
Beluga: programming with dependent types,
contextual data, and contexts

Brigitte Pientka1

McGill University, Montreal, Canada,
bpientka@cs.mcgill.ca,

Abstract. The logical framework LF provides an elegant foundation
for specifying formal systems and proofs and it is used successfully in a
wide range of applications such as certifying code and mechanizing meta-
theory of programming languages. However, incorporating LF technology
into functional programming to allow programmers to specify and reason
about formal guarantees of their programs from within the programming
language itself has been a major challenge.
In this paper, we present an overview of Beluga, a framework for pro-
gramming and reasoning with formal systems. It supports specifying for-
mal systems in LF and it also provides a dependently typed functional
language that supports analyzing and manipulating LF data via pattern
matching. A distinct feature of Beluga is its direct support for reason-
ing with contexts and contextual objects. Taken together these features
lead to powerful language which supports writing compact and elegant
proofs.

1 Introduction

Formal systems given via axioms and inference rules play a central role in de-
scribing and verifying guarantees about the runtime behavior of programs. While
we have made a lot of progress in statically checking a variety of formal guaran-
tees such as type or memory safety, programmers typically cannot define their
own safety policy and reason about it within the programming language itself.

This paper presents an overview of a novel programming and reasoning frame-
work, called Beluga [Pie08,PD08]. Beluga uses a two-level approach: on the data-
level, it supports specifications of formal systems within the logical framework
LF [HHP93]. The strength and elegance of LF comes from supporting encodings
based on higher-order abstract syntax (HOAS), in which binders in the object
language are represented as binders in LF’s meta-language. As a consequence,
users can avoid implementing common and tricky routines dealing with variables,
such as capture-avoiding substitution, renaming and fresh name generation. Be-
cause of this, one can think of HOAS encodings as the most advanced technology
for specifying and prototyping formal systems which leads to very concise and
elegant encodings and provides the most support for such an endeavor.

On top of LF, we provide a dependently typed functional language that
supports analyzing and manipulating LF data via pattern matching. A distinct



2

feature of Beluga is its explicit support for contexts to keep track of hypothesis,
and contextual objects to describe objects which may depend on them. Contex-
tual objects are characterized by contextual types. For example, A[Ψ ] describes
a contextual object Ψ.M where M has type A in the context Ψ and hence may
refer to the variables declared in the context Ψ . These contextual objects are
analyzed and manipulated naturally by pattern matching.

Furthermore, Beluga supports context variables which allow us to write
generic functions that abstract over contexts. As types classify terms, context
schemas classify contexts. Contexts whose schemas are superficially incompatible
can be reasoned with via context weakening and context subsumption.

The main application of Beluga at the moment is to prototype formal systems
together with their meta-theory. Formal systems given via axioms and inference
rules are common in the design and implementation of programming languages,
type systems, authorization and security logics, etc. Contextual objects concisely
characterize hypothetical and parametric derivations. Inductive proofs about a
given formal system can be implemented as recursive functions that case-analyze
some given (possibly hypothetical) derivation. Hence, Beluga serves as a proof
checking framework. At the same time, Beluga provides an experimental frame-
work for programming with proof objects. Due to its powerful type system, the
programmer can not only enforce strong invariants about programs statically,
but also to create, manipulate, and analyze certificates (=proofs) which guaran-
tee that a program satisfies a user-defined safety property. Therefore, Beluga is
ideally suited for applications such as certified programming and proof-carrying
code [Nec97].

Beluga is an implementation in OCaml based on our earlier work [Pie08,PD08].
It provides an re-implementation of LF [HHP93] including type reconstruction,
constraint-based higher-order unification and type checking. On top of LF, we
designed and implemented a dependently typed functional language that sup-
ports explicit contexts and pattern matching over contextual objects. To sup-
port reasoning with contexts, we support context weakening and subsumptions.
A key step towards a palatable, practical source-level language was the design
and implementation of a bidirectional type reconstruction algorithm for depen-
dently typed Beluga functions. While type reconstruction for LF and Beluga
is in general undecidable, in practice, the performance is competitive. Beluga
also provides an interpreter to execute programs using an environment-based
semantics.

Our test suite includes many specifications from the Twelf repository [PS99].
We also implemented a broad range of proofs as recursive Beluga functions,
including proofs of the Church-Rosser theorem, proofs about compiler transfor-
mations, subject reduction, and a translation from natural deduction to Hilbert
style proofs. To illustrate the expressive power of Beluga, our test suite also in-
cludes simple theorems about structural relationships between expressions and
proofs about the paths in expressions. These latter theorems are interesting since
they require nested quantifiers and implications, placing them outside the frag-
ment of propositions expressible in systems such as Twelf. The Beluga system,



3

including source code, examples, and a tutorial discussing key features of Beluga,
is available from

http://complogic.cs.mcgill.ca/beluga/.

Overview To provide an intuition for what Beluga accomplishes and how it
is used, we concentrate on implementing normalization for the simply-typed
lambda-calculus where lambda-terms are indexed with their types (Section 2).
In Section 3, we discuss the implementation of Beluga and focus in particular on
issues surrounding type reconstruction. Finally, in Section 4 we compare Beluga
to related systems with similar ambition and outline future work in Section 5.

2 Example: Normalizing lambda-terms

To illustrate the core ideas behind Beluga, we show how to implement a normal-
izer for the simply-typed lambda-calculus. We begin by introducing the simply-
typed lambda calculus. We will write T for types which consist of the base type
nat and function types T1 → T2. For lambda-terms, we use M and N . We begin
by introducing it.

Types T ::= nat | T1 → T2

Term M,N ::= y | lamx .M | app M1 M2

Next, we will define normalization of simply-typed lambda-terms using the
judgment Γ ` M −→ N which states that given the term M we can compute
its normalform N in the context Γ . The context Γ here is simply keeping track
of the list of bound variables in M and N and can be defined as follows:

Context Γ ::= · | Γ, x

We now define a normalization algorithm for the lambda-calculus where we
impose a call-by-name strategy.

x ∈ Γ
Γ ` x −→ x

Γ, x `M −→ N

Γ ` lamx .M −→ lamx .N

Γ `M1 −→ lamx .M ′ Γ ` [M2/x]M ′ −→ N

Γ ` app M1 M2 −→ N

Γ `M1 −→ N1 Γ `M2 −→ N2 N1 6= lamx .M ′

Γ ` app M1 M2 −→ app N1 N2

Finally, we show how to represent terms and types in the logical framework
LF, and implement the normalization algorithm as a recursive program in Bel-
uga.



4

Representation of simply-typed lambda-terms in LF We will represent types and
terms in such a way in the logical framework LF that we will only characterize
well-typed terms. The definition for types in LF is straightforward and since
several excellent tutorials and notes exist already [Pfe97,Twe09], we will keep
this short.

We introduce an LF type tp and define type constructors nat and arr. Next,
we represent terms with the goal to only characterize well-typed lamda-terms.
We will achieve this by indexing the type of expressions with their type using de-
pendent type. In addition, we will employ higher-order abstract syntax to encode
the binder in the object-language by binders in the meta-language, namely LF.
Hence, the constructor lam takes in a meta-level abstraction of type (exp T1 →
exp T2). To illustrate, consider the object-level lambda-term lamx . lam y . x y.

It is represented as lam λx. lam λy. app x y in LF.

tp: type .
nat: tp.
arr: tp → tp → tp.

exp: tp → type .
lam : (exp T1 → exp T2) → exp (arr T1 T2).
app : exp (arr T2 T) → exp T2 → exp (arr T2 T).

Implementation of normalization in Beluga The specification of simply-typed
lambda-terms in LF is standard up to this point. We now concentrate on imple-
menting the normalization algorithm described by the judgement Γ `M −→ N .
Intuitively, we will implement a function which when given a lambda-term M in
a context Γ , it produces a lambda-term N in the same context Γ which will be
in normal form.

The statement relies on a generic context Γ since the context of variables
which we will encounter when we traverse a lambda-abstraction grows.

Defining contexts using context schemas We begin by defining the shape of
contexts using context schemas in Beluga as follows:

schema ctx = exp T;

Schemas classify contexts just as types classify terms. The schema ctx de-
scribes a context which contains assumptions x:exp T for some type T. In other
words, all declarations occurring in a context of schema ctx are instances of
exp T for some T.

Defining a recursive function for normalizing lambda-terms Next, we will rep-
resent the judgment Γ `M −→ N as a computation-level type in Beluga. Since
we index expressions with their types, our statement will naturally enforce that
types are preserved. The type will state that “for all contexts Γ , given an ex-
pression M of type T in the context Γ , we return an expression N of type T in
the context Γ”. In Beluga, this is written as follows:

{g:(ctx)*} (exp T)[g] → (exp T)[g]

Writing {g:(ctx)*} in concrete syntax corresponds to quantifying over the
context variable g which has schema ctx. We annotate the schema name ctx with
* to indicate that declarations matching the given schema may be repeated. The



5

contextual type (exp T)[g] directly describes an expression M with type T in
the context g. The element inhabiting the computation-level type (exp T)[g]

is called a contextual object, since they may refer to variables listed in the
context g and hence only make sense within the context g. For example, the
contextual object [x:exp] lam λy. app x y has type exp [x:exp] and describes
an expression which may refer to the bound variable x.

The variable T which is free in the specified computation-level type is im-
plicitly quantified at the outside and has type tp[ ] denoting a closed object of
type tp. Type reconstruction will infer the type of T and abstract over it.

We will now show the recursive function which implements the normalization
algorithm given earlier. The function proceeds by pattern matching on elements
of type (exp T)[g] and every inference rule will correspond to one branch in the
case-expression.

rec norm : {g:(ctx)*} (exp T)[g] → (exp T)[g] =
Λ g ⇒ fn e ⇒ case e of
| [g] #p ... ⇒ [g] #p ... % Variable

| [g] lam (λx. M ... x) ⇒ % Abstraction
let [g,x:exp _ ] N ... x = norm [g, x:exp _ ] ([g,x] M ... x) in

[g] lam λx. N ... x

| [g] app (M1 ... ) (M2 ... ) ⇒ % Application
(case norm [g] ([g] M1 ... ) of

[g] lam (λx. M’ ... x) ⇒ norm [g] ([g] M’ ... (M2 ... ) )
| [g] N1 ... ⇒

let [g] N2 ... = norm [g] ([g] M2 ... ) in
[g] app (N1 ... ) (N2 ... )

)

;

The Beluga syntax follows ideas from ML-like languages with a few exten-
sion. For example, Λg ⇒... introduces abstraction over the context variable g

corresponding to quantification over the context variable g in the type of norm.
We then split on the object e which has contextual type (exp T)[g]. As in the
definition we gave earlier, there are three cases to consider for e: either it is a
variable from the context, it is a lambda-abstraction, or it is an application.
Each pattern is written as a contextual object, i.e. the object itself together
with its context. For the variable case, we use a parameter variable, written as
#p ... and write [g] #p ... . Operationally, it will match any declaration from the
context g once g is concrete. The parameter variable #p is associated with the
identity substitution (written in concrete syntax with ... ) to explicitly state its
dependency on the context g.

The pattern [g] lam λx. M ... x describes the case where the object e is a
lambda-abstraction. We write M ... x for the body of the lambda-abstraction which
may refer to all the variables from the context g (written as ... ) and the variable
x. Technically,... x describes the identity substitution which maps all the variables
from g, x:exp T to themselves. We now recursively normalize the contextual ob-
ject [g,x] M ... x. To accomplish this, we pass to the recursive call the extended
context g, x:exp _ together with the contextual object [g,x] M ... x. We write an



6

underscore for the type of x in the context g, x:exp _ and let type reconstruc-
tion determine it. Note, that we cannot write x:exp T1 since T1 would be free.
Hence, supporting holes is crucial to be able to write the program compactly and
avoid unnecessary type annotations. The result of the recursive call is a contex-
tual object [g,x] N ... x which we will use to assemble the result. In the case for
applications, we recursively normalize the contextual object [g] M1 ... and then
pattern match on its result. If it returned a lambda-abstraction lam λx. M’ ... x,
we simply replace x with M2 ... . Substitution is inherently supported in Beluga
and ... (M2 ... ) describes the substitution which maps all variables in g to them-
selves (written as ... ) and x is mapped to M2 ... . In the case where normalizing
[g] M1 ... does not return a lambda-abstraction, we continue normalizing [g]

M2 ... and reassemble the final result. In conclusion, our implementation yields a
natural, elegant, and very direct encoding of the formal description of normal-
ization.

2.1 Summary of the main ideas

Beluga supports a two-level approach for programming with and reasoning about
HOAS encodings. The data-level supports specifications of formal systems in the
logical framework LF. On top of it, we provide an expressive computation lan-
guage which supports dependent types and recursion over HOAS encodings. A
key challenge is that we must traverse a λ-abstractions and manipulate objects
which may contain bound variables. In Beluga, we solve this problem by using
contextual types which characterize contextual objects and by introducing con-
text variables to abstract over concrete contexts and parameterize computation
with them. By design, variables occurring in contextual objects can never es-
cape their scope, a problem which often arises in other approaches. While in
our previous example, all contextual types and objects shared the same context
variable, our framework allows the introduction of different context variables, if
we wish to do so.

Beluga’s theoretical basis is contextual modal type theory which has been
described in [NPP08]. We later extended contextual modal type theory with
context variables which allow us to abstract over concrete contexts and param-
eter variables which allow us to talk abstractly about elements of contexts. The
foundation for programming with contextual data objects and contexts was first
described in [Pie08] and subsequently extended with dependent types in [PD08].

3 Implementation

The Beluga system is implemented in OCaml. It consists of a re-implementation
of the logical framework LF [HHP93] which supports in general specifying formal
systems given via axioms and inference rules. Similar to the core of the Twelf
system [PS99], we support type reconstruction for LF signatures based on higher-
order pattern unification with constraints.



7

On top of the logical framework LF, we provide a dependently-typed func-
tional language which allows the user to declare context schemas, write recursive
functions using pattern matching on contextual data and abstract over concrete
contexts using context variables and context abstraction. Designing a palatable,
usable source language for Beluga has been challenging. Subsequently, we will
list some of the challenges we addressed:

3.1 Higher-order unification with constraints

Higher-order unification is in general undecidable [Gol81], however a decidable
fragment, called higher-order patterns [Mil91,Pfe91b] exist. A higher-order pat-
tern is a meta-variable which is applied to distinct bound variables. In our im-
plementation, we associate meta-variables with explicit substitutions which rep-
resents the distinct bound variables which may occur in the instantiation of the
meta-variable and employ de Bruijn indices [DHKP96]. Our implementation of
higher-order pattern unification is based on the development in [Pie03].

Since concentrating on higher-order patterns only is too restrictive, we adopt
ideas from the Twelf system and solve higher-order pattern problems eagerly
and delay non-pattern cases using constraints which are periodically revisited.
Beluga also supports parameter variables which can be instantiated with either
bound variables or other parameter variables and we extended unification to
account for them. The main difficulty in handling parameter variables lies in the
fact that their type may be a Σ-type (dependent product). In general, higher-
order unification for Σ-types is undecidable. Fortunately, if we restrict Σ-types
to only parameter variables or bound variables, then unique solution exists.

3.2 Type reconstruction for Beluga

Dependently typed systems can be extremely verbose since dependently typed
objects must carry type information. For this reason, languages supporting de-
pendent types such as Twelf [PS99], Delphin [PS08], Coq [BC04] , Agda [Nor07],
or Epigram [MM04] all support some form of type reconstruction. However, there
are hardly any concise formal description on how this is accomplished, what is-
sues arise in practice, and what requirements the user-level syntax should satisfy.
Formal foundations and correctness guarantees are even harder to find. This is a
major obstacle if we want this technology to spread and dependent types are to
reach mainstream programmers and implementors of programming languages.

In the setting of Beluga, we must consider two forms of type reconstruction:
(1) type reconstruction for the logical framework LF, which allows us to specify
formal systems, and (2) type reconstruction for the computation language which
support writing recursive programs using pattern matching on LF objects.

Type reconstruction for LF We illustrate briefly the problem. Consider the ex-
pression lamx . lam y . app x y which is represented as lam λx. lam λy. app x y

in LF. However, since expressions are indexed by types to ensure that we only
represent well-typed expressions, constructors lam and app take in also two index



8

arguments describing the type of the expression. Type reconstruction needs to
infer them. The reconstructed, fully explicit representation is

lam (arr T S) (arr T S) λx. lam S T λy. app T S x y

We adapted the general principle also found in [Pfe91a]: We may omit an
index argument when a constant is used, if it was implicit when the type of
the constant was declared. An argument is implicit to a type if it either occurs
as a free variable in the type or it is an index argument in the type. Following
the ideas in the Twelf system, we do not allow the user to supply an implicit
argument explicitly.

Type reconstruction is, in general, undecidable for the LF. Our algorithm
similar to its implementation in the Twelf system reports a principal type, a
type error, or that the source term needs more type information.

Type reconstruction for dependently typed recursive functions Type reconstruc-
tion for Beluga functions begins by reconstructing their specified computation-
level type. For example, the type of norm was declared as {g:(ctx)*} (exp T)[g]

→(exp T)[g] where the variable T is free. Type reconstruction will infer its type
as tp[ ] and yield {g:(ctx)*}{T::tp[ ]}(exp T)[g] →(exp T)[g]. Note, that we
do not attempt to infer the schema of the context variable at this point. This
could only be done by inspecting the actual program and performing multiple
passes over it. Since the type of inferred variables may depend on the context
variable g, we insert their abstractions just after the context variable has been
introduced.

Beluga functions, as the function norm, may be dependently typed and we ap-
ply the same principle as before. An index argument is implicit to a computation-
level type if it either occurs as a free meta-variable in the computation-level type
or it is an index argument in the computation-level type. Hence, we may omit
passing an index argument to a Beluga function, if it was implicit when the type
of the function was declared. Considering the program norm again this means
whenever we call norm recursively we may omit passing the concrete type for T.

Let us describe reconstruction of recursive function step-by-step. Reconstruc-
tion of the recursive function norm is guided by its type which is now fully known.
For example, we know that after introducing the context with Λg ⇒... , we
must introduce the meta-variable T and the beginning of the norm function will
be: Λg ⇒mlam T ⇒fn e ⇒case e of ....

Reconstruction of the function body may refer to T and cannot leave any
free meta-variables. It must accomplish three tasks: (1) We must insert missing
arguments to recursive calls to norm. For example in the application case, we
have norm [g] ([g] M1 ... ), but norm must in fact also take as a second input
the actual type of (M1 ... ). (2) We must infer the type of meta-variables and
parameter variables occurring in patterns. (3) We must infer the overall type of
the pattern and since patterns may refine dependent types, we must compute a
refinement. For example, in the case for abstractions, the type of the scrutinee
is (exp T)[g], but the type of the pattern is (exp (arr T1 T2))[g]. Hence, we
must infer the refinement which state T = (arr T1 T2).



9

One major challenge is that omitted arguments, which we need to infer,
may depend on context variables, bound variables, and other meta-variables.
To accomplish this we extended our unification algorithm to support meta2-
variables which allow us to track dependencies on contexts and other bound
meta-variables.

Type reconstruction for the computation level is undecidable. For our com-
putation language, we check functions against a given type and either succeed,
report a type error, or fail by asking for more type information if no ground in-
stantiation can be found for an omitted argument or if we cannot infer the type
of meta-variables occurring in patterns. It is always possible to make typing
unambiguous by adding more annotations.

4 Related work

In our discussion on related work, we will concentrate on programming languages
supporting HOAS specifications and reasoning about them. Most closely related
to our work is the Twelf system [PS99], a proof checking environment based
on the logical framework LF. Its design has strongly influenced the design of
Beluga. While both Twelf and Beluga support specifying formal systems using
HOAS in LF, Twelf supports implementing proofs as relations. To verify that
the relation indeed constitutes a proof, one needs to prove separately that it
is a total function. Twelf is a mature system providing termination checking
as well as an implementation of coverage checking. Both features are under
development for Beluga. One main difference between Twelf and Beluga lies in
the treatment of contexts. In Twelf, the actual context of hypotheses remains
implicit. As a consequence, instead of a generic base case, base cases in proofs
are handled whenever an assumption is introduced. This may lead to scattering
of base cases and adds some redundancy. World declarations, similar to context
schema declarations, check that assumptions introduced are of the expected form
and that appropriate base cases are indeed present. Because worlds in the Twelf
system also carry information about base cases, manual weakening is required
more often when assembling larger proofs using lemmas. Explicit contexts in
Beluga, make the meta-theoretic reasoning about contexts, which is hidden in
Twelf, explicit. We give a systematic comparison and discuss the trade-offs of
this decision together with illustrative examples in [FP10].

Another important difference between Twelf and Beluga is its expressive
power. To illustrate, consider the following simple statement about lambda-
terms: If for all N , N is a subterm of K implies that N is a subterm of M , then K
must be a subterm of M . Because this statement requires nested quantification
and implication, especially in a negative position, it is outside Twelf’s meta-logic
which is used to verify that a given relation constitutes a proof. While this has
been known, we hope that this simple theorem illustrates this point vividly.

More recently, we see a push towards incorporating logical framework tech-
nology into mainstream programming languages to support the tight integra-
tion of specifying program properties with proofs that these properties hold.



10

The Delphin language [PS08] is most closely related to Beluga. Both support
writing recursive functions over LF specifications, but differ in the theoretical
foundation. In particular, contexts to keep track of assumptions are implicit in
Delphin. It hence lacks the ability to distinguish between closed objects and ob-
jects depending on bound variables on the type-level. Delphin’s implementation
utilizes as much of the Twelf infrastructure as possible.

Licata and Harper [LH09] developed a logical framework supporting datatypes
that mix binding and computation, implemented in the programming language
Agda [Nor07,Agd09]. Their system does not explicitly support context variables
and abstraction over them, but interprets binders as pronouns which refer to
a designated binding site. Structural properties such as weakening, contraction,
and substitution are not directly supported by the underlying theoretical foun-
dation, but implemented in a datatype-generic manner. Finally, the current im-
plementation does not support dependent types.

A different more pragmatic approach to allow manipulation of binding struc-
tures is pursued in nominal type systems which serve as a foundation of FreshML
[SPG03]. In this approach names and α-renaming are supported but implement-
ing substitution is left to the user. Generation of a new name and binding names
are separate operations which means it is possible to generate data which con-
tains accidentally unbound names since fresh name generation is an observable
side effect. To address this problem, Pottier [Pot07] describes pure FreshML
where we can reason about the set of names occurring in an expression via a
Hoare-style proof system. These approaches however lack dependent typing and
hence are not suitable for programming with proofs.

5 Conclusion and future work

Over the past year, we designed an implemented Beluga based on our type-
theoretic foundation described in [Pie08,PD08]. Our current prototype has been
tested on a wide variety of examples, including proofs of the Church-Rosser the-
orem, proofs about compiler transformations, subject reduction, and translation
from natural deduction to Hilbert style proofs. We also used Beluga to imple-
ment proofs for theorems about structural relationships between expressions and
proofs about the paths in expressions. Both of these statements require nested
quantifiers and implications, placing them outside the fragment of propositions
expressible in systems such as Twelf. In the future, we plan to concentrate on
the following two aspects:

Guaranteeing totality of functions While type-checking guarantees local con-
sistency and partial correctness, it does not guarantee that the implemented
function is total. Thus, while we can implement, partially verify, and execute
the functions, at present Beluga cannot guarantee that these functions are total
and that their implementation constitutes a valid proof. The two missing pieces
are coverage and termination. In previous work [DP09], we have described an
algorithm to ensure that all cases are covered and we are planning an imple-
mentation of coverage during the next few months. Verifying termination of a



11

recursive function will essentially follow similar ideas from the Twelf system
[RP96,Pie05] to ensure that arguments passed to the recursive call are indeed
smaller.

Automating induction proofs Our framework currently supports the implemen-
tation of induction proofs as recursive functions. It however lacks automation. In
the future, we plan to explore how to connect our framework to a theorem prover
which can fill in parts of the function (= proof) automatically and where the
user can interactively develop functions in collaboration with a theorem prover.

References

Agd09. Agda wiki, 2009. http://wiki.portal.chalmers.se/agda/.

BC04. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Springer,
2004.

DHKP96. Gilles Dowek, Thérèse Hardin, Claude Kirchner, and Frank Pfenning. Uni-
fication via explicit substitutions: The case of higher-order patterns. In
M. Maher, editor, Proceedings of the Joint International Conference and
Symposium on Logic Programming, pages 259–273, Bonn, Germany, Septem-
ber 1996. MIT Press.

DP09. Joshua Dunfield and Brigitte Pientka. Case analysis of higher-order data. In
International Workshop on Logical Frameworks and Meta-Languages: The-
ory and Practice (LFMTP’08), volume 228 of Electronic Notes in Theoret-
ical Computer Science (ENTCS), pages 69–84. Elsevier, June 2009.

FP10. Amy P. Felty and Brigitte Pientka. Reasoning with higher-order abstract
syntax and contexts: A comparison. Technical report, School of Computer
Science, McGill University, Jan 2010.

Gol81. W. D. Goldfarb. The undecidability of the second-order unification problem.
Theoretical Computer Science, 13:225–230, 1981.

HHP93. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defin-
ing logics. Journal of the ACM, 40(1):143–184, January 1993.

LH09. Daniel R. Licata and Robert Harper. A universe of binding and computa-
tion. In Graham Hutton and Andrew P. Tolmach, editors, 14th ACM SIG-
PLAN International Conference on Functional Programming, pages 123–
134. ACM Press, 2009.

Mil91. Dale Miller. Unification of simply typed lambda-terms as logic program-
ming. In Eighth International Logic Programming Conference, pages 255–
269, Paris, France, June 1991. MIT Press.

MM04. Conor McBride and James McKinna. The view from the left. Journal of
Functional Programming, 14(1):69–111, 2004.

Nec97. George C. Necula. Proof-carrying code. In 24th Annual Symposium on Prin-
ciples of Programming Languages (POPL’97), pages 106–119. ACM Press,
January 1997.

Nor07. Ulf Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineering,
Chalmers University of Technology, sep 2007. Technical Report 33D.



12

NPP08. Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual
modal type theory. ACM Transactions on Computational Logic, 9(3):1–49,
2008.

PD08. Brigitte Pientka and Joshua Dunfield. Programming with proofs and ex-
plicit contexts. In ACM SIGPLAN Symposium on Principles and Practice
of Declarative Programming (PPDP’08), pages 163–173. ACM Press, July
2008.

Pfe91a. Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages 149–
181. Cambridge University Press, 1991.

Pfe91b. Frank Pfenning. Unification and anti-unification in the Calculus of Con-
structions. In Sixth Annual IEEE Symposium on Logic in Computer Science,
pages 74–85, Amsterdam, The Netherlands, July 1991.

Pfe97. Frank Pfenning. Computation and deduction, 1997.
Pie03. Brigitte Pientka. Tabled higher-order logic programming. PhD thesis, De-

partment of Computer Science, Carnegie Mellon University, 2003. CMU-
CS-03-185.

Pie05. Brigitte Pientka. Verifying termination and reduction properties about
higher-order logic programs. Journal of Automated Reasoning, 34(2):179–
207, 2005.

Pie08. Brigitte Pientka. A type-theoretic foundation for programming with higher-
order abstract syntax and first-class substitutions. In 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’08), pages 371–382. ACM Press, 2008.

Pot07. François Pottier. Static name control for FreshML. In 22nd IEEE Sympo-
sium on Logic in Computer Science (LICS’07), pages 356–365. IEEE Com-
puter Society, July 2007.

PS99. Frank Pfenning and Carsten Schürmann. System description: Twelf — a
meta-logical framework for deductive systems. In H. Ganzinger, editor,
Proceedings of the 16th International Conference on Automated Deduction
(CADE-16), volume 1632 of Lecture Notes in Artificial Intelligence, pages
202–206. Springer, 1999.

PS08. Adam B. Poswolsky and Carsten Schürmann. Practical programming with
higher-order encodings and dependent types. In Proceedings of the 17th
European Symposium on Programming (ESOP ’08), volume 4960, page 93.
Springer, March 2008.

RP96. Ekkehard Rohwedder and Frank Pfenning. Mode and termination checking
for higher-order logic programs. In Hanne Riis Nielson, editor, Proceedings
of the European Symposium on Programming, pages 296–310, Linköping,
Sweden, April 1996. Springer-Verlag Lecture Notes in Computer Science
(LNCS) 1058.

SPG03. Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay. FreshML:
programming with binders made simple. In 8th International Conference on
Functional Programming (ICFP’03), pages 263–274, New York, NY, USA,
2003. ACM Press.

Twe09. Twelf wiki, 2009. http://twelf.plparty.org/wiki/Main_Page.


