) or B)
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Step 1: Linearization
Set of linear terms Constraints

(1) eq (all λ x. ((A x) or (B’ x))) ((all λ x. A’ x) or B) A = A’, ∀ x. B’ x ·

= B
(2) eq (A imp B) ((not A’) or B’) A’ ·

= A, B ·

= B’
(3) eq (not (A and B)) ((not A’) or (not B’)) A’ ·

= A, B ·

= B’

• Linearize every terms
Factor out “hard” sub-expressions

• Uniform naming for variables
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Step 2: Common sub-expression
Set of linear terms Constraints

(1) eq (all λ x. ((A x) or (B’ x))) ((all λ x. A’ x) or B) ∀ x. B’ x ·

= B, A = A’
(2) eq (A imp B) ((not A’) or B’) A’ ·

= A, B ·

= B’
(3) eq (not (A and B)) ((not A’) or (not B’)) A’ ·

= A, B ·

= B’

• Factor out common sub-expressions!
eq (A imp B) ((not A’) or B’)

eq (not (A and B)) ((not A’) or (not B’))
eq i1 ((not A’) or i2)
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Step 2: Common sub-expression
Set of linear terms Constraints

(1) eq (all λ x. ((A x) or (B’ x))) ((all λ x. A’ x) or B) ∀ x. B’ x ·

= B, A = A’
(2) eq (A imp B) ((not A’) or B’) A’ ·

= A, B ·

= B’
(3) eq (not (A and B)) ((not A’) or (not B’)) A’ ·

= A, B ·

= B’

• Factor out common sub-expressions!
eq (A imp B) ((not A’) or B’)

eq (not (A and B)) ((not A’) or (not B’))
eq i1 ((not A’) or i2)

• In general the most specific common
generalization does not exist!
Key: linearization
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Higher-order substitution trees
Set of linear terms

(1) eq (all λ x. ((A x) or (B’ x))) ((all λ x. A’ x) or B)
(2) eq (A imp B) ((not A’) or B’)
(3) eq (not (A and B)) ((not A’) or (not B’))

Compose
substitutions!

eq i1 (i2 or i3) /i0

(not A’) / i2

B’ / i3,

A imp B / i1

(2)

(not B’) / i3,

not (A and B) / i1

(3)

all λ x. (A x) or (B’ x) / i1
all λ x. (A’ x) / i2

B / i3

(1)
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Parser for formulas

iterative memoization

#tok deepening noindex index reduction

20 0.98 sec 0.13 sec 0.07 sec 46%

58 ∞ 2.61 sec 1.25 sec 52%

117 ∞ 10.44 sec 5.12 sec 51%

235 ∞ 75.57 sec 26.08 sec 66%

∞ = process does not terminate in 6h

Intel Pentium 1.6GHz, RAM 256MB,
SML New Jersey 110, Twelf 1.4.
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Refinement type-checking

example noindex index reduction orig

First sub 3.19 sec 0.46 sec 86%

answer mult 7.78 sec 0.89 sec 89%

square 9.02 sec 0.98 sec 89%

Not mult 2.38 sec 0.38 sec 84%

provable plus 6.48 sec 0.85 sec 87%

square 9.29 sec 1.09 sec 88%

All sub 6.88 sec 0.71 sec 90%

answers mult 9.06 sec 0.98 sec 89%

square 10.30 sec 1.08 sec 90%
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Refinement type-checking

example noindex index time red. orig

First sub 3.19 sec 0.46 sec 86% 0.15 sec

answer mult 7.78 sec 0.89 sec 89% 0.15 sec

square 9.02 sec 0.98 sec 89% 0.16 sec

Not mult 2.38 sec 0.38 sec 84% 13.50 sec

provable plus 6.48 sec 0.85 sec 87% ∞

square 9.29 sec 1.09 sec 88% ∞

All sub 6.88 sec 0.71 sec 90% 5.59 sec

answers mult 9.06 sec 0.98 sec 89% ∞

square 10.30 sec 1.08 sec 90% ∞
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Contribution and related work

• Contribution:

– Higher-order term indexing (key: linearization, η-longform)

– Indexing substantially improves performance
runtime reduced between 46% and 90% (ICLP’03)

– Application: Small proof witness [ICLP’05]

– Application: Propositional theorem proving [CADE’05]
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Contribution and related work

• Contribution:

– Higher-order term indexing (key: linearization, η-longform)

– Indexing substantially improves performance
runtime reduced between 46% and 90% (ICLP’03)

– Application: Small proof witness [ICLP’05]

– Application: Propositional theorem proving [CADE’05]

• Related Work:

– Substitution trees for first-order terms [Graf95]

– (Higher-order) automata-driven indexing [Necula,Rahul01]
imperfect filter, full higher-order unification to check
candidates
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Outline

• Logical frameworks and applications
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Conclusion

• This is opens many new opportunities
– to experiment and develop large-scale systems.

for example: proof-carrying code, POPLmark
– to explore the full potential of logical frameworks

new applications: authentication, security

• Efficient proof search techniques are critical
– to sustain performance.
– to reduce response time to the developer.
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Future work

Narrowing the performance gap further
• Mode, determinism, termination analysis

[Schrijvers et al. 02]

• Exploiting properties of local theories
(joint work with Xi Li(McGill))

Tabled higher-order logic programming [Pie’03, Pie’05]

• Strongly connected components (SCC) [Swift, Sagonas98]

• Model-checking over high-level specifications
[Ramakrishnan’97]
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Finally ...

if you want to find out more:

http://www.cs.mcgill.ca/˜bpientka

email: bpientka@cs.mcgill.ca
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