A proof-theoretic foundation for tabled higher-order logic programming

Brigitte Pientka

Department of Computer Science Carnegie Mellon University Pittsburgh, PA, 15217, USA

A proof-theoretic foundation for tabled higher-order logic programming - p.1/31

Outline

- What is higher-order logic programming?
- Example: Type-system using subtyping
- Tabled higher-order logic programming
 - How higher-order tabling works
 - Characterization based on uniform proofs
 - Soundness proof
- Related and future work

What means higher-order?

- Terms: (dependently) typed λ -calculus
- Clauses: implication, universal quantification

What means higher-order?

- Terms: (dependently) typed λ -calculus
- Clauses: implication, universal quantification

Framework for specifying and implementing

- logical systems
- proofs about them

What means higher-order?

- Terms: (dependently) typed λ -calculus
- Clauses: implication, universal quantification

Framework for specifying and implementing

- logical systems (safety logics, type system ...)
- proofs about them

What means higher-order?

- Terms: (dependently) typed λ -calculus
- Clauses: implication, universal quantification

Framework for specifying and implementing

- logical systems (safety logics, type system ...)
- proofs about them (correctness, soundness ...)

What means higher-order?

- Terms: (dependently) typed λ -calculus
- Clauses: implication, universal quantification

Framework for specifying and implementing

- logical systems (safety logics, type system ...)
- proofs about them (correctness, soundness ...)

Languages:

- λProlog[Miller91], Isabelle[Paulson86]
- Elf [Pfenning91]

Proof search via logic programming

Generic proof search over logical systems

factor effort for each particular logical system

Infinite computation leads to non-termination.

• Many specifications are not executable.

Redundant computation hampers performance.

- Sub-proofs may be repeated.
- There may be *many* ways to prove a query.

First-order tabled computation

- Resolution with memoization [Tamaki,Sato86]
- Memoize atomic subgoals and re-use results
- Finds all possible answers to a query
- Terminates for programs in a finite domain
- Combine tabled and non-tabled execution
- Very successful: XSB system [Warren et.al.]

This talk

- 1. Tabled higher-order logic programming
 - Term: (dependently) typed λ -calculus
 - Clauses: universal quantification, implication
- 2. High-level description based on uniform proofs
- 3. Soundness proof

Outline

- What is higher-order logic programming?
- Example: Type-system using subtyping
- Tabled higher-order logic programming
 - How higher-order tabling works
 - Characterization based on uniform proofs
 - Soundness proof
- Related and future work

Declarative description of subtyping

types τ :: = zero | pos | nat | bit | $\tau_1 \Rightarrow \tau_2$ | ...

Example: 6 = 110 and $110 \in nat$

Declarative description of subtyping

types τ ::= zero | pos | nat | bit | $\tau_1 \Rightarrow \tau_2$ | ...

Example: 6 = 110 and $110 \in nat$

Declarative description of subtyping

types τ ::= zero | pos | nat | bit | $\tau_1 \Rightarrow \tau_2$ | ...

Example: 6 = 110 and $110 \in nat$

• •

• • • •

Typing rules for Mini-ML

expressions $e ::= \epsilon | e 0 | e 1 | \text{lam } x.e | \text{app } e_1 e_2$

$$\frac{\Gamma \vdash e : \tau' \quad \tau' \preceq \tau}{\Gamma \vdash e : \tau} \text{ tp-sub} \qquad \frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \text{lam } x.e : \tau_1 \Rightarrow \tau_2} \text{ tp-lam}^x$$

Implementation of subtyping

- zn: sub zero nat.
- pn: sub pos nat.
- nb: sub nat bit.
- refl: sub T T.
- tr: sub T S
 - <- sub T R
 - <- sub R S.

Implementation of subtyping

- zn: sub zero nat.
- pn: sub pos nat.
- nb: sub nat bit.
- refl: sub T T.
- tr: sub T S
 - <- sub T R
 - <- sub R S.

Not executable!

Implementation of typing rules

tp_sub: of E T

- <- of E T'
- <- sub T' T.

Implementation of typing rules

tp_sub: of E T <- of E T'

<- sub T' T.

Redundancy: tp_sub is always applicable!

Outline

- What is higher-order logic programming?
- Example: Type-system using subtyping
- Tabled higher-order logic programming
 - How higher-order tabling works
 - Characterization based on uniform proofs
 - Soundness proof
- Related and future work

Outline

- What is higher-order logic programming?
- Example: Type-system using subtyping
- Tabled higher-order logic programming
 - How higher-order tabling works
 - Characterization based on uniform proofs
 - Soundness proof
- Related and future work

Tabled higher-order logic programming

- Eliminate redundant and infinite paths from proof search using a memo-table
- Table entry: ($\Gamma \rightarrow a$, \mathcal{A})
 - Γ : context of assumptions (i.e.x:exp, u:of x T1)
 - a : atomic goal (i.e. of (lam $\lambda x. x$) T)
 - ${\cal A}$: list of answer substitutions for all free variables in Γ and a
- Depth-first multi-stage strategy adopted from first-order strategy [Tamaki,Sato89]

Stage 1

 $\cdot \rightarrow$ of (lam λ x.x) T

Entry	Answers

Stage 1

 $\cdot \rightarrow$ of (lam λ x.x) T

Entry	Answers
$m \cdot ightarrow$ of (lam λ x.x) T	

Stage 1

 $\cdot \rightarrow$ of (lam λ x.x) T

 $\downarrow \text{tp_sub}$ · \rightarrow of (lam λ x.x) R, sub[`]R T

Entry	Answers
$\cdot ightarrow$ of (lam λ x.x) T	

Stage 1

$$\cdot \rightarrow \text{ of (lam } \lambda x.x) \text{ T}$$

$$\frac{\text{tp_sub}}{\text{tp_sub}} \cdot \rightarrow \text{ of (lam } \lambda x.x) \text{ R,} \text{ Suspend}$$

$$\text{sub R T}$$

Entry	Answers
$\cdot ightarrow$ of (lam λ x.x) T	

Stage 1

$$\cdot \rightarrow \text{ of (lam } \lambda x.x) \text{ T}$$

$$\downarrow \underbrace{\text{tp_sub}}_{\text{tp_sub}} \cdot \rightarrow \text{ of (lam } \lambda x.x) \text{ R,} \quad \underbrace{\text{Suspend}}_{\text{sub R T}} \text{ Suspend}$$

$$\underbrace{\text{tp_lam}}_{\text{tp_lam}} \text{ x:exp, u:of x T1} \rightarrow \text{ of x T2}$$

Entry	Answers
$\cdot ightarrow$ of (lam λ x.x) T	

•

Stage 1

· → of (lam
$$\lambda x.x$$
) T
 $\downarrow tp_sub$ · → of (lam $\lambda x.x$) R, Suspendent sub R T
 $\downarrow tp_lam$ · → of x T1 → of x T2

Entry	Answers
$\cdot ightarrow$ of (lam λ x.x) T	
x:exp, u:of x T1 \rightarrow of x T2	

•

•

Stage 1

$$\stackrel{\cdot \to \text{ of (lam } \lambda x.x) \text{ T}}{\stackrel{\text{tp_sub}}{\stackrel{} \longrightarrow}} \stackrel{\cdot \to \text{ of (lam } \lambda x.x) \text{ R, }}{\underset{\text{sub } \text{ R } \text{ T}}{\text{ Suspend}}} \text{ Suspend}$$

$$\stackrel{\text{tp_lam}}{\stackrel{} \longrightarrow} \text{ x:exp, u:of x T1 } \to \text{ of x T2 } \stackrel{\text{u}}{\stackrel{} \longrightarrow} \text{ T1 = S, T2 = S, T = (S \Rightarrow S)}$$

Entry	Answers
$\cdot ightarrow$ of (lam λ x.x) T	
x:exp, u:of x T1 \rightarrow of x T2	

•

• • • •

Stage 1

$$\stackrel{\cdot \to \text{ of (lam } \lambda x.x) \text{ T}}{\stackrel{\text{tp_sub}}{\stackrel{} \longrightarrow}} \stackrel{\cdot \to \text{ of (lam } \lambda x.x) \text{ R, }}{\underset{\text{sub R T}}{\text{Suspend}}} \text{Suspend}$$

$$\stackrel{\text{tp_lam}}{\stackrel{} \longrightarrow} x: \text{exp, u:of x T1 } \to \text{ of x T2} \stackrel{u}{\longrightarrow} \text{T1 = S, T2 = S, T = (S \Rightarrow S)}$$

Entry	Answers
$\cdot ightarrow$ of (lam λ x.x)	$T \mid T = (S \Rightarrow S)$
x:exp, u:of x T1 \rightarrow of x T2	T1 = S, T2 = S

Stage 1

$$\begin{array}{c} \cdot \to \text{ of (lam } \lambda x.x) \text{ T} \\ \hline \begin{array}{c} tp_sub \\ sub \text{ R T} \end{array} & \cdot \to \text{ of (lam } \lambda x.x) \text{ R}, \\ \underline{sub \text{ R T}} \end{array} & \textbf{Suspend} \\ \hline \begin{array}{c} tp_lam \\ tp_lam \end{array} & x:exp, u:of x \text{ T1} \to \text{ of x T2} \end{array} & \begin{array}{c} u \\ \underline{tp_sub} \end{array} & \text{ T1} = \text{ S}, \text{ T2} = \text{ S}, \text{ T} = (\text{S} \Rightarrow \text{ S}) \\ \hline \begin{array}{c} tp_sub \\ tp_sub \end{array} & x:exp, u:of x \text{ T1} \to \text{ of x R}, \\ & \text{ sub R T2} \end{array} \end{array}$$

En	try Answers
$m \cdot ightarrow$ of (lam λ x.	.x) T T = (S \Rightarrow S)
x:exp, u:of x T1 \rightarrow of x T2	T1 = S, T2 = S

Stage 1

$\cdot ightarrow$ of (lam λ x.x) T	
$ \frac{\text{tp_sub}}{\text{sub}} \cdot \rightarrow \text{of (lam } \lambda x.x) \text{ R,} $	ispend
fig_{tp_lam} x:exp, u:of x T1 \rightarrow of x T2	$2 \xrightarrow{u} T1 = S, T2 = S, T = (S \Longrightarrow S)$
	tp_sub x:exp, u:of x T1 \rightarrow of x R, sub R T2
Entry	Answers Suspend
$\cdot ightarrow$ of (lam λ x.x) T	$T = (S \Longrightarrow S)$
x:exp, u:of x T1 \rightarrow of x T2	T1 = S, T2 = S
Stage 1 finished	

Stage 1

Stage 1 $\cdot \rightarrow$ of (lam λ x.x) T Resume $\begin{array}{c} \overset{\text{tp_sub}}{\longrightarrow} & \cdot & \to \text{ of (lam } \lambda x.x) \text{ R,} \\ & \text{ sub R T } \end{array}$ Suspend <u>tp_lam</u> x:exp, u:of x T1 \rightarrow of x T2 \xrightarrow{u} T1 = S, T2 = S, T = (S \Rightarrow S) <u>tp_sub</u> x:exp, u:of x T1 \rightarrow of x R, Resume sub R T2 Suspend Answers Entry $\cdot \rightarrow \text{ of (lam } \lambda x.x) T \mid T = (S \Rightarrow S)$ x:exp, u:of x T1 \rightarrow of x T2 T1 = S, T2 = S**Stage 1 finished**

• Dependencies among propositions x:exp, u:of x P \rightarrow sub P R

 Dependencies among propositions x:exp, u:of x P → sub P R, strengthen: → sub P R

- Dependencies among propositions x:exp, u:of x P \rightarrow sub P R, strengthen: \rightarrow sub P R
- Dependencies among terms x:exp, u:of x T1 \rightarrow of x (R x u),

- Dependencies among propositions x:exp, u:of x P \rightarrow sub P R, strengthen: \rightarrow sub P R
- Dependencies among terms x:exp, u:of x T1 \rightarrow of x (R x u), strengthen x:exp, u:of x T1 \rightarrow of x R

- Dependencies among propositions x:exp, u:of x P \rightarrow sub P R, strengthen: \rightarrow sub P R
- Dependencies among terms x:exp, u:of x T1 \rightarrow of x (R x u), strengthen x:exp, u:of x T1 \rightarrow of x R
- Subordination analysis [Virga99]

Outline

- What is higher-order logic programming?
- Example: Type-system using subtyping
- Tabled higher-order logic programming
 - How higher-order tabling works
 - Characterization based on uniform proofs
 - Soundness proof
- Related and future work

Types and Programs

Types A ::= $a \mid A_1 \rightarrow A_2 \mid \Pi x : A_1.A_2$ Programs Γ ::= $\cdot \mid \Gamma, x : A$

Logic programming view: tr:sub T S <- sub T R <- sub R S.

Type-theoretic view: tr: ΠT :tp. ΠS :tp. ΠR :tp. sub $R \ S \rightarrow (\text{sub } T \ R \rightarrow \text{sub } T \ S)$

Uniform Proofs[Miller *et al.*91]

Two judgements $\Gamma \xrightarrow{u} A$ *uniform proof* decompose goal A until atomic

$\Gamma \gg A \stackrel{f}{\longrightarrow} a \quad \textit{focused proof}$ pick a program clause A and decompose A until atomic

$$\frac{\Gamma, x: A_1 \xrightarrow{\mathsf{u}} A_2}{\Gamma \xrightarrow{\mathsf{u}} \Pi x: A_1.A_2} \mathsf{u} \forall^x$$

$$\frac{\Gamma, x: A_1 \stackrel{\mathsf{u}}{\longrightarrow} A_2}{\Gamma \stackrel{\mathsf{u}}{\longrightarrow} \Pi x: A_1.A_2} \,\mathsf{u} \forall^x$$

$$\frac{\Gamma, u: A_1 \stackrel{\mathsf{u}}{\longrightarrow} A_2}{\Gamma \stackrel{\mathsf{u}}{\longrightarrow} A_1 \to A_2} \mathsf{u} \to^u$$

$$\frac{\Gamma, x: A_1 \stackrel{\mathsf{u}}{\longrightarrow} A_2}{\Gamma \stackrel{\mathsf{u}}{\longrightarrow} \Pi x: A_1.A_2} \,\mathsf{u} \forall^x$$

$$\frac{\Gamma, u: A_1 \stackrel{\mathsf{u}}{\longrightarrow} A_2}{\Gamma \stackrel{\mathsf{u}}{\longrightarrow} A_1 \to A_2} \mathsf{u} \to^u$$

$$\frac{\Gamma, u: A, \Gamma' \gg A \stackrel{\mathrm{f}}{\longrightarrow} a}{\Gamma, u: A, \Gamma' \stackrel{\mathrm{u}}{\longrightarrow} a} \text{uAtom}$$

•

• • • • • •

•

$$\frac{\Gamma, x: A_1 \xrightarrow{\mathsf{u}} A_2}{\Gamma \xrightarrow{\mathsf{u}} \Pi x: A_1.A_2} \mathsf{u} \forall^x \qquad \frac{\Gamma \gg [M/x]A_2 \xrightarrow{\mathsf{f}} a \quad M \text{ has type } A_1 \text{ in } \Gamma}{\Gamma \gg \Pi x: A_1.A_2 \xrightarrow{\mathsf{f}} a} \mathsf{f} \forall$$

•

• •

$$\frac{\Gamma, u: A_1 \stackrel{\mathsf{u}}{\longrightarrow} A_2}{\Gamma \stackrel{\mathsf{u}}{\longrightarrow} A_1 \to A_2} \mathsf{u} \to^u$$

$$\frac{\Gamma, u: A, \Gamma' \gg A \stackrel{\mathrm{f}}{\longrightarrow} a}{\Gamma, u: A, \Gamma' \stackrel{\mathrm{u}}{\longrightarrow} a} \text{uAtom}$$

$$\frac{\Gamma, x: A_1 \xrightarrow{\mathsf{u}} A_2}{\Gamma \xrightarrow{\mathsf{u}} \Pi x: A_1.A_2} \mathsf{u} \forall^x \qquad \frac{\Gamma \gg [M/x]A_2 \xrightarrow{\mathsf{f}} a \quad M \text{ has type } A_1 \text{ in } \Gamma}{\Gamma \gg \Pi x: A_1.A_2 \xrightarrow{\mathsf{f}} a} \mathsf{f} \forall$$

$$\frac{\Gamma, u : A_1 \xrightarrow{\mathsf{u}} A_2}{\Gamma \xrightarrow{\mathsf{u}} A_1 \to A_2} \mathsf{u} \to^u \qquad \qquad \frac{\Gamma \gg A_1 \xrightarrow{\mathsf{f}} a \qquad \Gamma \xrightarrow{\mathsf{u}} A_2}{\Gamma \gg A_2 \to A_1 \xrightarrow{\mathsf{f}} a} \mathsf{f} \to$$

•

$$\frac{\Gamma, u: A, \Gamma' \gg A \stackrel{\mathrm{f}}{\longrightarrow} a}{\Gamma, u: A, \Gamma' \stackrel{\mathrm{u}}{\longrightarrow} a} \text{uAtom}$$

.

$$\frac{\Gamma, x: A_1 \xrightarrow{\mathsf{u}} A_2}{\Gamma \xrightarrow{\mathsf{u}} \Pi x: A_1.A_2} \mathsf{u} \forall^x \qquad \frac{\Gamma \gg [M/x]A_2 \xrightarrow{\mathsf{f}} a \quad M \text{ has type } A_1 \text{ in } \Gamma}{\Gamma \gg \Pi x: A_1.A_2 \xrightarrow{\mathsf{f}} a} \mathsf{f} \forall$$

•

$$\frac{\Gamma, u : A_1 \xrightarrow{\mathsf{u}} A_2}{\Gamma \xrightarrow{\mathsf{u}} A_1 \to A_2} \mathsf{u} \to^u \qquad \qquad \frac{\Gamma \gg A_1 \xrightarrow{\mathsf{f}} a \qquad \Gamma \xrightarrow{\mathsf{u}} A_2}{\Gamma \gg A_2 \to A_1 \xrightarrow{\mathsf{f}} a} \mathsf{f} \to$$

$$\frac{\Gamma, u: A, \Gamma' \gg A \stackrel{\mathrm{f}}{\longrightarrow} a}{\Gamma, u: A, \Gamma' \stackrel{\mathrm{u}}{\longrightarrow} a} \text{uAtom}$$

$$\frac{}{\Gamma \gg a \stackrel{f}{\longrightarrow} a} \text{ fAtom}$$

A proof-theoretic foundation for tabled higher-order logic programming - p.19/31

•

• • • • • •

$$\frac{\Gamma, x: A_1 \xrightarrow{\mathsf{u}} A_2}{\Gamma \xrightarrow{\mathsf{u}} \Pi x: A_1.A_2} \mathsf{u} \forall^x \qquad \frac{\Gamma \gg [M/x]A_2 \xrightarrow{\mathsf{f}} a \quad M \text{ has type } A_1 \text{ in } \Gamma}{\Gamma \gg \Pi x: A_1.A_2 \xrightarrow{\mathsf{f}} a} \mathsf{f} \forall$$

•

$$\frac{\Gamma, u : A_1 \xrightarrow{\mathsf{u}} A_2}{\Gamma \xrightarrow{\mathsf{u}} A_1 \to A_2} \mathsf{u} \to^u \qquad \qquad \frac{\Gamma \gg A_1 \xrightarrow{\mathsf{f}} a \qquad \Gamma \xrightarrow{\mathsf{u}} A_2}{\Gamma \gg A_2 \to A_1 \xrightarrow{\mathsf{f}} a} \mathsf{f} \to$$

$$\frac{\Gamma, u: A, \Gamma' \gg A \stackrel{\mathrm{f}}{\longrightarrow} a}{\Gamma, u: A, \Gamma' \stackrel{\mathrm{u}}{\longrightarrow} a} \text{uAtom}$$

$$\frac{}{\Gamma \gg a \stackrel{f}{\longrightarrow} a} \text{ fAtom}$$

A proof-theoretic foundation for tabled higher-order logic programming - p.19/31

•

• • • • • •

$$\frac{\Gamma, x: A_1 \xrightarrow{\mathsf{u}} A_2}{\Gamma \xrightarrow{\mathsf{u}} \Pi x: A_1.A_2} \mathsf{u} \forall^x \qquad \frac{\Gamma \gg [M/x]A_2 \xrightarrow{\mathsf{f}} a \quad M \text{ has type } A_1 \text{ in } \Gamma}{\Gamma \gg \Pi x: A_1.A_2 \xrightarrow{\mathsf{f}} a} \mathsf{f} \forall$$

$$\frac{\Gamma, u : A_1 \xrightarrow{\mathsf{u}} A_2}{\Gamma \xrightarrow{\mathsf{u}} A_1 \to A_2} \mathsf{u} \to^u \qquad \qquad \frac{\Gamma \gg A_1 \xrightarrow{\mathsf{f}} a \qquad \Gamma \xrightarrow{\mathsf{u}} A_2}{\Gamma \gg A_2 \to A_1 \xrightarrow{\mathsf{f}} a} \mathsf{f} \to$$

$$\frac{\Gamma, u: A, \Gamma' \gg A \stackrel{\mathrm{f}}{\longrightarrow} a}{\Gamma, u: A, \Gamma' \stackrel{\mathrm{u}}{\longrightarrow} a} \text{uAtom}$$

$$\frac{1}{\Gamma \gg a \stackrel{f}{\longrightarrow} a} \text{ fAtom}$$

• • • • • • •

A proof-theoretic foundation for tabled higher-order logic programming - p.19/31

•

$$\frac{\Gamma \gg [M/x]A_2 \stackrel{f}{\longrightarrow} a \quad M \text{ has type } A_1 \text{ in } \Gamma}{\Gamma \gg \Pi x : A_1.A_2 \stackrel{f}{\longrightarrow} a} f \forall$$

• Idea: replace *M* with an existential variable *X*, which is instantiated using unification

$$\frac{\Gamma \gg [M/x]A_2 \stackrel{f}{\longrightarrow} a \quad M \text{ has type } A_1 \text{ in } \Gamma}{\Gamma \gg \Pi x : A_1.A_2 \stackrel{f}{\longrightarrow} a} f \forall$$

- Idea: replace *M* with an existential variable *X*, which is instantiated using unification
- Problem
 - Higher-order unification is undecidable restriction to higher-order patterns [Miller92,Pfenning91]
 - Instantiation for X may only depend on Γ

$$\frac{\Gamma \gg [M/x]A_2 \stackrel{f}{\longrightarrow} a \quad M \text{ has type } A_1 \text{ in } \Gamma}{\Gamma \gg \Pi x : A_1.A_2 \stackrel{f}{\longrightarrow} a} f \forall$$

- 1. Raise *M* [Miller92, Pfenning91]
 - replace M with $(\lambda \Gamma.M) \Gamma$
 - $(\lambda \Gamma.M)$ has type $\Pi \Gamma.A_1$
- 2. Replace $(\lambda \Gamma. M)$ with existential variable $X_{\Pi \Gamma. A_1}$

$$\frac{\Gamma \gg [X_{\Pi\Gamma,A_1} \ \Gamma/x] A_2 \stackrel{f}{\longrightarrow} a/\theta \quad X_{\Pi\Gamma,A_1} \text{ is new}}{\Gamma \gg \Pi x : A_1.A_2 \stackrel{f}{\longrightarrow} a/\theta}$$

$$\mathsf{Unify}(\Gamma, a', a) = \theta$$

$$\Gamma \gg a' \stackrel{\mathsf{f}}{\longrightarrow} a/\theta$$

- Annotate existential variables X with its type A
- Compute answer substitution θ as a result
- Substitution: $\theta ::= \cdot \mid \theta, X_A = M$

•

•

•

$$\frac{\Gamma, x : A_1 \xrightarrow{\mathsf{u}} A_2/\theta}{\Gamma \xrightarrow{\mathsf{u}} \Pi x : A_1.A_2/\theta}$$

$$\frac{\Gamma, u: A_1 \stackrel{\mathsf{u}}{\longrightarrow} A_2/\theta}{\Gamma \stackrel{\mathsf{u}}{\longrightarrow} A_1 \to A_2/\theta}$$

$$\frac{\Gamma, x: A, \Gamma' \gg A \stackrel{\mathsf{f}}{\longrightarrow} a/\theta}{\Gamma, x: A, \Gamma' \stackrel{\mathsf{u}}{\longrightarrow} a/\theta}$$

• • • A proof-theoretic foundation for tabled higher-order logic programming - p.21/31

$$\frac{\Gamma, x: A_1 \xrightarrow{\mathsf{u}} A_2/\theta}{\Gamma \xrightarrow{\mathsf{u}} \Pi x: A_1.A_2/\theta} \qquad \frac{\Gamma \gg [X_{\Pi\Gamma.A_1} \cdot \Gamma/x]A_2 \xrightarrow{\mathsf{f}} a/\theta \quad X_{\Pi\Gamma.A_1} \text{ is new}}{\Gamma \gg \Pi x: A_1.A_2 \xrightarrow{\mathsf{f}} a/\theta}$$

$$\frac{\Gamma, u: A_1 \xrightarrow{\mathsf{u}} A_2/\theta}{\Gamma \xrightarrow{\mathsf{u}} A_1 \to A_2/\theta}$$

$$\frac{\Gamma, x: A, \Gamma' \gg A \stackrel{\mathsf{f}}{\longrightarrow} a/\theta}{\Gamma, x: A, \Gamma' \stackrel{\mathsf{u}}{\longrightarrow} a/\theta}$$

• • • • • • • •

$$\frac{\Gamma, x: A_1 \xrightarrow{\mathsf{u}} A_2/\theta}{\Gamma \xrightarrow{\mathsf{u}} \Pi x: A_1.A_2/\theta} \qquad \frac{\Gamma \gg [X_{\Pi\Gamma.A_1} \cdot \Gamma/x]A_2 \xrightarrow{\mathsf{f}} a/\theta \quad X_{\Pi\Gamma.A_1} \text{ is new}}{\Gamma \gg \Pi x: A_1.A_2 \xrightarrow{\mathsf{f}} a/\theta}$$

$$\frac{\Gamma, u: A_1 \xrightarrow{\mathsf{u}} A_2/\theta}{\Gamma \xrightarrow{\mathsf{u}} A_1 \to A_2/\theta} \qquad \frac{\Gamma \gg A_1 \xrightarrow{\mathsf{f}} a/\theta_1 \quad \Gamma[\theta_1] \xrightarrow{\mathsf{u}} A_2[\theta_1]/\theta_2}{\Gamma \gg A_2 \to A_1 \xrightarrow{\mathsf{f}} a/\theta_1 \circ \theta_2}$$

•

•

$$\frac{\Gamma, x: A, \Gamma' \gg A \stackrel{\mathrm{f}}{\longrightarrow} a/\theta}{\Gamma, x: A, \Gamma' \stackrel{\mathrm{u}}{\longrightarrow} a/\theta}$$

$$\frac{\Gamma, x: A_1 \xrightarrow{\mathsf{u}} A_2/\theta}{\Gamma \xrightarrow{\mathsf{u}} \Pi x: A_1.A_2/\theta} \qquad \frac{\Gamma \gg [X_{\Pi\Gamma.A_1} \cdot \Gamma/x]A_2 \xrightarrow{\mathsf{f}} a/\theta \quad X_{\Pi\Gamma.A_1} \text{ is new}}{\Gamma \gg \Pi x: A_1.A_2 \xrightarrow{\mathsf{f}} a/\theta}$$

• •

$$\frac{\Gamma, u: A_1 \xrightarrow{\mathsf{u}} A_2/\theta}{\Gamma \xrightarrow{\mathsf{u}} A_1 \to A_2/\theta} \qquad \frac{\Gamma \gg A_1 \xrightarrow{\mathsf{f}} a/\theta_1 \quad \Gamma[\theta_1] \xrightarrow{\mathsf{u}} A_2[\theta_1]/\theta_2}{\Gamma \gg A_2 \to A_1 \xrightarrow{\mathsf{f}} a/\theta_1 \circ \theta_2}$$

$$\frac{\Gamma, x: A, \Gamma' \gg A \stackrel{f}{\longrightarrow} a/\theta}{\Gamma, x: A, \Gamma' \stackrel{u}{\longrightarrow} a/\theta} \qquad \frac{\mathsf{Unify}(\Gamma, a', a) = \theta}{\Gamma \gg a' \stackrel{f}{\longrightarrow} a/\theta}$$

•

$$\frac{\Gamma, x: A_1 \xrightarrow{\mathsf{u}} A_2/\theta}{\Gamma \xrightarrow{\mathsf{u}} \Pi x: A_1.A_2/\theta} \qquad \frac{\Gamma \gg [X_{\Pi\Gamma.A_1} \cdot \Gamma/x]A_2 \xrightarrow{\mathsf{f}} a/\theta \quad X_{\Pi\Gamma.A_1} \text{ is new}}{\Gamma \gg \Pi x: A_1.A_2 \xrightarrow{\mathsf{f}} a/\theta}$$

• •

$$\frac{\Gamma, u: A_1 \xrightarrow{\mathsf{u}} A_2/\theta}{\Gamma \xrightarrow{\mathsf{u}} A_1 \to A_2/\theta} \qquad \frac{\Gamma \gg A_1 \xrightarrow{\mathsf{f}} a/\theta_1 \quad \Gamma[\theta_1] \xrightarrow{\mathsf{u}} A_2[\theta_1]/\theta_2}{\Gamma \gg A_2 \to A_1 \xrightarrow{\mathsf{f}} a/\theta_1 \circ \theta_2}$$

$$\frac{\Gamma, x: A, \Gamma' \gg A \stackrel{f}{\longrightarrow} a/\theta}{\Gamma, x: A, \Gamma' \stackrel{u}{\longrightarrow} a/\theta} \qquad \frac{\mathsf{Unify}(\Gamma, a', a) = \theta}{\Gamma \gg a' \stackrel{f}{\longrightarrow} a/\theta}$$

•

Uniform Proofs with Tables

- Table ${\mathcal T}$ to store conjectures and their answers
- Main judgments:
 - 1. $\mathcal{T}; \Gamma \xrightarrow{\mathsf{u}} A/(\theta, \mathcal{T}')$
 - **2.** $\mathcal{T}; \Gamma \gg A \xrightarrow{f} a/(\theta, \mathcal{T}').$
- To prove: $\mathcal{T}; (\Gamma, x : A) \xrightarrow{\mathsf{u}} a/(\theta, \mathcal{T}')$
 - Pick program clause A from Γ
 - Retrieve answers from \mathcal{T} , if there are any

Operations

extend add $\Gamma \xrightarrow{u} a$ to \mathcal{T} , if it is not already in \mathcal{T}

insert insert answer substitution θ to \mathcal{A} of $\Gamma \xrightarrow{u} a$, if θ is not already in \mathcal{A} .

retrieve : retrieve an answer substitution θ for $\Gamma \xrightarrow{u} a$ from its answer list \mathcal{A} in \mathcal{T}

Extensions

$$\begin{aligned} & \operatorname{extend}(\mathcal{T}, (\Gamma, u : A, \Gamma') \stackrel{\mathsf{u}}{\longrightarrow} a) = \mathcal{T}_1 \\ & \mathcal{T}_1; (\Gamma, u : A, \Gamma') \gg A \stackrel{\mathsf{f}}{\longrightarrow} a/(\theta, \mathcal{T}_2) \\ & \underbrace{\operatorname{insert}(\mathcal{T}_2, (\Gamma, u : A, \Gamma') \stackrel{\mathsf{u}}{\longrightarrow} a, \theta) = \mathcal{T}_3}_{\mathcal{T}; (\Gamma, u : A, \Gamma') \stackrel{\mathsf{u}}{\longrightarrow} a/(\theta, \mathcal{T}_3)} \end{aligned} \text{ extend} \end{aligned}$$

$$\frac{\operatorname{retrieve}(\mathcal{T}; \Gamma \stackrel{\mathsf{u}}{\longrightarrow} a) = \theta}{\mathcal{T}; \Gamma \stackrel{\mathsf{u}}{\longrightarrow} a/(\theta, \mathcal{T})} \operatorname{retrieve}$$

Outline

- What is higher-order logic programming?
- Example: Type-system using subtyping
- Tabled higher-order logic programming
 - How higher-order tabling works
 - Characterization based on uniform proofs
 - Soundness proof
- Related and future work

Soundness Any uniform proof *with answer substitution* has a uniform proof.

Completeness Any uniform proofs has a uniform proofs with answer substitution.

Soundness Any *tabled* uniform proof with an answer substitution has a uniform proof with the same answer substitution.

Contributions

- Tabled higher-order logic programming Memoize and retrieve goals together with context
- High-level description of tabling based on uniform proofs
- Soundness of higher-order tabled search
- Implementation of a prototype
 - Tabeling offers a more efficient and flexible proof search engine (see experiments [Pientka02])

Outline

- What is higher-order logic programming?
- Example: Type-system using subtyping
- Tabled higher-order logic programming
 - How higher-order tabling works
 - Characterization based on uniform proofs
 - Soundness proof
- Related and future work

Related work

- Tabled search is incomplete:
 - With tabelling we find only one proof for $\Gamma \stackrel{\mathsf{u}}{\longrightarrow} A$
 - Proof irrelevance[Pfenning01]: all proofs for $\Gamma \xrightarrow{u} a$ are considered equivalent
- Other higher-order logic programming languages:
 - λ Prolog[Miller91]
 - Isabelle[Paulson86]

Future work

- Implementation issues:
 - Higher-order indexing
 - Different tabled search strategies
- Apply tabelling to linear logic programming:
 - Lolli[Miller,Hodas91]
 - LLF[Cervesato,Pfenning96]

Acknowledgements: Frank Pfenning

if you want to find out more:

http://www.cs.cmu.edu/~bp email: bp@cs.cmu.edu