
A proof-theoretic foundation for tabled
higher-order logic programming

Brigitte Pientka

Department of Computer Science

Carnegie Mellon University

Pittsburgh, PA, 15217, USA

A proof-theoretic foundation for tabled higher-order logic programming – p.1/31

Outline

• What is higher-order logic programming?
• Example: Type-system using subtyping
• Tabled higher-order logic programming

– How higher-order tabling works
– Characterization based on uniform proofs
– Soundness proof

• Related and future work

A proof-theoretic foundation for tabled higher-order logic programming – p.2/31

Higher-order logic programming

What means higher-order?
• Terms: (dependently) typed λ-calculus
• Clauses: implication, universal quantification

A proof-theoretic foundation for tabled higher-order logic programming – p.3/31

Higher-order logic programming

What means higher-order?
• Terms: (dependently) typed λ-calculus
• Clauses: implication, universal quantification

Framework for specifying and implementing
• logical systems
• proofs about them

A proof-theoretic foundation for tabled higher-order logic programming – p.3/31

Higher-order logic programming

What means higher-order?
• Terms: (dependently) typed λ-calculus
• Clauses: implication, universal quantification

Framework for specifying and implementing
• logical systems (safety logics, type system . . .)
• proofs about them

A proof-theoretic foundation for tabled higher-order logic programming – p.3/31

Higher-order logic programming

What means higher-order?
• Terms: (dependently) typed λ-calculus
• Clauses: implication, universal quantification

Framework for specifying and implementing
• logical systems (safety logics, type system . . .)
• proofs about them (correctness, soundness . . .)

A proof-theoretic foundation for tabled higher-order logic programming – p.3/31

Higher-order logic programming

What means higher-order?
• Terms: (dependently) typed λ-calculus
• Clauses: implication, universal quantification

Framework for specifying and implementing
• logical systems (safety logics, type system . . .)
• proofs about them (correctness, soundness . . .)

Languages:
• λProlog[Miller91], Isabelle[Paulson86]
• Elf [Pfenning91]

A proof-theoretic foundation for tabled higher-order logic programming – p.3/31

Proof search via logic programming

Generic proof search over logical systems
• factor effort for each particular logical system

Infinite computation leads to non-termination.
• Many specifications are not executable.

Redundant computation hampers performance.
• Sub-proofs may be repeated.
• There may be many ways to prove a query.

A proof-theoretic foundation for tabled higher-order logic programming – p.4/31

First-order tabled computation

• Resolution with memoization [Tamaki,Sato86]
• Memoize atomic subgoals and re-use results
• Finds all possible answers to a query
• Terminates for programs in a finite domain
• Combine tabled and non-tabled execution
• Very successful: XSB system [Warren et.al.]

A proof-theoretic foundation for tabled higher-order logic programming – p.5/31

This talk

1. Tabled higher-order logic programming
• Term: (dependently) typed λ-calculus
• Clauses: universal quantification, implication

2. High-level description based on uniform proofs

3. Soundness proof

A proof-theoretic foundation for tabled higher-order logic programming – p.6/31

Outline

• What is higher-order logic programming?
• Example: Type-system using subtyping
• Tabled higher-order logic programming

– How higher-order tabling works
– Characterization based on uniform proofs
– Soundness proof

• Related and future work

A proof-theoretic foundation for tabled higher-order logic programming – p.7/31

Declarative description of subtyping

types τ :: = zero | pos | nat | bit | τ1 ⇒ τ2 | . . .

Example: 6 = 110 and 110 ∈ nat

A proof-theoretic foundation for tabled higher-order logic programming – p.8/31

Declarative description of subtyping

types τ :: = zero | pos | nat | bit | τ1 ⇒ τ2 | . . .

Example: 6 = 110 and 110 ∈ nat

zn
zero � nat

pn
pos � nat

nb
nat � bit

A proof-theoretic foundation for tabled higher-order logic programming – p.8/31

Declarative description of subtyping

types τ :: = zero | pos | nat | bit | τ1 ⇒ τ2 | . . .

Example: 6 = 110 and 110 ∈ nat

zn
zero � nat

pn
pos � nat

nb
nat � bit

refl
T � T

T � R R � S
tr

T � S

A proof-theoretic foundation for tabled higher-order logic programming – p.8/31

Typing rules for Mini-ML

expressions e ::= ε | e 0 | e 1 | lam x.e | app e1 e2

Γ ` e : τ ′ τ ′ � τ
tp-sub

Γ ` e : τ

Γ, x : τ1 ` e : τ2
tp-lamx

Γ ` lam x.e : τ1 ⇒ τ2

A proof-theoretic foundation for tabled higher-order logic programming – p.9/31

Implementation of subtyping

zn: sub zero nat.

pn: sub pos nat.

nb: sub nat bit.

refl: sub T T.

tr: sub T S

<- sub T R

<- sub R S.

A proof-theoretic foundation for tabled higher-order logic programming – p.10/31

Implementation of subtyping

zn: sub zero nat.

pn: sub pos nat.

nb: sub nat bit.

refl: sub T T.

tr: sub T S

<- sub T R

<- sub R S.

Not executable!

A proof-theoretic foundation for tabled higher-order logic programming – p.10/31

Implementation of typing rules

tp sub: of E T

<- of E T’

<- sub T’ T.

tp lam: of (lam λ x.E x) (T1 => T2)

<-(Π x:exp.of x T1 -> of (E x) T2).

“forall x:exp, assume of x T1

and show of (E x) T2”

A proof-theoretic foundation for tabled higher-order logic programming – p.11/31

Implementation of typing rules

tp sub: of E T

<- of E T’

<- sub T’ T.

tp lam: of (lam λ x.E x) (T1 => T2)

<-(Π x:exp.of x T1 -> of (E x) T2).

“forall x:exp, assume of x T1

and show of (E x) T2”

Redundancy: tp sub is always applicable!

A proof-theoretic foundation for tabled higher-order logic programming – p.11/31

Outline

• What is higher-order logic programming?
• Example: Type-system using subtyping
• Tabled higher-order logic programming

– How higher-order tabling works
– Characterization based on uniform proofs
– Soundness proof

• Related and future work

A proof-theoretic foundation for tabled higher-order logic programming – p.12/31

Outline

• What is higher-order logic programming?
• Example: Type-system using subtyping
• Tabled higher-order logic programming

– How higher-order tabling works
– Characterization based on uniform proofs
– Soundness proof

• Related and future work

A proof-theoretic foundation for tabled higher-order logic programming – p.12/31

Tabled higher-order logic programming

• Eliminate redundant and infinite paths from
proof search using a memo-table

• Table entry: (Γ→ a , A)
- Γ : context of assumptions (i.e.x:exp, u:of x T1)
- a : atomic goal (i.e. of (lam λx. x) T)
- A : list of answer substitutions for all free

variables in Γ and a

• Depth-first multi-stage strategy
adopted from first-order strategy [Tamaki,Sato89]

A proof-theoretic foundation for tabled higher-order logic programming – p.13/31

How higher-order tabling works...

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

A proof-theoretic foundation for tabled higher-order logic programming – p.14/31

How higher-order tabling works...

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

A proof-theoretic foundation for tabled higher-order logic programming – p.14/31

How higher-order tabling works...

tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,
x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

A proof-theoretic foundation for tabled higher-order logic programming – p.14/31

How higher-order tabling works...

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,
x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

A proof-theoretic foundation for tabled higher-order logic programming – p.14/31

How higher-order tabling works...

tp_lam

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,
x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

A proof-theoretic foundation for tabled higher-order logic programming – p.14/31

How higher-order tabling works...

tp_lam

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

A proof-theoretic foundation for tabled higher-order logic programming – p.14/31

How higher-order tabling works...

utp_lam

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

A proof-theoretic foundation for tabled higher-order logic programming – p.14/31

How higher-order tabling works...

utp_lam

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

A proof-theoretic foundation for tabled higher-order logic programming – p.14/31

How higher-order tabling works...

tp_sub

utp_lam

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

A proof-theoretic foundation for tabled higher-order logic programming – p.14/31

How higher-order tabling works...

Suspend

Stage 1 finished

tp_sub

utp_lam

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

A proof-theoretic foundation for tabled higher-order logic programming – p.14/31

How higher-order tabling works...

Resume

Suspend

Stage 1 finished

tp_sub

utp_lam

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

A proof-theoretic foundation for tabled higher-order logic programming – p.14/31

How higher-order tabling works...

Resume

Resume

Suspend

Stage 1 finished

tp_sub

utp_lam

Suspend
tp_sub

Stage 1

Entry Answers

PSfrag replacements

· → of (lam λx.x) T

· → of (lam λx.x) T

· → of (lam λx.x) R,

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x T2

x:exp, u:of x T1→ of x R,

sub R T

sub R T2

T1 = S, T2 = S, T = (S⇒ S)

T = (S⇒ S)

T1 = S, T2 = S

A proof-theoretic foundation for tabled higher-order logic programming – p.14/31

Higher-order issues

• Dependencies among propositions
x:exp, u:of x P→ sub P R

A proof-theoretic foundation for tabled higher-order logic programming – p.15/31

Higher-order issues

• Dependencies among propositions
x:exp, u:of x P→ sub P R,

strengthen: → sub P R

A proof-theoretic foundation for tabled higher-order logic programming – p.15/31

Higher-order issues

• Dependencies among propositions
x:exp, u:of x P→ sub P R,

strengthen: → sub P R

• Dependencies among terms
x:exp, u:of x T1→ of x (R x u),

A proof-theoretic foundation for tabled higher-order logic programming – p.15/31

Higher-order issues

• Dependencies among propositions
x:exp, u:of x P→ sub P R,

strengthen: → sub P R

• Dependencies among terms
x:exp, u:of x T1→ of x (R x u),

strengthen x:exp, u:of x T1→ of x R

A proof-theoretic foundation for tabled higher-order logic programming – p.15/31

Higher-order issues

• Dependencies among propositions
x:exp, u:of x P→ sub P R,

strengthen: → sub P R

• Dependencies among terms
x:exp, u:of x T1→ of x (R x u),

strengthen x:exp, u:of x T1→ of x R

• Subordination analysis [Virga99]

A proof-theoretic foundation for tabled higher-order logic programming – p.15/31

Outline

• What is higher-order logic programming?
• Example: Type-system using subtyping
• Tabled higher-order logic programming

– How higher-order tabling works
– Characterization based on uniform proofs
– Soundness proof

• Related and future work

A proof-theoretic foundation for tabled higher-order logic programming – p.16/31

Types and Programs

Types A ::= a | A1 → A2 | Πx : A1.A2

Programs Γ ::= · | Γ, x : A

Logic programming view:
tr:sub T S <- sub T R <- sub R S.

Type-theoretic view:
tr:ΠT :tp.ΠS:tp.ΠR:tp. sub R S → (sub T R→ sub T S)

A proof-theoretic foundation for tabled higher-order logic programming – p.17/31

Uniform Proofs[Miller et al.91]

Two judgements
Γ

u−→ A uniform proof
decompose goal A until atomic

Γ� A
f−→ a focused proof

pick a program clause A and
decompose A until atomic

A proof-theoretic foundation for tabled higher-order logic programming – p.18/31

Uniform Proofs

Γ, x : A1
u−→ A2

u∀x
Γ

u−→ Πx : A1.A2

Γ� [M/x]A2
f−→ a M has type A1 in Γ

f∀
Γ� Πx : A1.A2

f−→ a

A proof-theoretic foundation for tabled higher-order logic programming – p.19/31

Uniform Proofs

Γ, x : A1
u−→ A2

u∀x
Γ

u−→ Πx : A1.A2

Γ� [M/x]A2
f−→ a M has type A1 in Γ

f∀
Γ� Πx : A1.A2

f−→ a

Γ, u : A1
u−→ A2

u→u

Γ
u−→ A1 → A2

Γ� A1
f−→ a Γ

u−→ A2
f→

Γ� A2 → A1
f−→ a

A proof-theoretic foundation for tabled higher-order logic programming – p.19/31

Uniform Proofs

Γ, x : A1
u−→ A2

u∀x
Γ

u−→ Πx : A1.A2

Γ� [M/x]A2
f−→ a M has type A1 in Γ

f∀
Γ� Πx : A1.A2

f−→ a

Γ, u : A1
u−→ A2

u→u

Γ
u−→ A1 → A2

Γ� A1
f−→ a Γ

u−→ A2
f→

Γ� A2 → A1
f−→ a

Γ, u : A,Γ′ � A
f−→ a

uAtom
Γ, u : A,Γ′

u−→ a

A proof-theoretic foundation for tabled higher-order logic programming – p.19/31

Uniform Proofs

Γ, x : A1
u−→ A2

u∀x
Γ

u−→ Πx : A1.A2

Γ� [M/x]A2
f−→ a M has type A1 in Γ

f∀
Γ� Πx : A1.A2

f−→ a

Γ, u : A1
u−→ A2

u→u

Γ
u−→ A1 → A2

Γ� A1
f−→ a Γ

u−→ A2
f→

Γ� A2 → A1
f−→ a

Γ, u : A,Γ′ � A
f−→ a

uAtom
Γ, u : A,Γ′

u−→ a

A proof-theoretic foundation for tabled higher-order logic programming – p.19/31

Uniform Proofs

Γ, x : A1
u−→ A2

u∀x
Γ

u−→ Πx : A1.A2

Γ� [M/x]A2
f−→ a M has type A1 in Γ

f∀
Γ� Πx : A1.A2

f−→ a

Γ, u : A1
u−→ A2

u→u

Γ
u−→ A1 → A2

Γ� A1
f−→ a Γ

u−→ A2
f→

Γ� A2 → A1
f−→ a

Γ, u : A,Γ′ � A
f−→ a

uAtom
Γ, u : A,Γ′

u−→ a

A proof-theoretic foundation for tabled higher-order logic programming – p.19/31

Uniform Proofs

Γ, x : A1
u−→ A2

u∀x
Γ

u−→ Πx : A1.A2

Γ� [M/x]A2
f−→ a M has type A1 in Γ

f∀
Γ� Πx : A1.A2

f−→ a

Γ, u : A1
u−→ A2

u→u

Γ
u−→ A1 → A2

Γ� A1
f−→ a Γ

u−→ A2
f→

Γ� A2 → A1
f−→ a

Γ, u : A,Γ′ � A
f−→ a

uAtom
Γ, u : A,Γ′

u−→ a

fAtom
Γ� a

f−→ a

A proof-theoretic foundation for tabled higher-order logic programming – p.19/31

Uniform Proofs

Γ, x : A1
u−→ A2

u∀x
Γ

u−→ Πx : A1.A2

Γ� [M/x]A2
f−→ a M has type A1 in Γ

f∀
Γ� Πx : A1.A2

f−→ a

Γ, u : A1
u−→ A2

u→u

Γ
u−→ A1 → A2

Γ� A1
f−→ a Γ

u−→ A2
f→

Γ� A2 → A1
f−→ a

Γ, u : A,Γ′ � A
f−→ a

uAtom
Γ, u : A,Γ′

u−→ a

fAtom
Γ� a

f−→ a

A proof-theoretic foundation for tabled higher-order logic programming – p.19/31

Uniform Proofs

Γ, x : A1
u−→ A2

u∀x
Γ

u−→ Πx : A1.A2

Γ� [M/x]A2
f−→ a M has type A1 in Γ

f∀
Γ� Πx : A1.A2

f−→ a

Γ, u : A1
u−→ A2

u→u

Γ
u−→ A1 → A2

Γ� A1
f−→ a Γ

u−→ A2
f→

Γ� A2 → A1
f−→ a

Γ, u : A,Γ′ � A
f−→ a

uAtom
Γ, u : A,Γ′

u−→ a

fAtom
Γ� a

f−→ a

A proof-theoretic foundation for tabled higher-order logic programming – p.19/31

Computing answer substitutions

Γ� [M/x]A2
f−→ a M has type A1 in Γ

f∀
Γ� Πx : A1.A2

f−→ a

• Idea: replace M with an existential variable X,
which is instantiated using unification

A proof-theoretic foundation for tabled higher-order logic programming – p.20/31

Computing answer substitutions

Γ� [M/x]A2
f−→ a M has type A1 in Γ

f∀
Γ� Πx : A1.A2

f−→ a

• Idea: replace M with an existential variable X,
which is instantiated using unification

• Problem
- Higher-order unification is undecidable

restriction to higher-order patterns
[Miller92,Pfenning91]

- Instantiation for X may only depend on Γ

A proof-theoretic foundation for tabled higher-order logic programming – p.20/31

Computing answer substitutions

Γ� [M/x]A2
f−→ a M has type A1 in Γ

f∀
Γ� Πx : A1.A2

f−→ a

1. Raise M [Miller92,Pfenning91]

• replace M with (λΓ.M) Γ
• (λΓ.M) has type ΠΓ.A1

2. Replace (λΓ.M) with existential variable XΠΓ.A1

A proof-theoretic foundation for tabled higher-order logic programming – p.20/31

Computing answer substitutions

Γ� [XΠΓ.A1
Γ/x]A2

f−→ a/θ XΠΓ.A1
is new

Γ� Πx : A1.A2
f−→ a/θ

Unify(Γ, a′, a) = θ

Γ� a′
f−→ a/θ

• Annotate existential variables X with its type A
• Compute answer substitution θ as a result
• Substitution: θ ::= · | θ,XA = M

A proof-theoretic foundation for tabled higher-order logic programming – p.20/31

Uniform Proofs with substitutions

Γ, x : A1
u−→ A2/θ

Γ
u−→ Πx : A1.A2/θ

Γ� [XΠΓ.A1 Γ/x]A2
f−→ a/θ XΠΓ.A1 is new

Γ� Πx : A1.A2
f−→ a/θ

Γ, u : A1
u−→ A2/θ

Γ
u−→ A1 → A2/θ

Γ� A1
f−→ a/θ1 Γ[θ1]

u−→ A2[θ1]/θ2

Γ� A2 → A1
f−→ a/θ1 ◦ θ2

Γ, x : A,Γ′ � A
f−→ a/θ

Γ, x : A,Γ′
u−→ a/θ

A proof-theoretic foundation for tabled higher-order logic programming – p.21/31

Uniform Proofs with substitutions

Γ, x : A1
u−→ A2/θ

Γ
u−→ Πx : A1.A2/θ

Γ� [XΠΓ.A1 · Γ/x]A2
f−→ a/θ XΠΓ.A1 is new

Γ� Πx : A1.A2
f−→ a/θ

Γ, u : A1
u−→ A2/θ

Γ
u−→ A1 → A2/θ

Γ� A1
f−→ a/θ1 Γ[θ1]

u−→ A2[θ1]/θ2

Γ� A2 → A1
f−→ a/θ1 ◦ θ2

Γ, x : A,Γ′ � A
f−→ a/θ

Γ, x : A,Γ′
u−→ a/θ

A proof-theoretic foundation for tabled higher-order logic programming – p.21/31

Uniform Proofs with substitutions

Γ, x : A1
u−→ A2/θ

Γ
u−→ Πx : A1.A2/θ

Γ� [XΠΓ.A1 · Γ/x]A2
f−→ a/θ XΠΓ.A1 is new

Γ� Πx : A1.A2
f−→ a/θ

Γ, u : A1
u−→ A2/θ

Γ
u−→ A1 → A2/θ

Γ� A1
f−→ a/θ1 Γ[θ1]

u−→ A2[θ1]/θ2

Γ� A2 → A1
f−→ a/θ1 ◦ θ2

Γ, x : A,Γ′ � A
f−→ a/θ

Γ, x : A,Γ′
u−→ a/θ

A proof-theoretic foundation for tabled higher-order logic programming – p.21/31

Uniform Proofs with substitutions

Γ, x : A1
u−→ A2/θ

Γ
u−→ Πx : A1.A2/θ

Γ� [XΠΓ.A1 · Γ/x]A2
f−→ a/θ XΠΓ.A1 is new

Γ� Πx : A1.A2
f−→ a/θ

Γ, u : A1
u−→ A2/θ

Γ
u−→ A1 → A2/θ

Γ� A1
f−→ a/θ1 Γ[θ1]

u−→ A2[θ1]/θ2

Γ� A2 → A1
f−→ a/θ1 ◦ θ2

Γ, x : A,Γ′ � A
f−→ a/θ

Γ, x : A,Γ′
u−→ a/θ

Unify(Γ, a′, a) = θ

Γ� a′
f−→ a/θ

A proof-theoretic foundation for tabled higher-order logic programming – p.21/31

Uniform Proofs with substitutions

Γ, x : A1
u−→ A2/θ

Γ
u−→ Πx : A1.A2/θ

Γ� [XΠΓ.A1 · Γ/x]A2
f−→ a/θ XΠΓ.A1 is new

Γ� Πx : A1.A2
f−→ a/θ

Γ, u : A1
u−→ A2/θ

Γ
u−→ A1 → A2/θ

Γ� A1
f−→ a/θ1 Γ[θ1]

u−→ A2[θ1]/θ2

Γ� A2 → A1
f−→ a/θ1 ◦ θ2

Γ, x : A,Γ′ � A
f−→ a/θ

Γ, x : A,Γ′
u−→ a/θ

Unify(Γ, a′, a) = θ

Γ� a′
f−→ a/θ

A proof-theoretic foundation for tabled higher-order logic programming – p.21/31

Uniform Proofs with Tables

• Table T to store conjectures and their answers
• Main judgments:

1. T ; Γ
u−→ A/(θ, T ′)

2. T ; Γ� A
f−→ a/(θ, T ′).

• To prove: T ; (Γ, x : A)
u−→ a/(θ, T ′)

- Pick program clause A from Γ

- Retrieve answers from T , if there are any

A proof-theoretic foundation for tabled higher-order logic programming – p.22/31

Operations

extend add Γ
u−→ a to T ,

if it is not already in T
insert insert answer substitution θ to A of Γ

u−→ a,
if θ is not already in A.

retrieve : retrieve an answer substitution θ for Γ
u−→ a

from its answer list A in T

A proof-theoretic foundation for tabled higher-order logic programming – p.23/31

Extensions

extend(T , (Γ, u : A,Γ′)
u−→ a) = T1

T1; (Γ, u : A,Γ′) � A
f−→ a/(θ, T2)

insert(T2, (Γ, u : A,Γ′)
u−→ a, θ) = T3

T ; (Γ, u : A,Γ′)
u−→ a/(θ, T3)

extend

retrieve(T ; Γ
u−→ a) = θ

retrieve
T ; Γ

u−→ a/(θ, T)

A proof-theoretic foundation for tabled higher-order logic programming – p.24/31

Outline

• What is higher-order logic programming?
• Example: Type-system using subtyping
• Tabled higher-order logic programming

– How higher-order tabling works
– Characterization based on uniform proofs
– Soundness proof

• Related and future work

A proof-theoretic foundation for tabled higher-order logic programming – p.25/31

Main results

Soundness Any uniform proof with answer substitution
has a uniform proof.

Completeness Any uniform proofs has a uniform proofs
with answer substitution.

Soundness Any tabled uniform proof with an answer
substitution has a uniform proof with the same
answer substitution.

A proof-theoretic foundation for tabled higher-order logic programming – p.26/31

Contributions

• Tabled higher-order logic programming
Memoize and retrieve goals together with context

• High-level description of tabling
based on uniform proofs

• Soundness of higher-order tabled search

• Implementation of a prototype

- Tabeling offers a more efficient and flexible proof
search engine (see experiments [Pientka02])

A proof-theoretic foundation for tabled higher-order logic programming – p.27/31

Outline

• What is higher-order logic programming?
• Example: Type-system using subtyping
• Tabled higher-order logic programming

– How higher-order tabling works
– Characterization based on uniform proofs
– Soundness proof

• Related and future work

A proof-theoretic foundation for tabled higher-order logic programming – p.28/31

Related work

• Tabled search is incomplete:

- With tabelling we find only one proof for Γ
u−→ A

- Proof irrelevance[Pfenning01]: all proofs for
Γ

u−→ a are considered equivalent

• Other higher-order logic programming languages:
- λProlog[Miller91]
- Isabelle[Paulson86]

A proof-theoretic foundation for tabled higher-order logic programming – p.29/31

Future work

• Implementation issues:
- Higher-order indexing
- Different tabled search strategies

• Apply tabelling to linear logic programming:
- Lolli[Miller,Hodas91]
- LLF[Cervesato,Pfenning96]

A proof-theoretic foundation for tabled higher-order logic programming – p.30/31

Finally ...

Acknowledgements: Frank Pfenning

if you want to find out more:

http://www.cs.cmu.edu/˜bp
email: bp@cs.cmu.edu

A proof-theoretic foundation for tabled higher-order logic programming – p.31/31

	Outline
	Higher-order logic programming
	Proof search via logic programming
	First-order tabled computation
	This talk
	Outline
	Declarative description of subtyping
	Typing rules for Mini-ML
	Implementation of subtyping
	Implementation of typing rules
	Outline
	Tabled higher-order logic programming
	How higher-order tabling works...
	Higher-order issues
	Outline
	Types and Programs
	Uniform Proofs[Miller {em et al.}91]
	Uniform Proofs
	Computing answer substitutions
	Uniform Proofs with substitutions
	Uniform Proofs with Tables
	Operations
	Extensions
	Outline
	Main results
	Contributions
	Outline
	Related work
	Future work
	Finally ...

