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Abstract. We describe the design and implementation of a higher-order
tabled logic programming interpreter where some redundant and infinite
computation is eliminated by memoizing sub-computation and re-using
its result later. In particular, we focus on the table design and table access
in the higher-order setting where many common operations are undecid-
able in general. To achieve a space and time efficient implementation, we
rely on substitution factoring and higher-order substitution tree index-
ing. Experimental results from a wide range of examples (propositional
theorem proving, parsing, refinement type checking, small-step evalua-
tor) demonstrate that higher-order tabled logic programming yields a
more robust and more efficient proof procedure.

1 Introduction

Efficient redundancy elimination techniques such as loop detection or tabling
play an important role in the success of first-order theorem proving and logic
programming systems. The central idea of tabling is to eliminate infinite and
redundant computation by memoizing subcomputation and reusing its results
later on. Up to now, higher-order theorem proving and logic programming sys-
tems lack such memoization techniques, thereby limiting their success in many
applications. This paper describes the design and implementation of tabling for
the higher-order logic programming systems Twelf [16, 18] and presents a broad
experimental evaluation demonstrating the feasibility and benefits of tabling in
the higher-order setting.

Higher-order logic programming as Twelf [16] or λProlog [12] extends first-
order logic programming along two orthogonal dimensions: First, we allow dy-
namic assumptions to be added and used during proof search. Second, we allow
a higher-order term language which contains terms defined via λ-abstraction.
Moreover, execution of a query will not only produce a yes or no answer, but
produce a proof term as a certificate which can be checked independently. These
features make higher-order logic programming an ideal generic framework for
implementing formal systems and executing them.

Most recently, higher-order logic programming has been successfully em-
ployed in several certified code projects, where programs are equipped with a
certificate (proof) that asserts certain safety properties [3, 5, 2]. The safety policy
can be represented as a higher-order logic program and the higher-order logic
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programming interpreter can be used to execute the specification and generate a
certificate that a given program fulfills a specified safety policy. However, these
applications also demonstrate that present technology is inadequate to permit
prototyping and experimenting with safety and security policies. Many specifi-
cations are not directly executable and long response times lead to slow develop-
ment of safety policies in many applications. In [19], we outline a proof-theoretic
foundation for tabled proof search to overcome some of these deficiencies, by
memoizing sub-computations and re-using its result later. This paper focuses
on the realization and implementation of a tabled higher-order logic program-
ming interpreter in practice and presents a broad experimental evaluation. This
work is inspired by the success of memoization techniques in tabled first-order
logic programming, namely the XSB system [24] where it has been applied in
different problem domains such as implementing recognizers for grammars [27],
representing transition systems CCS, writing model checkers [6].

In the higher-order setting, tabling introduces several complications. First,
we must store intermediate goals together with dynamic assumptions which may
be introduced during proof search. Second, many operations necessary to achieve
efficient table access such unifiability or instance checking, are undecidable in
general for higher-order terms. Our approach relies on linear higher-order pat-
terns[21] and adapts higher-order substitution tree indexing [19] to permit lookup
and possible insertion of terms to be performed in a single pass. To avoid repeat-
edly scanning terms when reusing answers, we adapt substitution factoring[22].
Third, since storing and reusing fully explicit proof terms to certify tabled proofs
is impractical due to their large size, we propose a compact proof witness repre-
sentation inspired by [13] which only keeps track of a proof footprint. As the ex-
perimental results from a wide range of examples (propositional theorem proving,
refinement type checking, parsing, small-step evaluation) demonstrate, tabling
leads to a more robust and more powerful higher-order proof search procedure.

The paper is organized as follows: In Sec. 2 we introduce higher-order logic
programming using an example from propositional theorem proving. In Sec. 3 we
describe the basic principles behind table design guided by substitution factoring
and linearization of higher-order terms. This is followed by higher-order term
indexing (Sec. 4), and compact proof witness generation (Sec. 5). Experimental
results are discussed in Sec. 6. In Sec. 7 we discuss related work and summarize
the results.

2 Motivating example:Sequent calculus

To illustrate the proof search problems and challenges in higher-order logic pro-
gramming, we introduce a sequent calculus which includes implication, conjunc-
tion, and universal quantification. This logic can be viewed as a simple example
of a general safety logic. It is small, but expressive enough that it allows us to dis-
cuss the basic principles and challenges of proof search in this setting. It can also
easily be extended to a richer fragment which includes the existential quantifier,
disjunction and falsehood. We will focus here on the higher-order logic program-
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2. MOTIVATING EXAMPLE:SEQUENT CALCULUS 3

ming language Elf [16], which is based on the logical framework LF[9]. We will
briefly discuss the representation of a first-order logic in the logical framework
LF, and then illustrate how higher-order logic programming interpreter proceeds
and what problems arise. We can characterize this fragment of first-order logic
as follows:

Propositions A,B,C := P | true | A ∧B | A ⊃ B | ∀x.A
Context Γ := . | Γ,A

The main judgment to describe provability is: Γ =⇒ A which means propo-
sition A is provable from the assumptions in Γ . The rules for the intuitionist
sequent calculus are straightforward.

Γ =⇒ A Γ =⇒ B
Γ =⇒ A ∧B

andR
Γ, A ∧B, A =⇒ C

Γ, A ∧B =⇒ C
andL1

Γ, A ∧B, B =⇒ C

Γ, A ∧B =⇒ C
andL2

Γ, A =⇒ B

Γ =⇒ A ⊃ B
impR

Γ, A ⊃ B =⇒ A Γ, A ⊃ B, B =⇒ C

Γ, A ⊃ B =⇒ C
impL

Γ, A =⇒ A
axiom

Γ =⇒ [a/x]A a is new

Γ =⇒ ∀x.A
allR

Γ,∀x.A, [T/x]A =⇒ C

Γ,∀x.A =⇒ C
allL

The logical framework LF is ideally suited to support the representation and
implementation of logical systems such as the intuitionist sequent calculus above.
The representation of formulas and judgments follows [9]. We will distinguish
between propositions (conc A) we need to prove and propositions (hyp A) we
assume. The main judgment to show that a proposition A is provable from the
assumptions A1, . . . , An can be then viewed as: hyp A1, . . . , hyp An =⇒ conc A

This will allow a direct representation within the logical framework LF and
the higher-order logic program describing the inference rules is given next.

axiom : conc A
← hyp A.

andR : conc (A and B)
← conc A
← conc B.

andL1 : conc C
← hyp (A and B)
← (hyp A→ conc C).

andL2 : conc C
← hyp (A and B)
← (hyp B → conc C).

impR : conc (A imp B)
← (hyp A→ conc B).

impL : conc C
← hyp (A imp B)
← conc A
← (hyp B → conc C).

allR : conc (forall λx.A x)
← Πx:i.conc (A x).

allL : conc C
← hyp (forall λx.A x)
← (hyp (A T )→ conc C).

There are two key ideas which make the encoding of the sequent calculus
elegant and direct. First, we use higher-order abstract syntax to encode the
bound variables in the universal quantifier. We can read the allR clause as fol-
lows: To prove conc (forall λx.A x) we need to prove for all parameters x, that
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conc (A x) is true, where the Π-quantifier denotes the universal quantifier in
the meta-language. Second, we use the power of dynamic assumptions which
higher-order logic programming provides, to eliminate the need to manage as-
sumptions in a list explicitly. To illustrate, we consider the clause impR. To prove
conc (A imp B), we prove conc B assuming hyp A. In other words, the proof for
conc B may use the dynamic assumption hyp A.

When we need to access an assumption from the context, we simply try to
prove hyp A using the axiom clause axiom. All the left rules andL1, andL2, impL
and allL follow the same pattern. The andL1 rule can be read operationally as
follows: we can prove conc C, if we have an assumption hyp (A and B) and we
can prove conc C under the assumption hyp A.

For the propositional fragment of the sequent calculus, proof search is decid-
able. Therefore, we expect that simple examples such as conc ((A and B) imp B)
should be easily be provable. Unfortunately, an execution with a depth-first
search interpreter will lead to an infinite loop, as we will continue to apply the
andL1 rule, and generate the following subgoals.

Dynamic assumption Goal Justification

A:o, B:o ` conc ((A and B) imp B)

A:o, B:o, h1:hyp (A and B) ` conc B impR

A:o, B:o, h1:hyp (A and B), h2:hyp A ` conc B andL1

A:o, B:o, h1:hyp (A and B), h2:hyp A, h3:hyp A ` conc B loop

To prevent looping, we need to detect two independent problems. First, we
need to prevent adding dynamic assumptions, which are already present in some
form. However, this is only part of the solution, since we also need to detect
that we keep trying to prove the goal conc B. In this paper, we will propose the
use of tabling in higher-order logic programming to detect loops. The essential
idea is to memoize subgoals together with its dynamic assumptions and re-use
their results later. This will prevent that the computation will be trapped in
infinite paths and can potentially improve performance by re-using the result of
previous proofs. Note that although the subgoals encountered in the previous
example were all ground, and did not contain any existential variables, this may
in general not be the case. Consider for the slightly different version of the
previous example which corresponds to ∃y′.∀x.∃y.((Q y′) ∧ (P x)) ⊃ (P y)):

exists λy′. forall λx exists λy (((Q y′) and (P x)) imp (P y))

We first remove the existential quantifier by introducing an existential vari-
able Y ′. Next, we eliminate the allR-rule by introducing a new parameter x. Then
we remove the second existential quantifier, by introducing a second existential
variable Y . Existential variables (or logic variables) such as Y ′ and Y are subject
to higher-order unification during proof search. Parameter dependencies such as
that the existential Y is allowed to depend on the parameter x, while Y ′ is not,
is naturally enforced by allowing higher-order terms and existential variables
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3. TABLING IN HIGHER-ORDER LOGIC PROGRAMMING 5

which can be instantiated with functions. Using the impR-rule, we introduce the
assumption hyp ((Q Y ′) and (P x)), and the sequence of subgoals we will then
encounter by continuing to apply the andL1-rule is:

x:i, u:hyp ((Q Y ′) and (P x)) ` conc (P (Y x))

x:i, u:hyp ((Q Y ′) and (P x)), u1:hyp (Q Y ′) ` conc (P (Y x)) andL1

x:i, u:hyp ((Q Y ′) and (P x)), u1:hyp (Q Y ′), u2:hyp (Q Y ′) ` conc (P (Y x)) loop

As in the previous example, we will end up in an infinite loop, however the
subgoals now contain existential variables Y ′ and Y .

Although it is possible to design specialized propositional sequent calculus
with loop detection [10], this often non-trivial and complicates the implemen-
tation of the proof search procedure. Moreover, proving the correctness of such
a more refined propositional calculus, is non-trivial, because we need to reason
explicitly about the structure of memoization. Finally, the certificates, which
are produced as a result of the execution, are larger and contain references to
the explicit memoization data-structure. This is especially undesirable in the
context of certified code where certificates are transmitted to and checked by a
consumer, as sending larger certificates takes up more bandwidth and checking
them takes more time. Tabled logic programming provides generic memoiza-
tion support for proof search and allows us to factor out common sub-proofs
during proof search, thereby potentially obtaining smaller and more compact
certificates. Since tabled logic programming terminates for programs with the
bounded term-size property, we are also able to disprove certain statements.
This in turn helps the user to debug the specification and implementations and
increases the expressive power and usefulness of the overall system. In the case
of the propositional sequent calculus, we obtain a decision procedure for free.

3 Tabling in higher-order logic programming

Tabling methods eliminate redundant and infinite computation by memoizing
subgoals and their answers in a table and re-using the results later. Our search
is based on the multi-stage strategy by Tamaki and Sato [25], which differs only
insignificantly from SLG resolution [4] for first-order logic programs without
negation. Tabled search proceeds in stages and relies on a table to keep track of
all the subgoals encountered, and answers which were derived for them. When
trying to prove a goal G from the dynamic assumptions Γ , we first check if there
exists a variant of Γ ` G in the table. If yes, then we suspend the computation
and backtrack. If no, we add Γ ` G to the table, and proceed proving the goal
using the dynamic assumptions in Γ and the program clauses. If we derive an
answer for a goal Γ ` G, then this answer is added to the table. This first stage
terminates, once all possible search paths have been explored, and the leafs in
the search tree are either failure, success, or suspended nodes. In the next stage,
we will re-consider the suspended nodes in the search tree, and try to grow the
tree further by re-using answers of previous stages from the table. For a more
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detailed description of the search we refer the reader to [19, 20]. Here we will
discuss the basic design principles underlying tabled search, how to manage and
access the table efficiently in the higher-order setting. These principles are largely
independent of the actual strategy of how to reuse answers from the table. There
are three main table access operations:

Call CheckInsert When we encounter a tabled subgoal, we need to check whether
this subgoal is redundant. We check, if there exists a table entry Γ ′ ` G′ s.t. Γ ` G
(the current goal) is a variant (or instance) of the already existing entry Γ ′ ` G′.

Answer CheckInsert When an answer together with its proof witness is derived for
a tabled subgoal, we need to check whether this answer has been already entered
into the table answer list for this particular subgoal. If it has then the search fails,
otherwise the answer together with its proof witness is added to the answer list,
and may be re-used in later stages.

Answer Backtracking When a tabled subgoal is encountered, and answers for it are
available from the table, we need to backtrack through all the answer.

A naive implementation can result in repeatedly rescanning terms and large
table size thereby degrading performance considerably and rendering tabling
impractical. This problem has been named table access problem in first-order
logic programming [22]. In this section, we will describe design and implemen-
tation solution, which shares common structure and common operations in the
higher-order setting using substitution factoring, linear higher-order patterns,
higher-order substitution tree indexing, and compact proof witnesses.

3.1 Design of memo-table

The table records intermediate goals Γ ` G together with answers and proof wit-
nesses. As we have seen in the previous example, intermediate goals may refer
to existential (or logic variables) which will be instantiated during proof search.
In an implementation, existential variables are typically realized via references
and destructive updates. This achieves that instantiations of existential variables
are propagated immediately. On the other hand, we may need to undo these in-
stantiations for existential variables upon backtracking. This is usually achieved
by keeping a separate trail of existential variables and their corresponding in-
stantiations. As a consequence, we must take special care in an implementation
when memoizing and suspending the computation of intermediate goals. When
suspending nodes, we copy the trail to re-instantiate the existential variables
adapting ideas from [8]. Before storing intermediate goals in a memo-table, we
must abstract over all the existential variables in a goal, to avoid pollution of
the table. To illustrate, recall the previous subgoal:

x:i, u:hyp ((Q Y ′) and (P x)) ` conc (P (Y x))

To store this subgoal in a table, we abstract over the existential variables Y ′

and Y , to obtain the following table entry:

∆ ; Γ ` G
y′ : i, y : i → i ; x:i, u:hyp ((Q y′) and (P x)) ` conc (P (y x))
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3. TABLING IN HIGHER-ORDER LOGIC PROGRAMMING 7

∆ refers to a context describing existential variables, Γ describes the context
for the bound variables and dynamic assumptions and G describes the goal we
are attempting to prove. To allow easy comparison of goals G with dynamic
assumptions Γ modulo renaming of the variables in ∆ and Γ , we represent
terms internally using explicit substitutions [1] and de Bruijn indices.

Once this subgoal is solved and we inferred a possible instantiation for the
existential variables in ∆, we will add the answer to the table. The answer is a
substitution for the existential variables in ∆. In the previous example, the cor-
rect instantiation for Y is λx.x, while the existential variable Y ′ is unconstrained.
This leads to the following answer substitution:

· ` (Y ′/y′, λx.x/y) : y′:i, y:i → i

As we see in this example, not all instantiations for existential variables need to
be ground. To avoid pollution of the answer substitution in the table, we again
must abstract over the existential variables in the computed answer, which leads
to the following abstracted answer substitution:

y′:i ` (y′/y′, λx.x/y) : y′:i, y:i → i

In general, the invariant about table entries and answer substitutions are:

Table entry Answer substitution
∆;Γ ` G ∆′ ` θ : ∆

The design supports naturally substitution factoring based on explicit sub-
stitutions[22]. With substitution factoring the access cost is proportional to the
size of the answer substitution rather than the size of the answer itself. It guar-
antees that we only store the answer substitutions, and create a mechanism of
returning answers to active subgoals that takes time linear in the size of the an-
swer substitution θ rather than the size of the solved query [θ]G. In other words,
substitution factoring ensures that answer tables contain no information that
also exists in their associated call table. Operationally, this means that the con-
stant symbols in the subgoal need not be examined again during either answer
checkInsert or answer backtracking. For this setup to work cleanly in the higher-
order setting, it is crucial that we distinguish between existential variables in ∆
and bound variables and assumptions in Γ .

To support selective memoization, we provide user keyword which allows
the user to mark predicates to be tabled or not. If the predicate in G is not
marked tabled, then nothing will change. We design the tabled search in such a
way that it is completely separate from non-tabled search. The only overhead in
non-tabled computation will be a check whether a given predicate is tabled.

3.2 Optimization: Linearization

A common optimization for first-order terms is linearization which enforces that
every existential variable occurs only once. This means that any necessary con-
sistency checks can be delayed and carried out in a post-processing step. In the
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higher-order setting, we extend this linearization step to eliminate any compu-
tationally expensive checks involving bound variables and enforce that terms fall
into the linear higher-order pattern fragment, where every existential variable
occurs only once and must be applied to all the bound variables. Linear higher-
order patterns refine the notion of higher-order patterns[11, 17] further and factor
out any computationally expensive parts. As shown in [21], many terms encoun-
tered fall into this fragment and linear higher-order pattern unification performs
well in practice. Consider again, the previous example:

∆ ; Γ ` G
y′ : i, y : i → i ; x:i, u:hyp (Q x) ` conc (P (y x))

Both occurrences of the existential variable y and y′ are higher-order pat-
terns, since they are applied to a distinct set of bound variables. However, the
variable y′ and y are not linear higher-order patterns, since neither is applied
to all the bound variables which occur in Γ . During linearization, we will trans-
late the goal into a linear higher-order pattern together with residual equations
which factor out non-linear sub-parts. We abbreviate y1 x u1 as y1[id].

∆ ; Γ ` G
y1 : i → i → i,
y2 : i → i → i
y′ : i, y : i → i ; x:i, u:hyp ((Q y1[id]) and (P x)) ` conc (P (y2[id]))

together with the residual equations R: y1[id] .= y′ ∧ y2[id] .= y x
This motivates the final table design:

Table entry Residual Equ. Answer substitution
∆;Γ ` G ∆;Γ ` R ∆′ ` θ : ∆

where G is a linear higher-order pattern, Γ denotes the bound variables
and dynamic assumptions and ∆ describes the existential variables occurring
in G and Γ . This linearization step can be done together with abstraction and
standardization over the existential variables in goal, hence only one pass through
the term is required.

3.3 Optimization: Strengthening

We have seen previously that strengthening of the dynamic assumptions is nec-
essary to prevent some loops. We previously concentrated on strengthening by
removing duplicate assumptions from the dynamic context. However, in general
we use in addition two other forms of strengthening based on a type-dependency
analysis called subordination [26]. First, we eliminate dynamic assumption in Γ

1 Intuitively, y1 will be instantiated to a function λx.λu.λz.y1 and then β-reduced
to[u/u, x/x]y1. So y1 denotes an open term, which may refer to the bound variables
x and u. For a more formal treatment of open terms see [21]
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4. HIGHER-ORDER TERM INDEXING FOR TABLING 9

which cannot possibly contribute to a proof of G. Second, we eliminate bound
variable dependencies in existential variable.

Strengthening allows us to detect more loops during proof search and elim-
inate more redundant computation. Furthermore, it allows us to store some
information more compactly.

4 Higher-order term indexing for tabling

To achieve an efficient and successful tabled logic programming interpreter, it
is crucial to support efficient indexing of terms in the table to facilitate com-
pact storage and rapid retrieval of table entries. Indexing techniques facilitate
rapid retrieval of a set of candidates satisfying some property (e.g. unifiabil-
ity, instance, variant etc.) from a large collection of terms. Although a wide
range of indexing techniques exists in the first-order setting, indexing techniques
for higher-order terms are almost not existent. The main problem in handling
higher-order terms lies in the fact that most operations such as testing whether
two terms are unifiable, computing the most specific generalization of two terms
etc. are undecidable in the higher-order setting.

We propose substitution tree indexing for linear higher-order patterns. In [19,
20], we give a formal description for computing the most specific generalization
of two linear higher-order patterns, for inserting terms in the index and for
retrieving a set of terms from the index s.t. the query is an instance of the term
in the index, and show correctness. Here we will concentrate on the adaptations
to support tabling. The main algorithm of building a substitution tree follows
the description in [23]. To illustrate higher-order substitution tree indexing let
us consider the following set of linear higher-order patterns.

Goal Residual Equation
conc (forall λz. ((P (f x) y1[id]) and Q z )) y1[id]

.
= y[x/x]

conc (forall λz. ((P z y1[id]) and Q y2[id])) y1[id]
.
= y′ ∧ y2[id]

.
= y[x/x]

conc (forall λz. ((P z y1[id]) and Q y2[id])) y1[id]
.
= y[id] ∧ y2[id]

.
= y′

conc (forall λz. ((P (f z) y1[id]) and Q (f y2[id])))) y1[id]
.
= y[id] ∧ y2[id]

.
= y[x/x]

For simplicity, we assume each of the goals has the same dynamic context Γ =
x:i, u:hyp ((P y0[id]x) and (Q x) and the context ∆ describing the existential
variables contains y0, y1, y2, y, and y′. Below we show the substitution tree for
the given set of linear higher-order patterns. Each table predicate will have its
own substitution tree.

A higher-order substitution tree is a tree whose nodes are substitutions to-
gether with a context ∆i which describes the existential variables occurring in
the node. For example, the substitution in the top-most node contains the ex-
istential variable y1, while the node with the substitution f(i3[id])/i1 does not
refer to any existential variable. It is crucial that we ensure that any internal
variable i which is applied to all the variables in whose scope it occurs in. How-
ever, for any operation on the index, we must treat internal existential variables
i differently than globally existential variables y. Internal existential variables i
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will be instantiated at a later point as we traverse the tree. While existential
variables defined in ∆i are potentially subject to “global” instantiation, if we
check whether the current goal is an instance of a table entry. The intention is
that all the ∆i along a given path together with the ∆n at the leaf constitutes
the full context of existential variables ∆. As there are no typing dependencies
among the variables in ∆ and all the variables in ∆ are linear, they can be
arbitrarily re-ordered. Distributing ∆ along the nodes in the substitution tree,
makes it easier to guarantee correctness in an implementation where variables
are represented via de Bruijn indices.

y1: . . . forall λz.P (i1[id], y1[id]) and Q(i2[id])

· f(i3[id])/i1

y2: . . .
z/i3

f(y2[id])/i2,

y1[id] .= y x
y2[id] .= y x

· x/i3,
z/i2

y1[id] .= y[id]

y2: . . .
z/i1,

y2[id]/i2

y1[id] .= y[id]
y2[id] .= y′

y1[id] .= y′

y2[id] .= y[id]

At the leafs, we will store linear residual equations, dynamic assumptions
Γ , the existential variables ∆′ occurring in the residual equations and in Γ , as
well as a pointer to the answer list. Note we omitted the two latter parts in
the figure above. By composing the substitutions along a path and collecting
all the existential variables ∆i along this path, we will obtain the table entry
∆;Γ ` G together with its residual equations. By composing the substitutions
in the left-most branch, we obtain the term (4).

In the following development we will distinguish between internal existential
variables i which are defined in the modal context Σ and “global” existential
variables u and v which are defined in the modal context ∆. A higher-order
substitution tree is an ordered tree and is defined as follows:

1. A tree is a leaf node with substitution ρ such that ∆n ` ρ : Σ.
2. A tree is a node with substitution ρ such that (∆j , Σ) ` ρ : Σ′ and children

nodes N1, . . . , Nn where each child Node Ni has a substitution ρi such that
(∆i, Σi) ` ρi : Σ.

For every path from the top node ρ0 where (∆0, Σ1) ` ρ0 : Σ0 to the leaf
node ρn, we have ∆ = ∆0 ∪∆1 ∪ . . . ∪∆n and ∆ ` ρn ◦ ρn−1 ◦ . . . ◦ ρ0 : Σ0. In
other words, there are no internal existential variables left after we compose all
the substitutions ρn up to ρ0. As there are no typing dependencies among the
variables in Σ and all the variables are linear, they can be arbitrarily re-ordered.

At the leaf, we also store a list of answer substitutions θ, where we have ∆′ `
θ : ∆ and the dynamic context Γ . The design is motivated by the design of term
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indexing in first-order theorem proving, where we would index and discriminate
on the conclusion we want to prove rather than the assumptions. First, indexing
on the goal, rather than on the context ∆ and Γ , allows for more structure
sharing, since often the goals are similar, but the context Γ and ∆ may differ.
In addition it allows direct access to the goal of the table entry and allows to
implement a table for each type family.

5 Compact proof witnesses

Generating certificates as evidence of a proof is essential if we aim to use the
tabled logic programming interpreter as part of a certifying code infrastruc-
ture. Moreover, it is helpful in guaranteeing correctness of the tabled search and
debugging the logic programming interpreter. The naive solution to generate
certificates when tabling intermediate sub-goals and their results, is to store the
corresponding proof term together with the answer substitution in the table.
However this may take up considerable space and results in high computational
overhead, due to their large size[14]. Hence it is impractical to store the full proof
term. In our implementation, we only store a footprint of the proof from which it
is possible to recover the full proof term. Essentially we just keep track of the id
of the applied clause thereby obtaining a string of numbers which corresponds
to the actual proof. This more compact proof witness can be de-compressed
and checked by building and re-running a deterministic higher-order logic pro-
gramming engine. This idea to represent proof witnesses as a string of (binary)
numbers is inspired by [13].

6 Experimental results

In this section, we discuss some experimental results with different examples.
All experiments are done on a machine with the following specifications: 2.4GHz
Intel Pentium Processor, 512 MB RAM. We are using SML of New Jersey 110.0.7
under Linux Red Hat 9. Times are measured in seconds.

6.1 Propositional Theorem Proving

We report on two experiments. The first one uses a straightforward implemen-
tation of the intuitionist sequent calculus, while in the second one we chain all
invertible rules together and use focusing for the non-deterministic choices. In
the straightforward implementation of the sequent calculus, we memoize every
subgoal encountered. Although this is feasible and useful for testing smaller ex-
amples, the table size and especially the number of suspended goals may grow
very large. In the focusing version of the propositional sequent calculus, we will
only memoize subgoals once we come to the focusing phase, thereby controlling
the table size. Moreover, we will employ strengthening. In our experiments, we
consider all the propositional test-cases reported by J. Howe in [10], which he
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used to evaluate his two specialized loop-detection mechanisms for intuitionist
propositional logic. These examples provide a reality check on how powerful a
generic proof search method with memoization can be. Due to space, we only
can show some test results here.

Both implementations of the sequent calculus within Twelf will not be exe-
cutable using a logic programming interpreter based on depth-first search, how-
ever it is possible to use the iterative deepening theorem prover which is part of
the meta-theorem prover in Twelf [18]. Iterative deepening will stop after finding
the first solution, hence we compare it to finding the first solution using tabled
search. We also include the time it takes for tabled search to terminate, and
conclude that no other solution exists.

Sequent Calculus Propositional Theorem Proving – Run time in sec
ItDeep Tab(1) Tab(all)

A ∧ (B ∨ C) ` (A ∧B) ∨ (A ∧ C) 1.48 0.11 0.15
((A ∨B) ∧ (A ∨ C)) ` (A ∨ (B ∧ C)) 10.57 0.18 0.73
A ∨ C ∧ (B ⊃ C) ` (A ⊃ B) ⊃ C 202.57 0.02 1.59

As we can see, iterative deepening takes considerable amount of time to prove
de Morgan’s laws, which are typical examples one would like to check. The table
size for the tabled higher-order logic programming engine grows up to 560 table
entries and over 3400 suspended nodes.

Unlike iterative deepening, where failure is not meaningful, we can use tabled
logic programming to also disprove examples. The use of memoization yields a
decision procedure for propositional logic for free.

Sequent Calculus Propositional Theorem proving – NonProvable
Name Tab Indices SuspGoals
(((A ⊃ B) ⊃ false) ⊃ A ∧ (B ⊃ false)) 0.01 15 34
((A ∧B ⊃ false) ⊃ (A ⊃ false) ∨ (B ⊃ false)) 0.03 31 80
((A ⊃ B) ⊃ C) ` (A ∨ C ∧ (B ⊃ C)) 0.01 19 42

We can improve upon a naive proof search procedure based on the sequent
calculus, by chaining all the invertible rules such as andR, andL2, andL1, impR,
orL together, and focusing on the choices we have to make in the impL and orR1

and orR2 rule. We will only memoize subgoals once we come to the focusing
phase, thereby controlling the table size. The approach essentially builds on
J. Howe work where he compared two different loop detection for intuitionist
propositional logic and designed special propositional theorem provers for it. We
will use the examples from his test-suite [10] to see how powerful a generic proof
search engine with memoization can be.
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Focusing Calculus (Propositional theorem proving) – run time in sec
Name ItDeep Tab(1) Tab(all)
(A ∨B) ∧ (D ∨ E) ∧ (G ∨H) ⊃ (A ∧D)∨

(A ∧G) ∨ (D ∧G) ∨ (B ∧ E) ∨ (B ∧H) ∨ (E ∧H) 0.230 0.05 0.05
(((A ∨B ∨ C) ∧ (D ∨ E ∨ F ) ∧ (G ∨H ∨ J)∧
(K ∨ L ∨M)) ⊃ ((A ∧D) ∨ (A ∧G) ∨ (A ∧K)∨
(D ∧G) ∨ (D ∧K) ∨ (G ∧K) ∨ (B ∧ E) ∨ (B ∧H)∨
(B ∧ L) ∨ (E ∧H) ∨ (E ∧ L) ∨ (H ∧ L) ∨ (C ∧ F )∨
(C ∧ J) ∨ (C ∧M) ∨ (F ∧ J) ∨ (F ∧M) ∨ (J ∧M))) ∞ 4.12 4.23
((((A↔ B) ⊃ (A ∧B ∧ C)) ∧ ((B ↔ C) ⊃ (A ∧B ∧ C))
∧((C ↔ A) ⊃ (A ∧B ∧ C))) ⊃ (A ∧B ∧ C)) ∞ 0.46 0.40
(((D ⊃ (C ⊃ A)) ∧A ∧ ((C ∧A) ⊃ (C ∧B)) ∧ ((A∨
(C ⊃ A)) ⊃ (A ∧D ∧ ¬(C ∨A)))) ⊃ (D ⊃ ¬(C ∨A))) ∞ 1.55 2.61
((((C ⊃ D) ⊃ (A ∧ (B ⊃ B))) ∧D ∧ (C ⊃ D) ∧ C∧
((B ⊃ A) ∨ (C ∧B))) ⊃ (((((C ⊃ C) ∧ (B ⊃ B)) ⊃
(B ∨ C)) ∧D) ⊃ (((A ∧D) ∨A) ⊃ ((C ∧ (B ⊃ B)∧

(C ⊃ C) ∧ C) ⊃ ¬(¬(B ∨ C)))))) 22.12 0.38 0.40
((¬((D ⊃ C) ∨ C ∨ (A ∧ C ∧ (C ⊃ B)))∧
((D ∧D) ∨ ((D ∧ (C ⊃ A)) ⊃ ¬(C ∨A))∨
((B ∧ ¬B) ⊃ ((C ∧ C) ∨ (D ⊃ B))))) ⊃

(((D ∧D) ⊃ C) ⊃ (((D ∧ (C ⊃ A)) ⊃
¬(C ∨A)) ∨ ((B ∧ ¬B) ⊃ ((C ∧ C) ∨ (D ⊃ B)))))) 5.14 0.35 17.37
((((C ∧ (D ⊃ D)) ⊃ C) ∧ (C ⊃ D) ∧ (C ⊃ B)
∧C ∧D ∧ C) ⊃ (((B ⊃ A) ∧D) ⊃ ((A ∨ C) ⊃
((D ⊃ D) ⊃ ((B ⊃ A) ∧ (A ∨ C ∨ C)
∧((B ∧ C) ⊃ (B ∧ C)) ∧ (A ∨ C)))))) 17.37 0.22 0.54
(((C ⊃ C) ⊃ (B ∧A)) ⊃ ((C ∧D) ⊃
((C ⊃ C) ⊃ ((C ∧A ∧D) ⊃ ((A ∨A) ⊃
(¬(C ⊃ (B ∧A ∧ ¬A)) ∨ ((A ∨A) ∧B ∧A ∧ C ∧D∧
(((B ⊃ B) ⊃ D) ⊃ (A ∧D))))))))) 33.36 0.08 0.17
(((((A ∧A) ⊃ ((A ∧A) ∨ C)) ⊃ B) ∧ ((¬(A ∨D) ⊃
((C ⊃ B) ∧ (A ⊃ A))) ⊃
(D ∧ ((C ⊃ B) ⊃ A))) ∧ ¬(D ⊃ D)) ⊃ (B ∨ ¬A)) 0.1 1.15 53.50
(¬((((D ∧A) ⊃ (A ⊃ C)) ∨ (D ∧ C) ∨ (D ⊃ B))∧
¬A ∧ ¬(((D ∧A) ⊃ (A ⊃ C)) ∨ (D ∧ C) ∨ (D ⊃ B)))) 0.56 1.01 1.17

Focusing Calculus (Propositional Theorem Proving) – Disproving
Formula tab
(((A ∨B ∨ C) ∧ (D ∨ E ∨ F )) ⊃ ((A ∧B) ∨ (B ∧ E) ∨ (C ∧ F ))) 0.02
(A ⊃ B) ⊃ ((A ⊃ B ⊃ C) ⊃ C) ⊃ (A ⊃ B ⊃ C) 0.00
((((¬(¬(¬A ∨ ¬B))) ⊃ (¬A ∨ ¬B)) ⊃ ((¬(¬(¬A ∨ ¬B)))∨
¬(¬A ∨ ¬B))) ⊃ (¬(¬(¬A ∨ ¬B)) ∨ ¬(¬A ∨ ¬B))) 11.99
(((A ∧ (B ∨ C)) ⊃ (C ∨ (C ∧D))) ⊃ ((¬A) ∨ ((A ∨B) ⊃ C))) 0.01

Not surprisingly, iterative deepening is not powerful enough to prove most of
the examples from Howe’s test-suite. But tabled higher-order logic programming
is able to prove or disprove 14 of the 15 propositional examples from Howe’s test-
suite in reasonable time frame. Most of the examples take 1 sec or below, and only
one example took 4.12 sec. Only in one example the tabled logic programming
interpreter started thrashing and was eating up too much memory. The table
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size in these examples was up to 2600 table entries and up to 22000 suspended
goals, which is the main limiting factor in these examples. These examples seem
to indicate that to improve the tabled higher-order logic programming engine we
need to be able to detect whether some suspended nodes are still productive or
if they have been saturated and can be garbage-collected. In fact, this strategy
is pursued in the XSB system. However, the fact that a generic higher-order
proof search procedure with tabling can be used to prove or disprove so many
non-trivial propositional examples, has been surprising to us. Maybe even more
importantly, tabled higher-order logic programming can also disprove examples,
thereby yielding a decision procedure for propositional logic for free.

6.2 Refinement type checking

In this example, we explore refinement type checking as described by Davies and
Pfenning in [7]. This is an advanced type system for a small functional language
MiniML where expressions may have more than one type and there may be
many ways of inferring a type. The type system is executable with a depth-first
logic programming interpreter, however the redundancy may severely hamper
the performance. We will compare the performance between depth-first search
and tabled search, and group the examples in three categories: 1) Finding the
first solution 2) Discovering that a given program cannot be typed 3) Finding
all possible solutions.

Refinement type checking – Typable examples (runtime in sec)
Name lp(1) tab(1) lp(all) tab(all)

sub : nat → zero → nat&zero → nat → zero&
bit → bit → bit 0.10 0.31 3.91 0.36

sub : ((nat → pos → nat)&(pos → nat → nat)&
(pos → pos → nat)&nat → nat → nat) 0.10 0.38 3.43 0.43

mult : ((pos → nat → nat)&(nat → nat → nat)&
(nat → pos → nat)&(pos → pos → pos)) 0.06 0.66 ∞ 0.84

square: (pos → nat&nat → nat) 0.02 0.70 ∞ 1.06
square: (pos → pos) 0.10 0.90 ∞ 0.88
– time out after 1h

Refinement type checking – Untypable examples
Name lp tab

mult : (nat → pos → nat) 805.97 0.35
plus : ((nat → nat → nat)&(nat → pos → pos)&

(pos → nat → pos)&(pos → pos → zero)) 8.14 0.20
mult : ((pos → nat → nat)&(nat → nat → nat)&

(nat → pos → nat)&(pos → pos → zero)) ∞ 0.620
mult : (nat → zero → pos) 289.11 0.30
square : (pos → zero ∞ 0.92
square : (pos → zero&pos → nat ∞ 0.72

– time out after 1h

DRAFT March 9, 2005– 10 : 12



6. EXPERIMENTAL RESULTS 15

As the results demonstrate, logic programming is superior, if we are only
interested in finding the first solution, but is not able to disprove that a given
program is in fact not well-typed. Similarly, finding all possible types for a given
program is too unwieldy. The table contains up to 400 table entries and 300
suspended goals. The fact that depth-first-search is superior to tabled search is
not surprising since managing the table imposes some computational overhead.
Moreover, the tabled strategy delays the re-use of answers hence imposing a
penalty. However, the tabled logic programming interpreter is able to solve all
the examples within 1 sec. This attests to the strength and robustness of the
system. Overall, our users attest to the fact that they rather take a reasonable
performance hit, when finding the first solution, but obtain a more robust proof
system, which is able to provide reasonably quick feedback.

6.3 Parsing

Parsing is a classic example to demonstrate the strength and usefulness of
tabling. Often we want to mix right and left recursion to model right and left
associativity in the grammar. This leads to specifications which are not exe-
cutable using a depth-first search. Hence we compare iterative deepening with
tabled search. In our example, we implemented a parser for parsing formulas
into higher-order abstract syntax. As the results demonstrate, tabling is clearly
superior to iterative deepening, and provides a practical way of experimenting
with parsers and grammars. We only compare finding the first solution with
tabling and finding the first solution with iterative deepening, and report on the
time depending on the number of tokens parsed. Table size ranges up to 1500
table entries, and up to 1750 suspended goals.

Parsing: Provable – runtime
Name #tokens ItDeep tab(1)
1 5 0.01 0.02
2 20 0.78 0.07
3 32 79 0.28
4 60 2820.02 0.94
6 118 ∞ 3.22
7 177 ∞ 7.75
8 236 ∞ 12.65
Time limit : 1h

Parsing: Not provable – runtime
Name #tokens Tab
1 19 0.01
2 31 0.27
3 58 0.50
4 117 2.24

6.4 Mini-ML Reduction Semantics

6.5 Mini-ML Reduction Semantics

Finally, we discuss the implementation of a small-step interpreter for a small
functional language MiniML using higher-order logic programming. On top of a
one-step relation, we define a reflexive transitive closure to chain multiple steps
together. This evaluator is not directly executable using depth-first search, since
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the transitivity rule will lead to an infinite loop. Hence we compare iterative
deepening with tabled search. As the results demonstrate, tabled search is again
superior to iterative deepening search, and we can execute and experiments
with several interesting examples. Again the limiting factor of tabled search is
the number of suspended goals which grows over 20,000. We compare the time
it took the find the first solution. The examples are meant to represent simple
test cases, one would write. Obviously, to create an efficiently evaluator the user
would implement a big-step semantics. Nevertheless, it is important to test and
experiment with a small-step semantics, since properties such as progress cannot
be proven using the big-step semantics.

Small-step reductions (provable) – runtime
Name ItDeep Tab(1)

5 plus(0,1) 0.25 0.01
9 mult((0,0) 0.25 0.02
7 plus(1,1) ∞ 0.04
8 plus(2,2) ∞ 0.11
10 mult(1, 1) ∞ 1.61
13 mult(1, 2) ∞ 6.48
18 mult(1, 3) ∞ 13.68
19 mult(1, 4) ∞ 29.45
15 plus(2, minus(4,2)) ∞ 75.72

Small-step reductions (unprovable) – runtime
Name Tab

6 plus(0,2) = 1 0.02
7 plus(1, 1) = 3 0.10
8 plus(2,2) = 2 0.27
10 mult(1, 1) = 2 6.27

7 Conclusion

In this paper, we described the design and implementation of a tabled higher-
order logic programming interpreter within the Twelf system. The system in-
cluding the test-suites is available at http://www.cs.cmu.edu/~twelf as part
of the Twelf distribution. Crucial ingredients in the design are substitution fac-
toring, linear higher-order patterns, higher-order substitution tree indexing, and
compact proof witnesses. These techniques are the key ingredients to enabling
tabling in higher-order logic programming or theorem proving systems. They
should also be applicable to systems such as λProlog [12] or Isabelle [15].

The wide range of examples we have experimented with demonstrates that
tabling is a significant step towards obtaining a more robust and more power-
ful proof search engine in the higher-order setting. Tabling leads to improved
performance and more meaningful, quicker failure behavior. Improved failure
behavior is important when prototyping and experimenting with formal systems
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7. CONCLUSION 17

as we want to test our specifications with positive and negative test cases, to
gain more confidence in it. Hence quick feedback is critical. This does not mean
that tabling is a panacea for all the proof search problems, but rather the first
step towards integrating and adapting some of the more sophisticated first-order
theorem proving techniques to the higher-order setting.

Unlike most descriptions of tabling which rely on modifying the underlying
WAM to enable tabling support, we have identified and implemented the essen-
tial tabling mechanisms independently of the WAM. Although we have tried to
carefully design and implement tabling within the higher-order logic program-
ming system Twelf, there is still quite a lot of room for improvements. The most
severe limitation currently is due to the multi-stage strategy which re-uses an-
swers in stages, and prevents the use of answers as soon as they are available.
Different strategies have been developed in first-order tabled logic programming
such as SCC scheduling (strongly connected components), which allows us to
consume answers as soon as they are available and garbage collect unproduc-
tive suspended nodes [24]. In the future, we plan to adapt these techniques to
the higher-order setting, and incorporate more first-order theorem proving tech-
niques such as ordering constraints.
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