
Submitted to:
LFMTP 2010

c© A. Abel & B. Pientka
This work is licensed under the
Creative Commons Attribution License.

Explicit substitutions for contextual type theory

Andreas Abel
Theoretical Computer Science, Ludwig-Maximilians-University Munich, Germany

andreas.abel@ifi.lmu.de

Brigitte Pientka
School of Computer Science, McGill University, Montreal, Canada

bpientka@cs.mcgill.ca

In this paper, we present an explicit substitution calculus which distinguishes between ordinary bound
variables and meta-variables. Its typing discipline is derived from contextual modal type theory. We
first present a dependently typed lambda calculus with explicit substitutions for ordinary variables
and explicit meta-substitutions for meta-variables. We then present a weak head normalization pro-
cedure which performs both substitutions lazily and in a single pass thereby combining substitution
walks for the two different classes of variables. Finally, we describe a bidirectional type checking
algorithm which uses weak head normalization and prove soundness.

Keywords: Explicit substitutions, Metavariables, Logical framework, Contextual modal type
theory

1 Introduction

Over the last decade, reasoning and programming with dependent types has received wide attention
and several systems provide implementations for dependently typed languages (see for example Agda
[BDN09, Nor07], Beluga [PD08, PD10], Delphin [PS08, PS09], Twelf [PS99], etc).

As dependent types become more accepted, it is interesting to better understand how to implement
such systems efficiently. While all the systems mentioned support type checking and moreover provide
implementations supporting type reconstruction for dependent types, there is a surprising lack in doc-
umentation and gap in modelling the theoretical foundations of theses implementations. This makes
it hard to reproduce some of the ideas, and prevents them from being widely accessible to a broader
audience.

A core question in the implementations for dependently typed systems is how to handle substitutions.
Let us illustrate the problem in the setting of contextual modal type theory [NPP08], where we not only
have ordinary Π-types to abstract over ordinary variables x but also Π2-types which allow us to abstract
over meta-variables X , and we find the following two elimination rules:

∆;Γ `M : Πx:A.B ∆;Γ ` N : A
∆;Γ `M N : [N/x]B

∆;Γ `M : Π2X :A[Ψ].B ∆;Ψ ` N : A

∆;Γ `M (Ψ̂.N) : [[Ψ̂.N/X]]B

In the Π-elimination rule, we do not want to apply the substitution N for x in the type B eagerly
during type checking, but accumulate all the individual substitutions and apply them simultaneously, if
necessary. Similarly, in the Π2-elimination rule, we do not want to replace eagerly the meta-variable X
with N in the type B but accumulate all meta-substitutions and also apply them simultaneously. In fact,
we would like to combine substitution walks for meta-variables and ordinary variables, and simultane-
ously apply ordinary substitution and meta-substitutions to avoid multiple traversals. This will allow us

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

potentially to detect that two terms are not equal without actually performing a substitution, and in the
case of a de Bruijn numbering scheme for variables, we would like to avoid unnecessary renumbering.

Explicit substitutions go back to Abadi et.al [ACCL90] and are often central in the implementing
core algorithms such as type checking or higher-order unification [DHK95, DHKP96]. Many existing
implementations of proof assistants such as the Twelf system, Delphin, Beluga, Agda or λProlog use
explicit substitutions to combine substitution walks for ordinary variables. A different approach with the
same goal of handling substitutions efficiently is the suspension calculus [NW98, LNQ05].

However, meta-variables are often modeled via references and by instantiating a reference to a meta-
variable we can usually avoid propagating explicitly substitutions for meta-variables. Yet there are mul-
tiple reasons why we would like to treat meta-variables non-destructively and be able to explicitly handle
meta-substitutions explicitly. First, implementations based on a non-destructive unification may be eas-
ier to maintain and may be more efficient. In particular, this may be the case in type reconstruction
where we find the most general type and we may need to abstract over free meta-variables. The issue
of abstracting over most general solutions also arises in tabled higher-order logic programming [Pie03],
where we want to store explicitly the answer substitution for the meta-variables occurring in a query.
Abstraction is notoriously expensive since we need to first traverse a term to collect all references and
subsequently compute their appropriate de Bruijn index.

While meta-variables are often only introduced internally, some languages such as Beluga have
taken the step to distinguish ordinary bound variables and meta-variables already in the source lan-
guage. Consequently, we find different classes of bound variables: bound ordinary variables and bound
meta-variables. When type-checking Beluga programs, we would like to combine substitution walks
for these different classes. Understanding how these two substitutions interact is also crucial for type
reconstruction in this setting, since omitted arguments may depend on both kinds of variables.

In this paper, we revisit the ideas of explicit substitutions where we combine substitutions for ordi-
nary variables and meta-variables. In particular, we describe an explicit substitution calculus with first-
class meta-variables inspired by contextual modal type theory [NPP08]. We first present a dependently
typed lambda calculus with explicit substitutions for ordinary variables and explicit meta-substitutions
for meta-variables. We then present a weak head normalization procedure which performs both substi-
tutions lazily and in a single pass thereby combining substitution walks for the two different classes of
variables. Finally, we give an algorithm for definitional equality and present a bidirectional type checking
algorithm which employs weak head normalization and show soundness. In the future, we plan to use the
presented calculus as a foundation for implementing the Beluga language which supports programming
and reasoning with formal systems specified in the logical framework LF.

2 The Calculus: Syntax, Typing, and Equality

Let us first introduce the grammar and typing rules for the dependently typed λ -calculus with meta-
variables based on the ideas in [NPP08]. The system we consider is and extension of the logical frame-
work LF with first-class meta-variables. We design the calculus as an extension of previous explicit
substitution calculi such as [ACCL90, DHK95]. These calculi only support ordinary substitutions but
not at the same time meta-substitutions.

Our calculus supports general closures on the type and term level. Meta-variables (which sometimes
are also called contextual variables) are written as X . Typically, meta-variables occur as a closure [σ]X ,
but we will treat this as a special case of the general closure [σ]N.

To provide a compact representation of the typing rules, we follow the tradition of pure type systems

2

and introduce sorts and expressions where sorts can be either kind or type and expressions include terms,
types and kinds. A single syntactic category of expressions helps us avoid duplication in the typing and
equality rules for closures [σ]E and [[θ]]E. We will write M, A, K, if indeed expressions can only occur
as terms M, types A or kinds K.

Sorts s ::= kind | type
Expressions E,F ::= s | a |ΠE.F | xn | Xn | λ E | F E | [σ]E | [[θ]]E

Special cases of expressions:

Kinds K ::= type |ΠA.K | [σ]K | [[θ]]K
Types A,B ::= a | A M |ΠA.B | [σ]A | [[θ]]A
Terms M,N ::= xn | Xn | λ M |M N | [σ]N | [[θ]]M (n≥ 1)

Substitutions σ ,τ ::= ↑n | σ ,M | [τ]σ | [[θ]]σ (n≥ 0)

Meta-substitutions θ ::= ⇑n | θ ,M | [[θ]]θ ′ (n≥ 0)

Contexts Ψ,Φ ::= · |Ψ,A
Meta-contexts ∆ ::= · | ∆,Ψ.A

We have two different de Bruijn indices xn and Xn (n ≥ 1), one for numbering bound variables and
one for numbering meta-variables. xn represents the de Bruijn number n and stands for an ordinary
bound variable, while Xn represents the de Bruijn number n but stands for a meta-variable. Due to
the two kinds of substitutions, we also have two kinds of closures; the closure of an expression with
an ordinary substitution σ and the closure of an expression with a meta-substitution θ . Following the
treatment of meta-variables in [NPP08], we describe the type of a meta-variable as Ψ . A which stands
for a meta-variable of type A which may refer to variables in Ψ.

Meta-substitutions provide a term M for a meta-variable X of type Ψ . A. Note that M does not
denote a closed term, but a term of type A in the context Ψ and hence may refer to variables from Ψ. In
previous presentations where we use names for variables, we hence wrote Ψ̂.M/X to be able to rename
the variables in M appropriately. Because bound variables are represented using de Bruijn indices in this
paper, we simply write M/X but keep in mind that M is not necessarily closed.

Our calculus also features closures on the level of substitutions and meta-substitutions. For example,
we allow the closure [σ]τ which will allow us to lazily treat ordinary substitution composition and the
closure [[θ]]σ which will postpone applying θ to the ordinary substitution σ . Similarly, the closure [[θ]]θ ′

for meta-substitutions allows us to lazily compose meta-substitutions. We do not introduce a closure
of a context Ψ and a meta-substitution θ , but instead define [[θ]]Ψ eagerly by simply pushing the meta-
substitution θ to each declaration as follows: [[θ]]·= · and [[θ]](Ψ,A) = [[θ]]Ψ, [[θ]]A.

2.1 Typing rules

In contrast to [HP03], we present the typing rules for LF in pure type system (PTS) style, to avoid rule
duplication (which would be substantial for the rules of definitional equality given in the next section).
We will use the following judgments:

3

` ∆ mctx Meta-context ∆ is well-typed
∆ ` Ψ ctx Context Ψ is well-typed
∆;Γ ` E : F Expression E has “type” F
∆;Γ ` σ : Ψ Substitution σ has domain Ψ and range Γ

∆ ` θ : ∆′ Contextual Substitution θ has domain ∆′ and range ∆

The judgement ∆;Γ ` E : F subsumes the judgements ∆;Γ ` M : A (term M has type A), ∆;Γ ` A : K
(type family A has kind K) and ∆;Γ ` K : kind (kind K is well-formed).

Next, we present the typing rules. To improve readability, we use the letters M,N,A,B,K in case the
rule for ∆;Γ ` E : F is indeed restricted to hold only for terms M or N, types A or B, or kinds K.

Expressions
∆ ` Γ ctx

∆;Γ ` type : kind

∆ ` Γ ctx Σ(a) = K
∆;Γ ` a : K

∆;Γ,A ` E : s
∆;Γ `ΠA.E : s

∆;Γ ` A : type

∆;Γ,A ` x1 : [↑1]A
∆;Γ ` xn : A ∆;Γ ` B : type

∆;Γ,B ` xn+1 : [↑1]A

∆;Γ ` A : type

∆,Γ.A; [[⇑1]]Γ ` X1 : [[⇑1]]A
∆;Γ ` Xn : A ∆;Γ′ ` A′ : type

∆,Γ′ .A′; [[⇑1]]Γ ` Xn+1 : [[⇑1]]A

∆;Γ,A `M : B ∆;Γ,A ` B : type

∆;Γ ` λ M : ΠA.B
∆;Γ ` E : ΠA.F ∆;Γ ` N : A

∆;Γ ` E N : [↑0,N]F

∆;Γ ` σ : Ψ ∆;Ψ ` E : F
∆;Γ ` [σ]E : [σ]F

∆ ` θ : ∆′ ∆′;Γ ` E : F
∆; [[θ]]Γ ` [[θ]]E : [[θ]]F

∆;Γ ` E : F1 ∆;Γ ` F1 ≡ F2 : s
∆;Γ ` E : F1

Contexts and meta-contexts

` ·mctx

∆;Ψ ` A : type

` ∆,Ψ.A mctx
` ∆ mctx
∆ ` · ctx

∆;Ψ ` A : type

∆ `Ψ,A ctx

Ordinary substitutions
∆ `Ψ,Γ ctx |Γ|= n

∆;Ψ,Γ ` ↑n : Ψ

∆;Γ ` σ : Ψ ∆;Ψ ` A : type ∆;Γ `M : [σ]A
∆;Γ ` (σ ,M) : (Ψ,A)

∆;Γ ` τ : Ψ′ ∆;Ψ′ ` σ : Ψ

∆;Γ ` [τ]σ : Ψ

∆ ` θ : ∆′ ∆′;Γ ` σ : Ψ

∆; [[θ]]Γ ` [[θ]]σ : [[θ]]Ψ

Meta-substitutions
` ∆,∆′ mctx |∆′|= n

∆,∆′ ` ⇑n : ∆

∆ ` θ : ∆′ ∆′;Γ ` A : type ∆; [[θ]]Γ `M : [[θ]]A
∆ ` (θ ,M) : ∆′,Γ.A

∆ ` θ : ∆0 ∆0 ` θ ′ : ∆′

∆ ` [[θ]]θ ′ : ∆′

In the typing rule for λM, the hypothesis ∆;Γ,A ` B : type prevents us to form a λ -abstraction
on the type level (for this, we would need B : kind). Lambda on the type level does not increase the
expressiveness [Ada05, HP03].

4

Unlike the system in [HP03], we do not assume that the meta-context ∆ and the context Γ are well-
formed, but ensure that these are well-formed contexts by adding appropriate typing premises to for
example the typing rules for bound variables and meta-variables. We establish separately that contexts
are well-formed (see Lemma 1 on page 8) and that the inference rules are valid (see Theorem 4 on page
9). While this presentation means we will repeatedly type-check parts of the meta-context ∆ and the
bound variable context Γ, it allows us to avoid labels at lambda-abstractions and simplifies the subsequent
development of definitional equality.

We concentrate here on explaining the typing rules for bound variables and meta-variables. The typ-
ing rules for bound variables essentially peel off one type declaration in the context Γ until we encounter
the variable x1. The typing premises guarantee that the meta-context ∆ and the context Γ and the type A
of the bound variable all are well-typed. The rule for meta-variables are built in a similar fashion as the
typing rules for bound variables peeling off type declarations from the meta-context ∆ until we encounter
the meta-variable X1.

2.2 Definitional Equality

In this section, we describe definitional equality on expressions, ordinary substitutions, and meta-substitutions
in a type-directed manner. Our definitional equality compares two expressions converting them to βη-
long normal forms. We will use the following judgments:

∆;Γ ` E1 ≡ E2 : F Expressions E1 and E2 are equal at “type” F
∆;Γ ` σ1 ≡ σ2 : Ψ Substitutions σ1 and σ2 are equal at domain Ψ

∆ ` θ1 ≡ θ2 : ∆′ Meta-substitutions θ1 and θ2 are equal at domain ∆′

The judgement ∆;Γ ` E1 ≡ E2 : F subsumes the judgements ∆;Γ ` K1 ≡ K2 : kind (kinds K1 and K2 are
equal), ∆;Γ ` A1 ≡ A2 : K (types A1 and A2 are equal of kind K) and ∆;Γ `M1 ≡M2 : A (terms M1 and
M2 are equal of type A).

These judgements are all congruences, i. e., we have equivalence rules (reflexivity, symmetry, transi-
tivity) and a congruence rule for each syntactic construction. For instance, this is one of congruence rule
for substitutions and the type conversion rule:

∆;Γ `M ≡M′ : [σ]A ∆;Γ ` A : type ∆;Γ ` σ ≡ σ ′ : Ψ

∆;Γ ` (σ ,M)≡ (σ ′,M′) : Ψ,A
∆;Γ `M ≡ N : A ∆;Γ ` A≡ B : s

∆; Γ `M ≡ N : B

The remaining rules for definitional equality fall into two classes: the computational laws for ordinary
substitutions (Figure 1) and the computational laws for meta-substitutions (Figure 2). Both sets of rules
follow the same principle. They are grouped into Identity and Composition rules, propagation and re-
duction rules. For ordinary substitutions we also include β -reduction. For meta-substitutions, there is no
equivalent β -reduction rule since we do not support abstraction over meta-variables. However, we add
propagation into ordinary substitutions. We also note that pushing a meta-substitution inside a lambda-
abstraction or a Π-type does not require a shift of the indices, since indices of ordinary bound variables
are distinct from indices of meta-variables and no capture can occur.

To illustrate the definitional equality rules, we show how to derive ∆;Γ ` [σ ,M]xn+1 ≡ [σ]xn : [σ]A
which also demonstrates that such a rule is admissible. Transitivity is essential to assemble the following
sub-derivations.

5

β -Reduction

∆;Γ,A `M : B ∆;Γ,A ` B : type ∆;Γ ` N : A

∆;Γ ` (λM)N ≡ [↑0,N]M : [↑0,N]B

Substitution Propagation: Identity and Composition

∆;Γ ` E : F

∆;Γ ` [↑0]E ≡ E : F

∆;Γ ` σ : Γ′ ∆;Γ′ ` τ : Ψ ∆;Ψ ` E : F
∆;Γ ` [σ][τ]E ≡ [[σ]τ]E : [[σ]τ]F

Substitution Propagation: Constants

∆;Γ ` σ : Ψ

∆;Γ ` [σ]type≡ type : kind

∆;Γ ` σ : Ψ ∆;Γ ` a : K
∆;Γ ` [σ]a≡ a : [σ]K

Substitution Propagation: Variable Lookup

∆;Γ ` σ : Ψ ∆;Ψ ` A : type ∆;Γ `M : [σ]A
∆;Γ ` [σ ,M]x1 ≡M : [σ]A

∆;Γ ` xn+1 : A

∆;Γ ` xn+1 ≡ [↑1]xn : A

Substitution Propagation: Pushing into Expression Constructions

∆;Γ ` σ : Ψ ∆;Ψ,A ` F : s

∆;Γ ` [σ](ΠA.F)≡Π [σ]A. [[↑1]σ ,x1]F : s

∆;Γ ` σ : Ψ ∆;Ψ,A `M : B ∆;Ψ,A ` B : type

∆;Γ ` [σ](λM)≡ λ .[[↑1]σ ,x1]M : Π [σ]A. [[↑1]σ ,x1]B

∆;Γ ` σ : Ψ ∆;Ψ ` E : ΠA.F ∆;Ψ ` N : A
∆;Γ ` [σ](E N)≡ [σ]E [σ]N : [σ , [σ]N]F

Substitution Reductions: Pairing and Shifting

∆;Γ ` (σ ,M) : Ψ,Ψ′,A |Ψ′|= n

∆;Γ ` [σ ,M]↑n+1 ≡ [σ]↑n : Ψ

∆;Γ ` σ : Ψ′ ∆;Ψ′ ` (τ,M) : Ψ,A
∆;Γ ` [σ](τ,M)≡ ([σ]τ, [σ]M) : Ψ,A

∆ ` Γ,Γ1,Γ2 ctx |Γ1|= m |Γ2|= n
∆;Γ,Γ1,Γ2 ` [↑n]↑m = [↑n+m] : Γ

Substitution Reductions: Category Laws

∆;Γ ` σ : Ψ

∆;Γ ` [↑0]σ ≡ σ : Ψ

∆;Γ ` σ : Ψ

∆;Γ ` [σ]↑0 ≡ σ : Ψ

∆;Γ1 ` σ1 : Γ2 ∆;Γ2 ` σ2 : Γ3 ∆;Γ3 ` σ3 : Γ4

∆;Γ1 ` [σ1][σ2]σ3 ≡ [[σ1]σ2]σ3 : Γ4

Figure 1: Computational Laws I: β and substitutions

6

Meta-Substitution Propagation: Identity and Composition

∆;Γ ` E : F

∆;Γ ` [[⇑0]]E ≡ E : F

∆ ` θ : ∆′ ∆′ ` θ ′ : ∆′′ ∆′′;Γ ` E : F
∆; [[[[θ]]θ ′]]Γ ` [[θ]][[θ ′]]E ≡ [[[[θ]]θ ′]]E : [[[[θ]]θ ′]]F

Meta-Substitution Propagation: Constants and Ordinary Variables

∆ ` θ : ∆′ ∆′ ` Γ ctx

∆; [[θ]]Γ ` [[θ]]type≡ type : kind

∆ ` θ : ∆′ ∆′;Γ ` a : K
∆; [[θ]]Γ ` [[θ]]a≡ a : [[θ]]K

∆ ` θ : ∆′ ∆′;Γ ` xn : A
∆; [[θ]]Γ ` [[θ]]xn ≡ xn : [[θ]]A

Meta-Substitution Propagation: Meta-variable Lookup

∆ ` θ : ∆′ ∆′;Γ ` A : type ∆; [[θ]]Γ `M : [[θ]]A
∆; [[θ]]Γ ` [[θ ,M]]X1 ≡M : [[θ]]A

∆;Γ ` Xn+1 : A

∆;Γ ` Xn+1 ≡ [[⇑1]]Xn : A

Meta-Substitution Propagation: Pushing into Expression Constructions

∆ ` θ : ∆′ ∆′;Γ,A ` F : s
∆; [[θ]]Γ ` [[θ]](ΠA.F)≡Π [[θ]]A. [[θ]]F : s

∆ ` θ : ∆′ ∆′;Γ,A `M : B ∆′;Γ,A ` B : type

∆; [[θ]]Γ ` [[θ]](λM)≡ λ .[[θ]]M : Π [[θ]]A. [[θ]]B

∆ ` θ : ∆′ ∆′;Γ ` E : ΠA.F ∆′;Γ ` N : A

∆; [[θ]]Γ ` [[θ]](E N)≡ [[θ]]E [[θ]]N : [↑1, [[θ]]N]F

∆ ` θ : ∆′ ∆′;Γ ` σ : Ψ ∆′;Ψ ` E : F
∆; [[θ]]Γ ` [[θ]][σ]E ≡ [[[θ]]σ][[θ]]E : [[[θ]]σ][[θ]]F

Meta-Substitution Propagation: Pushing into Ordinary Substitutions

∆ ` θ : ∆′ ∆′ ` Γ,Γ′ ctx |Γ′|= n
∆; [[θ]]Γ, [[θ]]Γ′ ` [[θ]]↑n ≡ ↑n : [[θ]]Γ

∆ ` θ : ∆′ ∆′;Γ ` σ : Ψ ∆′;Ψ ` A : type ∆′;Γ `M : [σ]A
∆; [[θ]]Γ ` [[θ]](σ ,M)≡ ([[θ]]σ , [[θ]]M) : [[θ]]Ψ, [[θ]]A

∆ ` θ : ∆′ ∆′;Γ ` τ : Ψ′ ∆′;Ψ′ ` σ : Ψ

∆; [[θ]]Γ ` [[θ]][τ]σ ≡ [[[θ]]τ][[θ]]σ : [[θ]]Ψ
∆ ` θ : ∆′ ∆′ ` θ ′ : ∆′′ ∆′′;Γ ` σ : Ψ

∆; [[[[θ]]θ ′]]Γ ` [[θ]][[θ ′]]σ ≡ [[[[θ]]θ ′]]σ : [[[[θ]]θ ′]]Ψ

Meta-Substitution Reductions: Pairing and Shifting

∆ ` (θ ,M) : ∆0,∆
′
0,Γ.A |∆′0|= n

∆ ` [[θ ,M]]⇑n+1 ≡ [[θ]]⇑n : ∆0

∆ ` θ : ∆′0 ∆′0 ` (θ ′,M) : ∆0,Γ.A
∆ ` [[θ]](θ ′,M)≡ ([[θ]]θ ′, [[θ]]M) : ∆0,Γ.A

` ∆,∆1,∆2 mctx |∆1|= m |∆2|= n
∆,∆1,∆2 ` [[⇑n]]⇑m = [[⇑n+m]] : ∆

Meta-Substitution Reductions: Category Laws

∆ ` θ : ∆0

∆ ` [[⇑0]]θ ≡ θ : ∆0

∆ ` θ : ∆0

∆ ` [[θ]]⇑0 ≡ θ : ∆0

∆1 ` θ1 : ∆2 ∆2 ` θ2 : ∆3 ∆3 ` θ3 : ∆4

∆1 ` [[θ1]][[θ2]]θ3 ≡ [[[[θ1]]θ2]]θ3 : ∆4

Figure 2: Computational Laws II: Meta-substitution

7

Step 1: ∆;Γ ` xn+1 : [σ]A : type

∆;Γ ` xn+1 ≡ [↑1]xn : [σ]A
Variable Lookup

∆;Γ ` [σ ,M]xn+1 ≡ [σ ,M][↑1]xn : [σ]A
Congruence

Step 2:
∆;Γ ` σ ,M : Ψ,B ∆;Ψ,B ` ↑1 : Ψ ∆;Ψ ` xn : A

∆;Γ ` [σ ,M][↑1]xn ≡ [[σ ,M]↑1]xn : [[σ ,M]↑1]A
Composition

D
∆;Γ ` [σ ,M]↑1 ≡ σ : Ψ

∆;Γ ` [[σ ,M]↑1]A≡ [σ]A : type

∆;Γ ` [σ ,M][↑1]xn ≡ [[σ ,M]↑1]xn : [σ]A
Congruence

Step 3: D
∆;Γ ` [σ ,M]↑1 ≡ σ : Ψ

∆;Γ ` [[σ ,M]↑1]xn ≡ [σ]xn : [σ]A
Congruence

where

D =

∆;Γ ` σ ,M : Ψ,B

∆;Γ ` [σ ,M]↑1 = [σ]↑0 : Ψ
Pairing ∆;Γ ` σ : Ψ

∆;Γ ` [σ]↑0 ≡ σ : Ψ
Category Laws

∆;Γ ` [σ ,M]↑1 ≡ σ : Ψ
Transitivity

Similarly, we can show that ∆;Γ ` [[θ ,M]]Xn+1 ≡ [[θ]]Xn : [[θ]]A is admissible.

2.2.1 Extensionality Laws

As mentioned earlier, we take into account β -reductions and η-expansions. In particular, we consider
η-rules for ordinary substitutions as well as meta-substitutions.

∆;Γ `M : ΠA.B

∆;Γ `M ≡ λ .([↑1]M) x1 : ΠA.B

∆ ` Γ,A,Γ′ ctx |Γ′|= n

∆;Γ,A,Γ′ ` ↑n ≡ (↑n+1,xn+1) : Γ,A

` ∆,Γ.A,∆′ mctx |∆′|= n

∆,Γ.A,∆′ ` ⇑n ≡ (⇑n+1,Xn+1) : ∆,Γ.A

Note that there is no reduction for [σ][[θ]]M: an ordinary substitution cannot in general be pushed past a
meta-substitution, it has to wait for the meta-substitution to be resolved.

2.3 Properties

Next, we prove some standard properties about the presented type assignment system. First, we show
that contexts are indeed well-formed. Let L stand for a (possibly absent) part to the left of the turnstile.

Lemma 1 (Context well-formedness)

1. If ∆,∆′;L ` J then ` ∆ mctx.

2. If ∆ ` θ : ∆′ or ∆ ` θ ≡ θ ′ : ∆′ then ` ∆′ mctx.

3. If ∆;Γ,Γ′ ` J then ∆ ` Γ ctx.

4. If ∆;Γ ` σ : Γ′ or ∆;Γ ` σ ≡ σ ′ : Γ′ then ∆ ` Γ′ ctx.

The height of the output derivation is bounded by the height of the input derivation, in all cases.

8

Proof. By simultaneous induction over all judgments. 2

The following inversion theorem for typing is standard for PTSs and are necessary due to the type
conversion rule which makes inversion a non-obvious property. It allows us to classify expressions into
term, types, and kinds. We write ∆;Γ ` E ≡ E ′ if there exists a sort s such that ∆;Γ ` E ≡ E ′ : s.

Theorem 2 (Inversion of typing)

1. There is no derivation of ∆;Γ ` kind : E.

2. If ∆;Γ ` type : E then E = kind.

3. If ∆;Γ ` a : K then ∆;Γ ` K ≡ Σ(a) : kind.

4. If ∆;Γ `ΠA.B : K then ∆;Γ ` A : type and ∆;Γ,A ` B : K and either K = kind or ∆;Γ `K ≡ type.

5. If ∆;Γ ` xn+1 : A then Γ = Γ1,A′,Γ2 with |Γ2|= n and ∆;Γ ` A≡ [↑n+1]A′.

6. If ∆;Γ ` Xn+1 : A then ∆ = ∆1,Γ
′ .A′,∆2 with |∆2|= n and Γ = [[⇑n+1]]Γ′ and ∆;Γ ` A≡ [[⇑n+1]]A′.

7. If ∆;Γ ` λM : C then there are A,B such that ∆;Γ `C ≡ΠA.B and ∆;Γ ` A : type and
∆;Γ,A ` B : type and ∆;Γ,A `M : B.

8. If ∆;Γ `M N : C then there are A,B such that ∆;Γ `M : ΠA.B and ∆;Γ ` N : A
and ∆;Γ `C ≡ [↑0,N]B.

9. If ∆;Γ ` [σ]M : A then there are Ψ,A′ such that ∆;Γ ` σ : Ψ and ∆;Ψ `M : A′

and ∆;Γ ` A≡ [σ]A′.

10. If ∆;Γ ` [[θ]]M : A then there are ∆′,Γ′,A′ such that ∆ ` θ : ∆′ and ∆;Γ′ `M : A′ and Γ = [[θ]]Γ′

and ∆;Γ ` A≡ [[θ]]A′.

Proof. By induction on the typing derivation, peeling off the type conversion steps and combining them
with transitivity. 2

Expression E is a kind if ∆;Γ ` E : kind for some ∆,Γ, it is a type family if ∆;Γ ` E : K for some kind K
and some ∆,Γ, and it is a term if ∆;Γ ` E : A for some A,∆,Γ with ∆;Γ ` A : type.

The following inversion statement for meta-variables under a substitution is crucial for the correct-
ness of algorithmic equality (Sec. 3.2) and bidirectional type checking (Sec. 4).

Corollary 3 If ∆;Γ ` [σ]Xm : A then ∆ = ∆1,Ψ.A′,∆2
with |∆2|= m−1 and ∆;Γ ` σ : [[⇑m]]Ψ and ∆;Γ ` A≡ [σ][[⇑m]]A′.

Theorem 4 (Syntactic Validity)

1. If ∆;Γ ` E : F or ∆;Γ ` E1 ≡ E2 : F then ∆;Γ ` F : s for some sort.

2. If ∆;L ` E ≡ E ′ : F then ∆;L ` E : F and ∆;L ` E ′ : F.

3. If ∆ ` θ ≡ θ ′ : ∆′ then ∆ ` θ : ∆′ and ∆ ` θ ′ : ∆′.

4. If ∆;Γ ` σ ≡ σ ′ : Ψ then ∆;Γ ` σ : Ψ and ∆;Γ ` σ ′ : Ψ.

Proof. By simultaneous induction over all judgments. 2

9

3 Evaluation and Algorithmic Equality

In this section, we define a weak head normalization strategy together with algorithmic equality. The goal
is to treat ordinary substitutions and meta-substitutions lazily; in particular, we aim to postpone shifting
of substitutions until necessary. For the treatment of LF, an untyped algorithmic equality is sufficient.
The design of the algorithm follows Coquand [Coq91] with refinements from joint work with the first
author [AC07]. In this article, we only show soundness of the algorithm; completeness can be proven
using techniques of the cited works. However, an adaptation to de Bruijn style and explicit substitutions
is necessary; we leave the details to future work, a sketch can be found in the appendix.

We first characterize our normal forms by defining normal and neutral expressions where expressions
include terms, types, and kinds. Normal substitutions are built out of normal expressions. However, it is
worth keeping in mind that our typing rules will ensure that they only contain terms and not types, since
we do not support type-level variables. Our normal forms are only β -normal, not necessarily η-long.
Only meta-variables are associated with an ordinary normal substitution, all other closures have been
eliminated.

Normal expressions V ::= s |ΠV.V ′ | λV |U
Neutral expressions U ::= a | xn | [ν]Xn |U V

Normal substitutions ν ::= ↑n | (ν ,V)

Next, we define weak head normal forms (whnf). Since we want to treat ordinary substitutions and
meta-substitutions lazily and in particular want to postpone the complete computation of their composi-
tions, we cannot require that substitutions and meta-substitutions are already in normal form. Hence, we
introduce environments ρ for ordinary substitutions and similarly meta-substitutions η for describing
substitutions and meta-substitutions which are in weak head normal form. Closures are either bound
variables xn or a expression E which is associated with the environment ρ and meta-environment η .

Weak head normal forms W ::= type | [ρ][[η]]ΠA.B | [ρ][[η]]λM | H
Closures L ::= xn | [ρ][[η]]E
Neutral weak head normal forms H ::= a | xn | [ρ]Xn | H L

Environments ρ ::= ↑n | (ρ,L) | [↑n]ρ
Meta-environments η ::= ⇑n | (η ,M)

Our weak head normal forms combine substitutions and meta-substitutions, i.e. closures are formed
with both classes of substitutions (written as [ρ][[η]]E) and our whnf-reduction strategy simultaneously
treats substitutions and meta-substitutions.

Instead of defining expressions with two suspended substitutions, we could have introduced a joint
simultaneous substitutions and closures built with them. The path taken in this paper builds on the
individual substitution operations instead of defining a new joint substitution operation. To clarify, the
nature and the interplay of ordinary substitutions and meta-substitutions it is helpful to consider the
typing rule of closures [ρ][[η]]E:

∆;Ψ ` ρ : [[η]]Ψ′ ∆ ` η : ∆′ ∆′;Ψ′ ` E : F
∆;Ψ ` [ρ][[η]]E : [ρ][[η]]F

Intuitively, this means to obtain an expression E ′ which makes actually sense in ∆ and Ψ, we first
compute [[η]]E and subsequently apply the ordinary substitution ρ to obtain some E ′ : ([ρ][[η]]E) = E ′.

10

Shift propagation. While we treat shifts in the environment as explicit operation—to avoid a traversal
when lifting an environment under a binder—, shifting a closure or a neutral weak head normal form
can be implemented inexpensively. Let shifting [↑n]L of a closure L be defined by [↑n]xm = xn+m and
[↑n]([ρ][[η]]E) = [[↑n]ρ][[η]]E. It is extended to shifting [↑n]H of neutral weak head normal forms by
[↑n](H L) = [↑n]H [↑n]L and [↑n]([ρ]Xm) = [[↑n]ρ]Xm and [↑n]a = a.

3.1 Weak head evaluation

Our weak head evaluation strategy will postpone propagation of substitutions into an expression until
necessary. Treating substitutions lazily seems to be beneficial as also supported by the experimental anal-
ysis on lazy vs eager reduction strategies for substitutions by Nadathur and his collaborators [LNQ05].
We present the algorithm for weak head normalization in Figure 3. We define a function whnf L where
L is either a variable xn or a proper closure [ρ][[η]]E. The function whnf is then defined recursively on E.

To support the lazy evaluation of substitutions, our weak head normalization algorithm relies on the
definition of two functions, namely Env η θ and env ρ η σ . Both functions are defined recursively over
the last argument, i.e. Env is inductively defined over θ and env is inductively defined over σ . When we
encounter a closure of [σ]τ (or [[θ]]θ ′ resp.), we compute first the environment corresponding to σ and
subsequently we compute the environment for τ . This strategy allows us to avoid unnecessary shifting
of de Bruijn indices.

In addition, whnf relies on a lookup function to retrieve the i-th element of a substitution which
corresponds to the index i. Such lookup functions are defined for both, ordinary variables and meta-
variables.

Next, we prove that types are preserved when computing weak head normal forms and that the
computation is sound with regard to the specification of definitional equality. Note that at this point
termination is only clear for the lookup and substitution evaluation functions. For whnf and evaluating
application @, soundness is conditional on termination.

Theorem 5 (Subject reduction) Let ∆ ` η : ∆′.

1. If ∆′ ` θ : ∆′′ then ∆ ` Env η θ ≡ [[η]]θ : ∆′′.

2. If ∆′;Ψ ` σ : Ψ′ and ∆;Γ ` ρ : [[η]]Ψ then ∆;Γ ` env ρ η σ ≡ [ρ][[η]]σ : [[η]]Ψ′.

3. If ∆′;Ψ ` Xm : A then ∆; [[η]]Ψ ` Lookup η Xm ≡ [[η]]Xm : [[η]]A.

4. If ∆;Ψ ` xm : A and ∆;Γ ` ρ : Ψ then ∆;Γ ` lookup ρ xm ≡ [ρ]xm : [ρ]A.

5. Let ∆′;Ψ ` E : F and ∆;Γ ` ρ : [[η]]Ψ.
If whnf [ρ][[η]]E is defined then ∆;Γ ` whnf [ρ][[η]]E ≡ [ρ][[η]]E : [ρ][[η]]F.

6. Let ∆;Γ `W : ΠA.F and ∆;Γ ` L : A. If W @ L is defined then ∆;Γ `W @ L≡W L : [↑0,L]F.

Proof. Each by induction on the trace of the function and inversion on the typing derivations, the first
four statements in isolation and the remaining two simultaneously. 2

3.2 Algorithmic equality

Building on the weak head normalization algorithm introduced in the previous section, we now give an
algorithm for deciding equality of expressions. This is a key piece in the bi-directional type checking
algorithm which we present in Section 4. Two closures, where L = [ρ][[η]]E and L′ = [ρ ′][[η ′]]E ′, are
algorithmically equal if their weak head normal forms are related, i.e., whnf [ρ][[η]]E w∼whnf [ρ ′][[η ′]]E ′.

11

Meta-substitution evaluation Env η θ computes the meta-environment form of [[η]]θ .

Env ⇑m ⇑n = ⇑m+n

Env (η ,M) ⇑n+1 = Env η ⇑n

Env η (θ ,M) = (Env η θ , [[η]]M)
Env η [[θ]]θ ′ = Env (Env η θ) θ ′

Substitution evaluation env ρ η σ computes the environment form of [ρ][[η]]σ .

env ([↑k]ρ) η σ = [↑k](env ρ η σ)
env ρ η ↑0 = ρ

env ↑k
η ↑n = ↑k+n

env (ρ,L) η ↑n+1 = env ρ η ↑n

env ρ η (σ ,M) = (env ρ η σ , [ρ][[η]]M)
env ρ η ([σ]τ) = env (env ρ η σ) η τ

env ρ η ([[θ]]σ) = env ρ (Env η θ) σ

Meta-variable lookup Lookup η Xm retrieves the binding of Xm in meta-environment η .

Lookup ⇑n Xm = Xn+m

Lookup (η ,E) X1 = E
Lookup (η ,E) Xm+1 = Lookup η Xm

Variable lookup lookup ρ xm computes the closure form of [ρ]xm.

lookup ↑n xm = xn+m

lookup (ρ,L) x1 = L
lookup (ρ,L) xm+1 = lookup ρ xm

lookup ([↑n]ρ) xm = [↑n](lookup ρ xm)

Weak head evaluation whnf L computes the weak head normal form of closure L.

whnf xm = xm

whnf [ρ][[η]]s = s
whnf [ρ][[η]]a = a
whnf [ρ][[η]]xm = whnf(lookup ρ xm)
whnf [ρ][[⇑0]]Xm = [ρ]Xm

whnf [ρ][[η]]Xm = whnf [ρ][[⇑0]](Lookup η Xm)
whnf [ρ][[η]](ΠA.E) = [ρ][[η]](ΠA.E)
whnf [ρ][[η]](λM) = [ρ][[η]](λM)
whnf [ρ][[η]](M N) = whnf [ρ][[η]]M @ [ρ][[η]]N
whnf [ρ][[η]][σ]M = whnf [env ρ η σ][[η]]M
whnf [ρ][[η]][[θ]]M = whnf [ρ][[Env η θ]]M

Evaluating application W @ L computes the weak head normalform of W L.

[ρ][[η]](λM) @ L = whnf [(ρ,L)][[η]]M
H @ L = H L

Figure 3: Weak head evaluation
12

As we check that two expressions are equal, we lazily normalize them using our weak head normal-
ization algorithm from the previous section and our algorithmic equality algorithm alternates between
applying a whnf step and actually comparing two expressions or substitutions.

The actual equality algorithm is defined using three mutual recursive judgments. 1) checking that two
expressions in whnf are equal 2) checking that two weak head normal forms are equal and 3) checking
that two environments, i.e. ordinary substitutions in whnf, are equal.

W w∼W ′ weak head normal forms W,W ′ are algorithmically equal
H n∼ H ′ neutral weak head normal forms H,H ′ are algorithmically equal

[↑k]ρ r∼ [↑k′]ρ ′ environments ρ,ρ ′ are algorithmically equal under shifts by k,k′ resp.

Many of the algorithmic equality rules are straightforward and intuitive, although a bit veiled by
the abundance of explicit shifting that comes with de Bruijn style. When checking whether two meta-
variables are equal, we need to make sure that respective environments are equal. When we check
whether two lambda-abstractions are equal, we must lift their environments under the lambda-binding.
This amount to shifting them by one and extending them with a binding for the first variable. To handle
eta-equality, we eta-expand the neutral weak head normal form H on the fly when comparing it to a
lambda-closure.

Comparing two environments for equality simply recursively analyzes the substitutions. In addition,
we handle just-in-time eta-expansion on the level of substitutions (see the last two rules).

Algorithmic equality of neutral weak head normal forms.

a n∼ a xm
n∼ xm

[↑0]ρ r∼ [↑0]ρ ′

[ρ]Xm
n∼ [ρ ′]Xm

H n∼ H ′ whnf L w∼ whnf L′

H L n∼ H ′ L′

Algorithmic equality of weak head normal forms.

H n∼ H ′

H w∼ H s w∼ s

whnf [ρ][[η]]A w∼ whnf [ρ ′][[η ′]]A′ whnf [[↑1]ρ,x1][[η]]B w∼ whnf [[↑1]ρ ′,x1][[η ′]]B′

[ρ][[η]](ΠA.B) w∼ [ρ ′][[η ′]](ΠA′.B′)

whnf [[↑1]ρ,x1][[η]]M w∼ whnf [[↑1]ρ ′,x1][[η ′]]M′

[ρ][[η]](λM) w∼ [ρ ′][[η ′]](λM′)

whnf [[↑1]ρ,x1][[η]]M w∼ [↑1]H x1

[ρ][[η]](λM) w∼ H

[↑1]H x1
w∼ whnf [[↑1]ρ,x1][[η]]M

H w∼ [ρ][[η]](λM)

Algorithmic equality of environments.

k +n = k′+n′

[↑k]↑n r∼ [↑k′]↑n′
[↑k+n]ρ r∼ [↑k′]ρ ′

[↑k][↑n]ρ r∼ [↑k′]ρ ′
[↑k]ρ r∼ [↑k′+n′]ρ ′

[↑k]ρ r∼ [↑k′][↑n′]ρ ′
[↑k]ρ r∼ [↑k′]ρ ′ whnf[↑k]L w∼ whnf[↑k′]L′

[↑k](ρ,L) r∼ [↑k′](ρ ′,L′)

[↑k]ρ r∼ [↑k′]↑n′+1 whnf [↑k]L w∼ xk′+n′+1

[↑k](ρ,L) r∼ [↑k′]↑n′
[↑k]↑n+1 r∼ [↑k′]ρ ′ xk+n+1

w∼ whnf [↑k′]L′

[↑k]↑n r∼ [↑k′](ρ ′,L′)

13

Theorem 6 (Soundness of algorithmic equality)
1. If H n∼ H ′ and ∆;Γ ` H : F and ∆;Γ ` H ′ : F ′ then ∆;Γ ` F ≡ F ′ and ∆;Γ ` H ≡ H ′ : F.

2. If W w∼W ′ and ∆;Γ `W,W ′ : F then ∆;Γ `W ≡W ′ : F.

3. If [↑k]ρ r∼ [↑k′]ρ ′ and ∆;Γ ` [↑k]ρ, [↑k′]ρ ′ : Ψ then ∆;Γ ` [↑k]ρ ≡ [↑k′]ρ ′ : Ψ.

Proof. Simultaneously by induction on the derivation of algorithmic equality and inversion on the typ-
ing. 2

4 Bidirectional Type Checking

In this section, we show how to use our explicit substitution calculus to type-check expressions. As
mentioned in the introduction, accumulating substitutions walks in type-checking is one of the key ap-
plications of this work. We only describe the algorithm and leave its theoretical properties for future
work.

We design the algorithm in a bidirectional way [Coq96, AC07] which allows us to omit type annota-
tions at lambda-abstractions. We use the following three judgments:

∆;Γ `V ⇔ s Type normal form V checks against sort s
∆;Γ `V ⇔ L Normal form V checks against “type” closure L
∆;Γ `U ⇒ L The type of neutral normal form U is inferred as closure L

∆;Γ ` ν ⇔ Ψ Normal substitution ν checks against domain Ψ

In these judgements, Γ is a list of type closures L. On ∆ we pose no restrictions; an entry Ψ.A of ∆ is as
before a list of type expressions Ψ and a type expression A.

The typing rules below are mostly straightforward. Recall that [↑n]L is an abbreviation which was
defined on page 11.

Inferring the type of neutral normal forms U .

∆;Γ ` a ⇒ [↑0][[⇑0]]Σ(a)

∆;Γ `U ⇒ L whnf L = [σ][[θ]](ΠA.B) ∆;Γ `V ⇔ [σ][[θ]]A
∆;Γ `U V ⇒ [σ ,V][[θ]]B

|Γ′|= n

∆;Γ,L,Γ′ ` xn+1 ⇒ [↑n+1]L

∆ = ∆1,Ψ.A,∆2 |∆2|= n ∆;Γ ` ν ⇔ [↑0][[⇑n+1]]Ψ

∆;Γ ` [ν]Xn+1 ⇒ [ν][[⇑n+1]]A

Checking the type of normal forms V .

whnf L = [σ][[θ]](ΠA.B) ∆;Γ, [σ][[θ]]A `V ⇔ [↑1
σ ,x1][[θ]]B

∆;Γ ` λV ⇔ L
∆;Γ `U ⇒ L whnf L w∼ whnf L′

∆;Γ `U ⇔ L′

Checking well-formedness of types and kinds V .

whnf L = kind

∆;Γ ` type ⇔ kind

∆;Γ `V ⇔ type ∆;Γ,V `V ′ ⇔ s
∆;Γ `ΠV.V ′ ⇔ s

∆;Γ `U ⇒ L whnf L = type

∆;Γ `U ⇔ type

Checking normal substitutions ν . In this judgement ∆;Γ ` ν ⇔ Ψ, the context Ψ is also in closure form.

|Γ|= n
∆;Γ ` ↑n ⇔ ·

∆;Γ ` ν ⇔ Ψ ∆;Γ `V ⇔ L
∆;Γ ` (ν ,V) ⇔ Ψ,L

14

5 Conclusion

We have presented an explicit substitution calculus together with algorithms for weak head normal-
ization, definitional equality, and bi-directional type checking where both ordinary variables and meta-
variables are modelled using de Bruijn indices and both kinds of substitutions are handled lazily and
simultaneously.

We also have proven subject reduction and soundness of the definitional equality algorithm. A sketch
of the normalization proof, which guarantees that the described algorithm is complete, can be found
in the appendix. Finally, we describe a bi-directional type-checking algorithm which treats ordinary
substitutions and meta-substitutions at the same time. In the future, we plan to adapt the presented
explicit substitution in the implementation of the programming and reasoning environment Beluga.

References

[AC07] Andreas Abel and Thierry Coquand. Untyped algorithmic equality for Martin-Löf’s logical framework
with surjective pairs. Fundam. Inform., 77(4):345–395, 2007. TLCA’05 special issue.

[ACCL90] Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lèvy. Explicit substitutions.
In 17th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Francisco, California, pages 31–46. ACM Press, 1990.

[Ada05] Robin Adams. A Modular Hierarchy of Logical Frameworks. PhD thesis, University of Manchester,
2005.

[BDN09] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda—a functional language with
dependent types. In 22nd International Conference on Theorem Proving in Higher Order Logics
(TPHOLs’09), volume 5674 of Lecture Notes in Computer Science, pages 73–78. Springer, 2009.

[Coq91] Thierry Coquand. An algorithm for testing conversion in type theory. In G. Huet and G. Plotkin,
editors, Logical Frameworks, pages 255–279. Cambridge University Press, 1991.

[Coq96] Thierry Coquand. An algorithm for type-checking dependent types. In Proc. of the 3rd Int. Conf.
on Mathematics of Program Construction, MPC ’95, volume 26 of Sci. Comput. Program., pages
167–177. Elsevier, May 1996.

[DHK95] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher-order unification via explicit substitu-
tions. In D. Kozen, editor, Proceedings of the Tenth Annual Symposium on Logic in Computer Science,
pages 366–374, San Diego, California, June 1995. IEEE Computer Society Press.

[DHKP96] Gilles Dowek, Thérèse Hardin, Claude Kirchner, and Frank Pfenning. Unification via explicit sub-
stitutions: The case of higher-order patterns. In M. Maher, editor, Proceedings of the Joint Interna-
tional Conference and Symposium on Logic Programming, pages 259–273, Bonn, Germany, Septem-
ber 1996. MIT Press.

[HP03] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type theory. Trans-
actions on Computational Logic, 2003. To appear. Preliminary version available as Technical Report
CMU-CS-00-148.

[LNQ05] C. Liang, G. Nadathur, and X. Qi. Choices in representation and reduction strategies for lambda terms
in intensional contexts. jar, 33(2):89–132, 2005.

[Nor07] Ulf Norell. Towards a practical programming language based on dependent type theory. PhD thesis,
Department of Computer Science and Engineering, Chalmers University of Technology, sep 2007.
Technical Report 33D.

[NPP08] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory. ACM
Transactions on Computational Logic, 9(3):1–49, 2008.

15

[NW98] Gopalan Nadathur and Debra Sue Wilson. A notation for lambda terms: A generalization of environ-
ments. Theoretical Computer Science, 198(1-2):49–98, 1998.

[PD08] Brigitte Pientka and Joshua Dunfield. Programming with proofs and explicit contexts. In ACM SIG-
PLAN Symposium on Principles and Practice of Declarative Programming (PPDP’08), pages 163–
173. ACM Press, July 2008.

[PD10] Brigitte Pientka and Joshua Dunfield. Beluga:a Framework for Programming and Reasoning with De-
ductive Systems (System Description). In Jürgen Giesl and Reiner Haehnle, editors, 5th International
Joint Conference on Automated Reasoning (IJCAR’10), Lecture Notes in Computer Science (LNCS),
2010.

[Pie03] Brigitte Pientka. Tabled higher-order logic programming. PhD thesis, Department of Computer Sci-
ence, Carnegie Mellon University, 2003. CMU-CS-03-185.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical framework
for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th International Conference
on Automated Deduction (CADE-16), volume 1632 of Lecture Notes in Artificial Intelligence, pages
202–206. Springer, 1999.

[PS08] Adam B. Poswolsky and Carsten Schürmann. Practical programming with higher-order encodings
and dependent types. In Proceedings of the 17th European Symposium on Programming (ESOP ’08),
volume 4960, page 93. Springer, March 2008.

[PS09] Adam Poswolsky and Carsten Schürmann. System description: Delphin—a functional program-
ming language for deductive systems. In International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice (LFMTP’08), volume 228 of Electronic Notes in Theoretical Com-
puter Science (ENTCS), pages 135–141. Elsevier, June 2009.

A Normalization

The proof of normalization follows the blue print laid out in earlier work [AC07]. To show normalization
and completeness of algorithmic equality, we interpret types A as partial equivalence relations (PERs)
A between expressions, i. e., relations that are symmetric and transitive. By establishing A ⊆ (w∼)
which means that two elements related by A are algorithmically equal, and by the fundamental theorem
which states that definitionally equal terms ∆;Γ `M ≡M′ : A evaluate to elements related by A , obtain
completeness of algorithmic equality. The model construction also yields termination of algorithmic
equality, thus, as a final result we can show that algorithmic equality decides definitional equality for
well-typed terms.

The basic PERs are the algorithmic equality relations. We define a relation on environments by ρ
r∼

ρ ′ ⇐⇒ ∀k. [↑k]ρ r∼ [↑k]ρ ′. The k is actually irrelevant, as witnessed by the following lemma:

Lemma 7 (Environment equality) For all k1,k2 we have [↑k1]ρ r∼ [↑k1]ρ ′ iff [↑k2]ρ r∼ [↑k2]ρ ′.

Lemma 8 (Shifting equal elements) 1. If whnfL w∼ whnf L′ then whnf [↑k]L w∼ whnf [↑k]L′.

2. If H n∼ H ′ then [↑k]H n∼ [↑k]H ′.
In both cases, the output derivation has the same height as the input derivation.

Lemma 9 The algorithmic equality relations (w∼),(n∼),(r∼),(r∼) are PERs.

16

Constructions on PERs. If A is a PER on closures and B a PER on weak head normal forms we define
the closure B and the function space A →B by

B = {(L,L′) | (whnf L,whnf L′) ∈B}
A →B = {(W,W ′) | (W @ L,W ′ @ L′) ∈B for all (L,L′) ∈A }.

Closure is a monotone operator on PERs, and function space → is an operator on PERs which is
antitone in the domain and monotone in the codomain.

Contexts will be interpreted as PERs over environments. For G a PER on environments, A a PER
on closures and B a PER on weak head normal forms let

(i∼) = {(↑n,↑n) | n ∈ N}
G ×A = {(ρ,ρ ′) | (env ρ ⇑0 ↑1,env ρ ′ ⇑0 ↑1) ∈ G and (lookup ρ x1, lookup ρ ′ x1) ∈A)}
G .B = {(E,E ′) | (whnf [ρ][[⇑0]]E,whnf [ρ ′][[⇑0]]E ′) ∈B for all (ρ,ρ ′) ∈ G }.

Product × is a monotone operator on PERs. Entailment . , like function space, is a PER operator
that is antitone in the domain and monotone in the codomain.

To interpret meta-contexts, we define a meta-product D ⊗E between a PER over meta-contexts D
and a PER over expressions E .

D⊗E = {(θ ,θ ′) | (Env θ ⇑1,Env θ ′ ⇑1) ∈D and (Lookup θ X1,Lookup θ ′ X1) ∈ E }

Type interpretation. In terms of proof theoretic strength, LF equals the simply-typed lambda calculus.
Dependencies in LF can be erased in the normalization proof, hence types can be interpreted as “simply-
typed” PERs (as opposed to using families of PERs [AC07]) . Also, since we have no λ on the type level,
we do not have to model operators on PERs, and we model kinds simply as PERs over type expressions.
We arrive at the following definition of type interpretation:

LEM = (w∼) if E is a term

LΠA.EM = LAM→ LEM
L[σ]EM = LEM
L[[θ]]EM = LEM
LEM = (w∼) otherwise

The interpretation of terms does not really matter, we set them to (w∼) for conformity. Because of erasure
and since we have no type variables, interpretation can ignore substitutions and redexes altogether.
Lemma 10 (Semantic type equality) If ∆;Γ ` E ≡ E ′ : F then LEM = LE ′M.
Proof. By induction on the derivation of equivalence. The lemma is trivial because we have no type
or kind variables and all computation is happening on the term level and is ignored by the operation
LEM. 2

Context and meta-context interpretation.

L·M = (r∼) empty context
LΨ,AM = LΨM× LAM
LΨ.AM = LΨM. LAM
L·M = {(⇑0,⇑0)} empty meta-context
L∆,Ψ.AM = L∆M⊗ LΨ.AM

17

Note that L[[θ]]ΨM = LΨM.
The constructions on PERs satisfy the following inclusions.

Lemma 11
1. (n∼)⊆ (w∼)→ (n∼)⊆ (n∼)→ (w∼)⊆ (w∼).

2. (i∼)⊆ (i∼)× (n∼)⊆ (r∼)× (w∼)⊆ (r∼).

3. (n∼)⊆ LEM⊆ (w∼).

4. (i∼)⊆ LΨM⊆ (r∼).
As a consequence, semantic types are sandwiched between the algorithmic equality relation (n∼) on
neutral weak head normal forms and the algorithmic equality (w∼) on weak head normal forms. In
particular, each semantic type contains the variables, (xm,xm) ∈ LAM, and only algorithmically equal
elements are related by a semantic type. The presence of the variables in the semantic types is crucial to
show a normalization property for open expressions. In our case, it is needed to establish that the identity
environment ↑0 is a valid inhabitant of each semantic context LΨM, or more precisely (↑0,↑0) ∈ LΨM.

Semantic judgements. In the following, we establish that our PERs actually model typing and equality
rules of LF.

∆;Γ |= E : F ⇐⇒ ∆;Γ |= E ≡ E : F
∆;Γ |= E ≡ E ′ : F ⇐⇒ (whnf [ρ][[η]]E,whnf [ρ ′][[η ′]]E ′) ∈ LFM for all (η ,η ′) ∈ L∆M and (ρ,ρ ′) ∈ LΓM

∆;Γ |= σ : Ψ ⇐⇒ ∆;Γ |= σ ≡ σ : Ψ

∆;Γ |= σ ≡ σ ′ : Ψ ⇐⇒ (env ρ η σ ,env ρ ′ η ′ σ ′) ∈ LΨM for all (η ,η ′) ∈ L∆M and (ρ,ρ ′) ∈ LΓM

∆ |= θ : ∆′ ⇐⇒ ∆ |= θ ≡ θ : ∆′

∆ |= θ ≡ θ ′ : ∆′ ⇐⇒ (Env η θ ,Env η ′ θ ′) ∈ L∆′M for all (η ,η ′) ∈ L∆M

Theorem 12 (Fundamental theorem) If ∆;Γ ` J then ∆;Γ |= J.
Proof. Simultaneously by induction on the derivations. 2

From the model, it is now easy to derive decidability of equality.
Lemma 13 (Identity environments) (↑0,↑0) ∈ LΓM and (⇑0,⇑0) ∈ L∆M.
Theorem 14 (Completeness of algorithmic equality)

1. If ∆;Γ ` E = E ′ : F then whnf [↑0][[⇑0]]E w∼ whnf [↑0][[⇑0]]E ′.

2. If ∆;Γ ` σ = σ ′ : Ψ then env ↑0 ⇑0
σ

r∼ env ↑0 ⇑0
σ ′.

Proof. By Lemma 13 and the fundamental theorem we have (whnf [↑0][[⇑0]]E,whnf [↑0][[⇑0]]E ′) ∈ LFM,
which by Lemma 11 entails whnf [↑0][[⇑0]]E w∼ whnf [↑0][[⇑0]]E ′. Similarly env ↑0 ⇑0

σ
r∼ env ↑0 ⇑0

σ ′.
2

Lemma 15 (Termination) If W w∼W and W ′ w∼W ′ then the query W w∼W ′ terminates.

Theorem 16 (Decidability of equality) If ∆;Γ ` E,E ′ : F then ∆;Γ ` E ≡ E ′ : F iff whnf [↑0][[⇑0]]E w∼
whnf [↑0][[⇑0]]E ′.

Proof. By a combination of Theorem 12 and Lemma 15 we know that the algorithmic equality test
terminates. If E,E ′ are definitionally equal, then the algorithmic equality terminates successfully by
Theorem 14. The opposite direction follows by soundness (Theorem 6). 2

18

	Introduction
	The Calculus: Syntax, Typing, and Equality
	Typing rules
	Definitional Equality
	Extensionality Laws

	Properties

	Evaluation and Algorithmic Equality
	Weak head evaluation
	Algorithmic equality

	Bidirectional Type Checking
	Conclusion
	Normalization

