
Functional programming with dependently-typed higher-order data

Brigitte Pientka Joshua Dunfield
McGill University

School of Computer Science
Montreal, Canada

{bpientka,joshua}@cs.mcgill.ca

Abstract

This paper explores a new point in the design space of
functional programming: functional programming with de-
pendently typed higher-order data structures described in
the logical framework LF. This allows us to program with
proofs. The contributions of this paper are twofold: First,
we present a syntax-directed bidirectional type system that
distinguishes between dependently typed data and compu-
tations and locally resolves constraints arising from depen-
dent types using unification. Our foundation is unique in
the sense that data objects may be open and encoded in
higher-order abstract syntax. In addition, our language
supports first-class substitutions, a feature which is absent
in the competing proposals. Second, we describe an oper-
ational semantics for this language based on higher-order
pattern matching for dependently typed objects and prove
progress and preservation for our language.

1. Introduction

Over the last decade, various forms of dependent types
have found their way into mainstream functional program-
ming languages to allow programmers to express stronger
properties about their programs. Generalized algebraic
datatypes (GADTs) [22, 2, 25, 13] can index types by
other types and have entered mainstream languages such as
Haskell. Other approaches, such as DML [26], use indexed
types with a fixed constraint domain, such as integers with
linear inequalities, for which efficient decision procedures
exist.

This paper explores a new point in the design space
of functional programming with dependent types. Specif-
ically, we are interested in functional programming with
dependently typed higher-order data structures describedin
the logical framework LF [7]. LF provides a rich meta-
language that represents binders in the object language as
binders in the meta-language. This technique is called

higher-order abstract syntax (HOAS) encoding and supports
renaming, fresh name generation, and capture-avoiding
substitution. Proofs can be directly encoded as higher-order
dependently typed objects, and there is built-in support for
applying substitution lemmas. Over the past decade, the
strengths of HOAS have been compellingly proven in LF
and its implementation in the Twelf system [14].

But combining dependent types and HOAS encodings
with functional programming has been plagued with dif-
ficulties. HOAS encodings are not inductive in the usual
sense, since we must traverse binding structures and recur-
sively analyze and manipulate open data containing binders.
How, then, do we know that a variable occurring in data
does not extrude its scope? How do we access and manipu-
late variables in data objects?

It has been said that “[t]he whole HOAS approach by
its very nature disallows a feature that we regard of key
practical importance:the ability to manipulate names of
bound variables explicitlyin computation and proof” [6].
Thus, nominal approaches [6], which provide first-class
names andα-renaming, but not capture-avoiding substitu-
tion, have been advocated as a good compromise. More
recently, this approach has been extended to support depen-
dent types [19]. However, nominal systems themselves are
not free from difficulties. In FreshML [23], for example,
name generation and binding are separate operations, and
fresh name generation is an observable side effect. Unfor-
tunately, this means that data can accidentally contain un-
bound names. To address this problem, Pottier [18] pro-
posedpure FreshML, in which one reasons about sets of
free variables via a Hoare-style proof system.

In this paper, we tackle the problem of combining depen-
dent types and HOAS with functional programming, and
show that these concepts can be elegantly incorporated into
functional programming using contextual modal type the-
ory [12]. The contextual modalityA[Ψ] characterizes data
objects of typeA in the contextΨ, that is, data objects refer-
ring to variables declared inΨ. Every data object is there-
fore locally closed. Since we want to allow recursion over

open data, and the local contextΨ associated with the type
A can grow, our foundation supportscontext variablesthat
abstract over contexts. Consequently, different arguments
to a computation can have different local contexts and we
can distinguish between closed data of typeA[·] and open
data of typeA[Ψ]. By design, variables occurring in open
data cannot escape their scope, avoiding a problem common
in previous attempts and yielding a name-safe foundation
for the operations typical in nominal systems. In addition
to supporting binders andα-renaming, we provide capture-
avoiding substitution together with first-class substitutions.
Our foundation provides direct access to variables and al-
lows us to manipulate and compare them in computations
and proofs, providing an essential feature which typically
has been difficult to marry with HOAS.

This paper extends the first author’s prior work on pro-
gramming with higher-order abstract syntax in the simply-
typed setting [16] to dependent types. The programmer
can directly construct and manipulate proofs as dependently
typed higher-order data structures. This allows the pro-
grammer to directly express why properties about data ob-
jects hold. More importantly, our functional language is
powerful enough to be a general proof language for im-
plementing, as functions, inductive properties about formal
deductive systems. As such, it is an alternative to the ap-
proach taken in Twelf, in which metatheory about deduc-
tive systems is encoded via relations. Our contribution is
twofold: First, we present a syntax-directed bidirectional
type system that distinguishes between dependently typed
data and computations and locally resolves constraints aris-
ing from dependent types using unification. Our foundation
is unique in the sense that dependently typed data objects
may be open and supports encodings based on higher-order
abstract syntax and provides first-class substitutions. This
facilitates the encodings of proofs as data. We achieve this
by cleanly separating dependently-typed higher-order data
objects from computations using contextual modal types.

Second, we describe the operational semantics for this
language based on higher-order pattern matching for depen-
dently typed objects and prove progress and preservation
for our language, assuming that programs are covering all
cases. The formal development of a coverage and termina-
tion checker which guarantees the totality of the functions
is beyond the scope of this paper.

We believe our calculus is an important step towards un-
derstanding syntactic structures with binders and dependent
types, and providing direct support for binders in the setting
of typed functional programming.

2. Related work

Enriching functional programming with dependently
typed higher-order data structures, a longstanding open

problem, is presently receiving widespread attention. There
are two central challenges: First, we must support higher-
order encodings in which objects refer to variables. Second,
we must support dependent types, including matching on
the index objects of dependent types.

Most closely related to our work is the Delphin lan-
guage [17], a dependently typed functional programming
language which supports HOAS encodings. However, our
theoretical approach differs substantially. Most of thesedif-
ferences arise because we build our type-theoretical foun-
dation on contextual modal types whereA[Ψ] denotes an
objectM of typeA in a contextΨ. This means that the ob-
jectM can refer to the variables declared inΨ. Every data
object is therefore locally closed. In Delphin, however, the
whole function and all its arguments are executed in a global
context. This is less precise and can express fewer proper-
ties on individual data objects. Delphin’s∇-quantifier in-
troduces a new parameter in a computation and extends the
current context. However, the actual context of dynamic as-
sumptions is kept implicit, while we have explicit context
variables. Finally, we provide first-class substitutions.

Despeyroux et al. [5] presented a type-theoretic founda-
tion for programming with HOAS that supports primitive
recursion. To separate data from computation, they intro-
duced modal types2A that can be injected into computa-
tion. However, data is always closed and can only be an-
alyzed by a primitive recursive iterator. Despeyroux and
Leleu [4, 3] extended this work to dependent types. Our
work may be seen as a continuation and extension of theirs,
in which we relativize the modal necessity.

Our work shares many of the same goals as the work
by Licata and Harper [8] who proposed an extensible the-
ory of indexed domains. However, their current work does
not consider full LF, but a framework of abstract binding
trees that is expressive enough to describe higher-order ab-
stract syntax, but not judgments. In this sense, their frame-
work lacks the power to manipulate and analyze proofs as
data. Technically, their work is quite different from ours
and provides no inherent type-theoretic foundation for open
objects.

Finally, there have been several proposals in the func-
tional programming community to allow full dependent
types but not HOAS encodings. Languages such as
Cayenne [1] and Epigram [9] support full dependent types
but do not distinguish between dependently typed data and
computations.

3. Motivation

To illustrate our approach and motivate the problem, we
give two examples: a type-preserving environment-based
interpreter and a self-certifying type inference engine.

2

3.1. Type-preserving evaluator

First, we show an environment-based interpreter for a
simple language with natural numbers andlet expressions.
Expressions are indexed with their types to ensure that only
well-typed expressions are evaluated. We first define the
basic types, in the LF style.

tp: type . nat: tp.

Next, we define the object terms, which are indexed by
the typestp. We write dependent types explicitly, though
explicit abstraction over index arguments in the dependent
type is not necessary in practice.

exp: tp → type .
z : exp nat.
Suc : exp nat → exp nat.
Add : exp nat → exp nat → exp nat.
Let : Π t1:tp Π t2:tp.

exp t1 → (exp t1 → exp t2) → exp t2.

The expressionlet val x = 1 in Add(0, x) end, for ex-
ample, is represented asLet nat nat (Suc z) (λx.Add z

x). When we recursively analyze objects, we will analyze
Add z x, in which x is free. The expressionAdd z x has
typeexp nat in the contextx:exp nat. We express this by
the contextual modal type(exp nat)[x:exp nat].

This example illustrates the need to characterize open
data objects. Since the context of free variables grows dur-
ing recursion, we havecontext variablesthat abstract over
concrete contexts. Just as types classify objects,schemas
classify contexts. Schemas resemble Schürmann’s worlds
[20], but our type-theoretic foundation makes context ab-
straction and schemas explicit. In this example, the context
ψ = x1:exp t1,...,xn:exp tn is classified by the schema
(all t:tp. exp t)∗. All declarations inψ are instances of
the schema wheret is instantiated with a concrete typeti.

The interpreter takes as input an expressione of type
t that may have free variablesx1:exp t1,...,xn:exp tn

together with an environmentr that maps all free vari-
ablesx1, . . . , xn to closed well-typed values such thatr =
v1/x1, . . . , vn/xn and everyvi has typeti. The result is a
closed value of typet. The environment that maps all free
variables in the contextψ to closed values of the appropriate
type is represented as a first-class substitution with domain
ψ and empty range; its type is writtenψ[.].

ctx schema W = all t:tp . exp t.

rec eval : Π ψ:(W)∗. Π2T:tp[.].
(exp T[.])[ψ] → ψ[.] → (exp T[.])[.] =

Λ ψ ⇒ λ2T ⇒ fn e ⇒ fn r ⇒ let sbox S[.] = r in
case e of

box(ψ. z) : (exp nat)[ψ] ⇒ box(. z)

| Π2U::(exp nat)[ψ] .
box(ψ. Suc U[idψ]) : (exp nat)[ψ]

⇒ let box(. V[.]) =

eval ⌈ψ⌉ < . nat> box(ψ. U[idψ]) r

in
box(. Suc V[.])

end

| Π2T::tp[.]. Π2p::(exp T[.])[ψ] .
box(ψ. p[idψ]) : (exp T[.])[ψ]
⇒ box(. p[S[.]])

| Π2T1::tp[.].Π2 T2::tp[.].
Π2W::(exp T1[.])[ψ].
Π2U::(exp T2[.])[ψ, x:exp T1[.]].
box(ψ.Let T1[.] T2[.] W[idψ]

(λx. U[idψ, x])) : (exp T2[.])[ψ]
⇒ let box(. V[.]) =

eval ⌈ψ⌉ <. T1[.]> box(ψ.W[idψ]) r
in
eval ⌈ψ,x:exp T1[.] ⌉ <. T2[.]>

box(ψ,x. U[idψ,x]) (sbox S[.], V[.])
end

In the function, we first introduce the context variable
ψ using Λ-abstraction and which binds every occurrence
of ψ in the body. Next, we introduce the index variable
T, followed by the computation-level variablee which has
type(exp T[.])[ψ] and which will be analyzed by pattern
matching.

We use contextual variables written in capital letters to
represent open data. There are two situations which neces-
sitate the use of contextual variables: describing data in-
dexing types, as in(exp T[.])[ψ], and supporting pattern
matching in branches. In the above program, we explicitly
declared all the contextual variables as well as the type of
each pattern, reflecting the type-theoretic foundation pre-
sented in this paper. We will begin by first discussing con-
textual variables in patterns.

In patterns, the closure consisting of a contextual vari-
able U and apostponed substitutioncharacterizes “holes”
instantiated using higher-order pattern matching. For exam-
ple, inbox(ψ. Suc U[idψ]), the closureU[idψ] describes a
“hole” that is to be filled. As soon as we know whatU stands
for, we apply the substitution which essentially corresponds
to α-renaming. We writeidψ for the identity substitution
with domainψ. Intuitively, one may think of the substitu-
tion associated with contextual variables as a list of vari-
ables that may occur in the hole. InU[idψ] the contextual
variableU can be instantiated with an expression containing
variables declared inψ.

Similarly, index objects are characterized by contextual
variables.Π2T:tp[.].τ introduces a contextual variableT
denoting a closed index object of typetp. In addition to
meta-variablesU, which may be instantiated with an arbi-
trary data object, we also supportparameter variablesp. A
parameter variable represents a bound variable and can only
be instantiated with a variable from the data level. Similar
to meta-variables, they are treated as closures. We use small
letters for parameter variables, in contrast to capital letters
for meta-variables which can be instantiated with an arbi-
trary object. Parameter variables allow us to write, in a case

3

expression, a pattern that only matches variables, and allow
us to collect and even compare variables.

When we encounter a parameter from the context as in
the third case, we can simply apply the substitutionS[.] to
the objectp. Since the substitutionS[.] has domainψ and
range empty, applying it to the parameter variablep yields a
closed object. Because we applyS[.] as soon as we know
what p stands for, the variable occurring in the instantia-
tion for p will now be replaced by its correct corresponding
value. Closures thereby provide us with built-in support for
substitutions. The type system guarantees that the environ-
mentr has closed instantiations for all variables in the local
contextψ, and applying the substitutionS[.] to the param-
eter variablep must yield a closed value.

To recursively analyze expressions we have to consider
different cases. The cases for zero and successor are
straightforward. In the recursive call in the case for suc-
cessor, we writeeval ⌈ψ⌉ for context application and< .

nat> for applying an index argument. To evaluate thelet
expression, we evaluatebox(ψ.W[idψ]) in the environment
r to some closed valueV, and then evaluatebox(ψ,x.W[idψ
,x] in the extended environment that associates the binder
x with the valueV. Since we think of substitutions by posi-
tion, we do not make their domain explicit and simply write
sbox(. S[.], V[.]).

3.2. Self-certifying type inference

In this example, we consider the implementation of a
simple type inference algorithm which will not only infer
the type of a given term but also return its typing derivation.
We consider the same expressions as above, but instead of
indexing the expressions with their types, we define typing
judgments separately. We begin by defining expressions,
types and typing derivations.

exp: type .
z: exp. Suc: exp → exp.
Let exp → (exp → exp) → exp.

Typing rules are represented as a dependent type which
describes the relation between object-level expressions and
their types. A typing judgmentΓ ⊢ t : T is translated into
a dependent type declaration in LF and a typing derivation
concludingΓ ⊢ t : T is described by an object of type
type oft t T. We use higher-order abstract syntax in the
specification of the typing rule to model hypothetical typ-
ing derivations, eliminating need to explicitly manipulateΓ.
Every typing rule forΓ ⊢ t : T is translated into a constant
whose type encodes the actual typing rule.

oft: exp → tp → type .
o_z: oft z nat.
o_s: Π e:exp. oft e nat → oft (Suc e) nat.
o_l: Π e1:exp. Π t1:tp. Π t2:tp. Π e2:exp→exp.

oft e1 t1 →
(Π x:exp. oft x t1 → oft (e2 x) t2)

→ oft (Let e1 λx.e2 x) t2.

The functioninfer accepts anexp and returns a tuple
consisting of its type and the typing derivation. Since we
will traverse binding constructs, the function will have to
handle open objects, which depend on assumptions about
types of variables. The context keeps track of the vari-
ablex:exp together with its proof, which has the (object-
level) typeoft x T. The following schema classifies ex-
actly those contexts.

ctx schema W = all t:tp. Σ x:exp. oft x t

Next, we show the implementation of the functioninfer.

rec infer: Πγ:(W)∗. Π2U::exp[γ] .
Σ2T:tp[.]. (oft U[idγ] T[.])[γ] =

Λ γ ⇒ λ2U ⇒
case box(γ. U[idγ]) of

box(γ. z) : exp[γ] ⇒
pack< . nat, box(γ. o_z) >

| Π2E1:exp[γ].Π2 E2:exp[γ, x:exp].
box(γ. Let E1[idγ] λx.E2[idγ,x]) : exp[γ] ⇒

let pack< . T1[.], box(γ.D1[idγ]) >
= infer [γ] <γ . E1[idγ]>

pack< . T2[.], box(γ. D2[idγ]) >
= infer [γ, d:Σ x:exp. oft x S1[.]]

<γ, d . E2[idγ, proj 1 d] >
in

pack< . S2[.],
box(γ. o_l D1[idγ]

λx.λu.D2[idγ, <x,u>]) >
end

| Π2T::tp[.] Π2p::(Σ x::exp. oft x T[.])[γ]
box(γ. proj 1 p[idγ]) : exp[γ] ⇒

pack< . T[.], box(γ. proj 2 p[idγ])

Typically a type inference algorithm is implemented by
recursively analyzing expressions. Because the expression
is an index object in our function and we cannot directly
match against index objects, we applybox to lift it to a
data object that we can pattern-match. To return a depen-
dent tuple, we usepack, which pairs a data object with a
computation-level expression. In general, a dependent pair
has the formpack<Ψ.M,e> whereM is a data object with free
variablesΨ ande is a computation-level expression.

In the recursive call forLet, we extend the context with
the declarationΣx:exp.oft x S1[.]. Our context there-
fore keeps track not only of parameters occurring in the ex-
pression, but also assumptions about their type. Thus, our
typing context is implicit, and does not have to be modeled
with a list or some other explicit data structure.

In the case for a variable, we use a parameter variablep to
match against declarations inγ. When matching succeeds,
it instantiates not onlyp but also the index argumentT. We
can thus returnT and the witnessproj 2 p[idγ].

4

4. Data-level terms, substitutions, contexts

We begin describing the type-theoretic foundation of our
languages by presenting the data layer. We essentially sup-
port the full logical framework LF together withΣ-types.
Our data layer closely follows contextual modal type the-
ory [12], extended with parameter variables, substitution
variables, and context variables [16], and finally with de-
pendent pairs and projections. Perhaps most importantly,
we formalize schemas, which classify contexts.

Kinds K ::= type | Πx:A.K
Atomic types P ::= a M1 . . .Mn

Types A,B ::= P | Πx:A.B | Σx:A.B
Normal terms M,N ::= λx.M | (M,N) | R
Neutral terms R ::= c | x | u[σ] | p[σ]

| R N | projkR
Substitutions σ, ρ ::= · | σ ; M | σ , R

| s[σ] | idψ

Element types A∗ ::= Πx:A.A∗ | a N1 . . . Nn
Schema elementsF ::= all Φ.Σy1:A

∗

1, . . . , yj :A
∗

j . A
∗

Schema sums S ::= F1 + · · · + Fn
Schemas W ::= (S)∗

Context variables ψ, φ
Contexts Ψ,Φ ::= · | ψ | Ψ, x:A
Meta-contexts ∆ ::= · | ∆, u::A[Ψ]

| ∆, p::A[Ψ] | ∆, s::Ψ[Φ]
Schema contexts Ω ::= · | Ω, ψ::W

We only characterize normal terms since only these are
meaningful in the logical framework, following Watkins et
al. [24] and Nanevski et al. [12]. This is achieved by dis-
tinguishing between normal termsM and neutral termsR.
While the syntax only guarantees that termsN contain no
β-redexes, the typing rules will also guarantee that all well-
typed terms are fullyη-expanded.

We distinguish between four kinds of variables in our
theory: Ordinary bound variablesare used to represent
data-level binders and are bound byλ-abstraction. Con-
textual variablesstand for open objects, and includemeta-
variablesu, which represent general open objects,param-
eter variablesp which can only be instantiated with an or-
dinary bound variable, andsubstitution variabless, which
represent a mapping from one context to another. Con-
textual variables are introduced in computation-level case
expressions, and can be instantiated via pattern matching.
They are associated with a postponed substitutionσ thereby
representing a closure. Our intention is to applyσ as soon
as we know which term the contextual variable should stand
for. The domain ofσ thus describes the free variables that
can possibly occur in the object which represents the con-
textual variable, and the type system statically guarantees
this.

Substitutionsσ are built of either normal terms (in
σ ; M) or atomic terms (inσ , R). We do not make the

domain of the substitutions explicit, which simplifies the
theoretical development and avoids having to rename the
domain of a given substitutionσ. Similar to meta-variables,
substitution variables are closures with a postponed substi-
tution. We also require a first-class notion of identity substi-
tution idψ. Our convention is that data-level substitutions,
as defined operations on data-level terms, are written[σ]N .

Contextual variables such as meta-variablesu, parameter
variablesp, and substitution variabless are declared in a
meta-level context∆, while ordinary bound variables are
declared in a contextΨ.

Finally, our foundation supportscontext variablesψ
which allow us to reason abstractly with contexts. Abstract-
ing over contexts is an interesting and essential next step to
allow recursion over higher-order abstract syntax. Context
variables are declared inΩ. Unlike previous uses of context
variables [10], a context may contain at most one context
variable. In the same way that types classify objects, and
kinds classify types, we introduce the notion of a schemaW
which classifies contextsΨ. We say that contextΨ checks
against a schemaW = (F1 + · · · + Fn)

∗ if there exists an
elementFk = allΦ.Σy1:A

∗

1, . . . , yj :A
∗

j . A
∗ such thatΨ is

an instance ofΣy1:A∗

1, . . . , yj :A
∗

j .A
∗ where all variables in

Φ have been appropriately instantiated.
We assume that type constants and object constants are

declared in a signatureΣ, which we suppress since it is
the same throughout a typing derivation. However, we will
keep in mind that all typing judgments have access to a well-
formed signature.

4.1. Data-level typing

We present a bidirectional type system for data-level
terms. Typing is defined via the following judgments:

Ω; ∆; Ψ ⊢M ⇐ A Check normal objectM againstA
Ω; ∆; Ψ ⊢ R ⇒ A SynthesizeA for neutral objectR
Ω; ∆; Φ ⊢ σ ⇐ Ψ Checkσ against contextΨ

For readability, we omitΩ in the subsequent development
since it is constant; we also assume that∆ andΨ are well-
formed. First, the typing rules for objects.

Data-level normal terms

∆; Ψ, x:A ⊢M ⇐ B

∆; Ψ ⊢ λx.M ⇐ Πx:A.B
ΠI

∆; Ψ ⊢M1 ⇐ A1 ∆; Ψ ⊢M2 ⇐ [M1/x]
a
A1
A2

∆; Ψ ⊢ (M1,M2) ⇐ Σx:A1.A2
ΣI

∆; Ψ ⊢ R⇒ P ′ P ′ = P

∆; Ψ ⊢ R ⇐ P
turn

5

Data-level neutral terms

x:A ∈ Ψ
∆; Ψ ⊢ x⇒ A

var c:A ∈ Σ
∆; Ψ ⊢ c⇒ A

con

u::A[Φ] ∈ ∆ ∆; Ψ ⊢ σ ⇐ Φ

∆; Ψ ⊢ u[σ] ⇒ [σ]aΦA
subst

p::A[Φ] ∈ ∆ ∆; Ψ ⊢ σ ⇐ Φ

∆; Ψ ⊢ p[σ] ⇒ [σ]aΦA
param

∆; Ψ ⊢ R ⇒ Πx:A.B ∆; Ψ ⊢ N ⇐ A

∆; Ψ ⊢ R N ⇒ [N/x]aAB
ΠE

∆; Ψ ⊢ R ⇒ Σx:A1.A2

∆; Ψ ⊢ proj1R ⇒ A1

ΣE1

∆; Ψ ⊢ R ⇒ Σx:A1.A2

∆; Ψ ⊢ proj2R ⇒ [proj1R/x]
a
A1
A2

ΣE2

Data-level substitutions

∆; Ψ ⊢ · ⇐ · ∆;ψ,Ψ ⊢ idψ ⇐ ψ

s::Φ1[Φ2] ∈ ∆ ∆; Ψ ⊢ ρ⇐ Φ2 Φ
α
= Φ1

∆; Ψ ⊢ (s[ρ]) ⇐ Φ

∆; Ψ ⊢ σ ⇐ Φ ∆; Ψ ⊢ R⇒ A′ [σ]aΦA = A′

∆; Ψ ⊢ (σ , R) ⇐ (Φ, x:A)

∆; Ψ ⊢ σ ⇐ Φ ∆; Ψ ⊢M ⇐ [σ]aΦA

∆; Ψ ⊢ (σ ; M) ⇐ (Φ, x:A)

We assume that data level type constantsa together with
constantsc have been declared in a signature. We will tac-
itly rename bound variables, and maintain that contexts and
substitutions declare no variable more than once. Note that
substitutionsσ are defined only on ordinary variablesx,
not on modal variablesu. We also require the usual con-
ditions on bound variables. For example, in the rule for
lambda-abstraction the bound variablex must be new and
cannot already occur in the contextΨ. This can always be
achieved viaα-renaming. The typing rules for data-level
neutral terms rely onhereditary substitutionswhich ensure
that canonical forms are preserved [24, 12].

The idea is to define a primitive recursive functional that
always returns a canonical object. In places where the or-
dinary substitution would construct a redex(λy.M)N we
must continue, substitutingN for y in M . Since this could
again create a redex, we must continue and hereditarily sub-
stitute and eliminate potential redexes. Hereditary substitu-
tion can be defined recursively, considering both the struc-
ture of the term to which the substitution is applied and the
type of the object being substituted. For this operation to
terminate, it suffices to keep track of the approximate (non-
dependent) type of the object being substituted. We omit the
definition of ordinary hereditary substitutions and refer the

reader to [12] for details. For the subsequent development
we use the operation[M/x]∗A(N) where∗ ∈ {n, r, s, a}.

Schema checking relies on higher-order pattern match-
ing. If Ψ checks againstW , then every declarationxi:Ai in
Ψ will be independent from any other declarationxj :Aj in
Ψ because dependencies are only allowedwithin a schema
elementF .

Theorem 4.1. [Decidability of Typechecking]
All judgments in the contextual modal type theory are de-
cidable.

Proof. The typing judgments are syntax-directed and there-
fore clearly decidable assuming hereditary substitution op-
eration is decidable.

4.2. Substitution

The different variables (context variablesψ, ordinary
variablesx, and contextual variables) give rise to different
substitution operations. We briefly summarize the substitu-
tion operations for context variablesψ and contextual vari-
ables in this section, and refer the reader to previous work
[16, 12] for a more detailed discussion.

We begin by considering substitution for context vari-
ables. If we encounter a context variableψ, we simply re-
place it with the contextΨ.

Data-level context

[[Ψ/ψ]](·) = ·
[[Ψ/ψ]](Φ, x:A) = (Φ′, x:A) if x /∈ V(Φ′)

and[[Ψ/ψ]]Φ = Φ′

[[Ψ/ψ]](ψ) = Ψ
[[Ψ/ψ]](φ) = φ if φ 6= ψ

When we apply the substitution[[Ψ/ψ]] to the context
Φ, x:A, we apply the substitution to the contextΦ to yield
some new contextΦ′. However, we must make sure thatx
is not already declared inΦ′. This can always be achieved
by appropriately renaming bound variable occurrences. We
write V(Φ′) for the set of variables declared inΦ′. The rest
of the definition is mostly straightforward. Since context
variables occur in the identity substitutionidψ, we must ap-
ply the context substitution to objects and in particular to
substitutions. When we replaceψ with Ψ in idψ, we unfold
the identity substitution.

Expansion of the identity substitution is defined by the
operationid(Ψ) for valid contextsΨ:

id(·) = ·
id(Ψ, x:A) = id(Ψ) , x
id(ψ) = idψ

Substitutions for contextual variables are a little more
difficult. We have three kinds of contextual variables: meta-
variablesu, parameter variablesp, and substitution vari-
ables (see [16]).

6

We can think ofu[σ] as a closure where, as soon as
we know which termu should stand for, we can applyσ
to it. The typing will ensure that the type ofM and the
type of u agree, i.e. we can replaceu of typeA[Ψ] with
a normal termM if M has typeA in the contextΨ. Be-
cause ofα-conversion, the variables substituted at different
occurrences ofu may differ, and we write the contextual
substitution as[[Ψ̂.M/u]]nA[Ψ](N), [[Ψ̂.M/u]]rA[Ψ](R), and

[[Ψ̂.M/u]]
s

A[Ψ](σ), whereΨ̂ binds all free variables inM .
The annotationA[Ψ] is necessary since we apply the sub-
stitutionσ hereditarily once we know which termu repre-
sents, and hereditary substitution requires the type to ensure
termination.

In defining substitution, we must make sure that normal
forms are preserved. For example, applying[[Ψ̂.M/u]]

r

A[Ψ]

to the closureu[σ] first obtains the simultaneous substitu-
tion σ′ = [[Ψ̂.M/u]]

s

A[Ψ]σ, but instead of returningM [σ′],
it eagerly appliesσ′ to M . To enforce that we always re-
turn a normal object as a result of contextual substitution,
we resort to ordinary hereditary substitution. Since ordinary
hereditary substitution requires the type of the argument be-
ing substituted, we carry the type of the meta-variableu
which will be replaced. For a thorough explanation, see
[12]. For clarity, we omit the typing annotation when we
subsequently write contextual substitution.

Contextual substitution for parameter variables follows
similar principles, but substitutes an ordinary variable for
a parameter variable. This could not be achieved with
the previous definition of contextual substitution for meta-
variables since it only allows us to substitute a normal term
for a meta-variable, andx is only normal if it is of atomic
type. We write parameter substitutions as[[Ψ̂.x/p]]

∗

A[Ψ].
When we encounter a parameter variablep[σ], we replace
p with the ordinary variablex and apply the substitution
[[Ψ̂.x/p]]sA[Ψ] to σ obtaining a substitutionσ′. Instead of re-
turning a closurex[σ′] as the final result we applyσ′ to the
ordinary variablex. This may again yield a normal term, so
we must ensure that contextual substitution for parameter
variables preserves normal forms.

Substituting for substitution variables follows the same
ideas. To ensure it works correctly with the previously de-
fined substitution operations, we also annotate it with the
type of the substitution variable. Applying[[Ψ̂.σ/s]]sΦ[Ψ] to
the closures[ρ] first obtains the simultaneous substitution
ρ′ = [[Ψ̂.σ/s]]

s

Φ[Ψ]ρ, but instead of returningσ[ρ′], it pro-
ceeds to eagerly applyρ′ to σ.

5. Computation-level expressions

Our goal is to cleanly separate the data level from the
computation level, which describes programs operating on
data. Computation-level types may refer to data-level types

via the contextual typeA[Ψ], which denotes an object of
typeA that may contain the variables specified inΨ. To al-
low quantification over context variablesψ, we introduce a
dependent typeΠψ:W.τ and context abstractionΛψ.e. We
write → for computation-level functions. We introduce ab-
straction over the arguments which could occur in a depen-
dent typeA on the computation level using the dependent
typeΠ2A[Ψ].τ .

Types τ ::= A[Ψ] | Φ[Ψ] | τ1 → τ2 | Πψ::W.τ
| Π2u::A[Ψ].τ | Σ2u :: A[Ψ].τ

Expressions e ::= i | rec f.e | fn y.e | Λψ.e | λ2u. e

(checked) | box(Ψ̂.M) | sbox(Ψ̂. σ)

| pack(Ψ̂.M , e) | case i of bs

Expressions i ::= y | i e | i ⌈Ψ⌉ | i ⌈Ψ̂.M⌉ | (e : τ)
(synth.) | let pack(u , x) = e in e′ end

Patterns ζ ::= Π∆.box(Ψ̂.M) : A[Ψ]

| Π∆.sbox(Ψ̂. σ) : Φ[Ψ]

Branch b ::= ζ 7→ e

Branches bs ::= · | (b | bs)

Contexts Γ ::= · | Γ, y:τ

We will enforce that all context variables are bound by
Λ-abstractions. To supportα-renaming of ordinary bound
variables, we writebox(Ψ̂.M) whereΨ̂ is a list of variables
which can possibly occur inM . Index objects to dependent
types are introduced using the constructorλ2u. e which has
typeΠ2u::A[Ψ].τ . In other words, index objects are char-
acterized by contextual variables.i ⌈Ψ̂.M⌉ describes the
application of an index argument to an expression. The con-
textual variables in branches which are declared in∆ are
instantiated using higher-order pattern matching. We only
consider patterns à la Miller [11] where meta-variables that
are subject to instantiation must be applied to a distinct set
of bound variables. In our setting this means all contex-
tual variables must be associated with a substitution such
asxΦ(1)/x1, . . . , xΦ(n)/xn. This fragment is decidable and
has efficient algorithms for pattern matching.

Patterns in case expressions are annotated with their
types, since in the dependently typed setting, the type of
each pattern need not be identical to the type of the expres-
sion being case analyzed.

5.1. Computation-level typing

We describe computation-level typing using the follow-
ing judgments:

Ω; ∆; Γ ⊢ e⇐ τ e checks againstτ
Ω; ∆; Γ ⊢ i⇒ τ i synthesizesτ
Ω; ∆; Γ ⊢ b⇐τ ′ τ branchb checks againstτ ,

when case-analyzing aτ ′

The most interesting rule in the bidirectional typecheck-
ing algorithm is the one for branches, since the typeAk[Ψk]

7

Expressione checks against typeτ

Ω; ∆; Γ, f :τ ⊢ e⇐ τ

Ω; ∆; Γ ⊢ rec f.e⇐ τ
rec

Ω, ψ:W ; ∆; Γ ⊢ e⇐ τ

Ω; ∆; Γ ⊢ Λψ.e⇐ Πψ:W.τ ΠI
Ω; ∆; Γ, y:τ1 ⊢ e⇐ τ2

Ω; ∆; Γ ⊢ fn y.e⇐ τ1 → τ2
→I

Ω; ∆, u::A[Ψ]; Γ ⊢ e⇐ τ

Ω; ∆; Γ ⊢ λ2u. e⇐ Π2u::A[Ψ].τ
Π2I

Ω; ∆; Ψ ⊢M ⇐ A

Ω; ∆; Γ ⊢ box(Ψ̂.M) ⇐ A[Ψ]
box

Ω; ∆; Ψ ⊢ σ ⇐ Φ

Ω; ∆; Γ ⊢ sbox(Ψ̂. σ) ⇐ Φ[Ψ]
sbox

Ω;∆; Γ ⊢ i⇒ A[Ψ] for all k Ω; ∆; Γ ⊢ bk ⇐A[Ψ] τ

Ω; ∆; Γ ⊢ case i of b1 | . . . | bn ⇐ τ
case

Ω; ∆; Γ ⊢ i⇒ Φ[Ψ] for all k Ω; ∆; Γ ⊢ bk ⇐Φ[Ψ] τ

Ω; ∆; Γ ⊢ case i of b1 | . . . | bn ⇐ τ
scase

Ω; ∆; Ψ ⊢M ⇐ A Ω; ∆; Γ ⊢ e⇐ [[Ψ̂.M/u]]τ

Ω; ∆; Γ ⊢ pack(Ψ̂.M , e) ⇐ Σ2u::A[Ψ].τ
pack

Ω; ∆; Γ ⊢ e′ ⇒ Σ2u::A[Ψ].τ ′ Ω; ∆, u::A[Ψ]; Γ, x:τ ′ ⊢ e⇐ τ

Ω; ∆; Γ ⊢ let pack(u , x) = e′ in e end ⇐ τ
let-pack

∆; Γ ⊢ i⇒ τ ′ Ω; ∆ ⊢ τ ′ = τ

Ω; ∆; Γ ⊢ i⇐ τ
turn

Expressioni synthesizes typeτ

Ω; ∆; Γ ⊢ e⇐ τ

Ω; ∆; Γ ⊢ (e : τ) ⇒ τ
anno

y:τ ∈ Γ

Ω; ∆; Γ ⊢ y ⇒ τ
var

Ω; ∆; Γ ⊢ i⇒ τ2 → τ Ω; ∆; Γ ⊢ e⇐ τ2
Ω; ∆; Γ ⊢ i e⇒ τ →E

Ω; ∆; Γ ⊢ i⇒ Πψ:W.τ Ω; ∆ ⊢ Ψ ⇐W

Ω; ∆; Γ ⊢ i ⌈Ψ⌉ ⇒ [[Ψ/ψ]]τ
ΠE

Ω; ∆; Γ ⊢ i⇒ Π2u::A[Ψ].τ Ω; ∆; Ψ ⊢M ⇐ A

Ω; ∆; Γ ⊢ i ⌈Ψ̂.M⌉ ⇒ [[Ψ̂.M/u]]
t

A[Ψ]τ
Π2E

Bodyek checks against typeτ , assuming the value cased upon has typeA[Ψ]

Ω; ∆k; Ψk ⊢Mk ⇐ Ak
Ω; ∆,∆k ⊢ Ψ

.
= Ψk/(θ1,∆

′)
Ω; ∆′ ⊢ [[θ1]]A

.
= [[θ1]]Ak / (θ2,∆

′′)
Ω; ∆′′; [[θ2]][[θ1]]Γ ⊢ [[θ2]][[θ1]]ek ⇐ [[θ2]][[θ1]]τ

Ω; ∆; Γ ⊢ Π∆k.box(Ψ̂.Mk) : Ak[Ψk] 7→ ek ⇐A[Ψ] τ

Figure 1. Computation-level typing rules

of each of the patterns must be considered equal to the type
A[Ψ], the type of the expression we analyze by cases. In
some approaches to dependently typed programming [26],
branches are checked under certain equality constraints. In-
stead we propose here to solve these constraints eagerly
using higher-order pattern unification. This approach sim-
plifies the later preservation and progress proof. It is also
closer to a realistic implementation, which would support
early failure and point out the offending branch.

Branchesb are of the formΠ∆.box(Ψ̂.M) 7→ e (resp.
sbox), where∆ contains all the contextual variables intro-
duced and occurring in the guardbox(Ψ̂.M). We concen-
trate here on the last rule for checking the pattern in a case
expression. After typing the pattern in the case expression,
we unify the type of the subject of the case expression with
the type of the pattern. First, however, we must unify the
contextΨ with the contextΨi of the pattern. Finally, we
apply the result of higher-order unificationθ to the body of
the branch and check that it is well-typed.

Since we restrict all occurrences of contextual variables
in the patterns of case expressions such that they are higher-

order patterns [11], and higher-order pattern unification is
decidable, unification of the contexts and types is decidable.
For a formal description of a higher-order pattern unifica-
tion algorithm for contextual variables, see [15].

5.2. Operational semantics

Next, we define a small-step evaluation judgment:

e evaluates in one step toe′ e −→ e′

Branchb matchesbox(Ψ̂.M) and steps toe′

(box(Ψ̂.M) : A[Ψ]
.
= b) −→ e′

Branchb matchessbox(Ψ̂. σ) and steps toe′

(sbox(Ψ̂. σ) : Φ[Ψ]
.
= b) −→ e′

In the presence of full LF we cannot erase type infor-
mation completely during evaluation, since not all implicit
type arguments can be uniquely determined. Because eval-
uation relies on pattern matching, and higher-order pattern
matching requires that we only match two terms if they have
the same type, we match against the pattern’s type before

8

Evaluation of computations:

rec f.e −→ [rec f.e/f]e (fn y.e : τ1 → τ2) v −→ [v/y]e (λ2u. e) ⌈Ψ̂.M⌉ −→ [[Ψ̂.M/u]]e

i1 −→ i′1
i1 e2 −→ i′1 e2

e2 −→ e′2
v e2 −→ v e′2

i −→ i′

i ⌈Ψ⌉ −→ i′ ⌈Ψ⌉ (Λψ.e) ⌈Ψ⌉ −→ [[Ψ/ψ]]e

let pack(u , x) = pack(Ψ̂.M , e′) in e end −→ [[Ψ̂.M/u]][e′/x]e

i −→ i′

case i of bs −→ case i′ of bs

i⇒⇐ ζ1
(case i of ζ1 7→ e1 | bs) −→ case i of bs

i
.
= ζ1 / θ ζ1 = Π∆.box(Ψ̂.M) : A[Ψ]

(case i of ζ1 7→ e1 | bs) −→ [[θ]]e1

i
.
= ζ1 / θ ζ1 = Π∆.sbox(Ψ̂. σ) : Φ[Ψ]

(case i of ζ1 7→ e1 | bs) −→ [[θ]]e1

Evaluation of branches:

∆ ⊢ Ψk
.
= Ψ / (θ1,∆1) ∆1; Ψ ⊢ A

.
= [[θ1]]Ak / (θ2,∆2) θ = [[θ2]]θ1 ∆2; Ψ ⊢M

.
= [[θ]]Mk / (θ3, ·)

(box(Ψ̂.M) : A[Ψ]
.
= Π∆.box(Ψ̂.Mk) : Ak[Ψk]) / [[θ3]]θ

∆ ⊢ Ψ
.
= Ψk / (θ1,∆1) ∆1 ⊢ Φ

.
= [[θ1]]Φk / (θ2,∆2) θ = [[θ2]]θ1 ∆2; Ψ ⊢ σ

.
= [[θ]]σk / (θ3, ·)

(sbox(Ψ̂. σ) : Φ[Ψ]
.
= Π∆.sbox(Ψ̂. σk) : Φk[Ψk]) / [[θ3]]θ

Figure 2. Operational semantics

matching against the pattern itself. This also means we im-
plicitly translate the computational language into one where
general type annotations are erased, but allbox expressions,
including patterns in branches, carry their corresponding
type. We denote this translation by|e| and|i| for checked
and synthesizing expressions, respectively.

Otherwise, the operational semantics is straightforward.
In function application, values for program variables are
propagated by computation-level substitution. Instantia-
tions for context variables are propagated by applying a
concrete contextΨ to a context abstractionΛψ.e. Index ar-
guments are propagated by applying a concrete data object
Ψ̂.M to the expressionλ2u. e.

Evaluation in branches relies on higher-order pattern
matching against data-level terms to instantiate the contex-
tual variables occurring in a branch and data-level instan-
tiations are propagated via contextual simultaneous substi-
tution. We assume thatbox(Ψ.M) does not contain any
meta-variables, i.e. it is closed and its typeA[Ψ] is known.
Because of dependent types inΨk we must first matchΨ
againstΨk, and then proceed to matchM againstMk. Dur-
ing execution, the only type annotations needed are onbox

expressions. We define evaluation on expressions with all
other type annotations erased. Given the current setup, we
can now prove type safety for our proposed functional lan-
guage with higher-order abstract syntax and explicit substi-
tutions. We assume that patterns cover all cases here, but it
should be possible to incorporate coverage checking follow-

ing the ideas of [21]. First we state and prove a canonical
forms lemma.

Lemma 5.1. [Canonical Forms]

(1) If i is a value and·; ·; · ⊢ i⇒ τ → τ ′

then|i| = fn y.|e′| and·; ·; y:τ ⊢ e′ ⇐ τ ′.

(2) If i is a value and·; ·; · ⊢ i⇒ A[Ψ]
then|i| = (box(Ψ̂.M) : A[Ψ])
and·; ·; · ⊢ box(Ψ̂.M) ⇐ A[Ψ].

(3) If i is a value and·; ·; · ⊢ i⇒ Π2u :: A[Ψ].τ
then|i| = λ2u. |e′| and·;u::A[Ψ]; · ⊢ e′ ⇐ τ .

(4) If i is a value and·; ·; · ⊢ i⇒ Σ2u :: A[Ψ].τ
then|i| = pack(Ψ̂.M , |e′|) and·; ·; Ψ ⊢M ⇐ A
and·; ·; · ⊢ e′ ⇐ [[Ψ̂.M/u]]τ .

Proof. By induction on the typing derivation.

Theorem 5.1. [Preservation and Progress]

(1) If ·; ·; · ⊢ e ⇐ τ ande coverage checks then eithere
is a value or there existse′ such that|e| −→ |e′| and
·; ·; · ⊢ e′ ⇐ τ .

(2) If ·; ·; · ⊢ i ⇒ τ and i coverage checks then eitheri
is a value or there existsi′ such that|i| −→ |i′| and
·; ·; · ⊢ i′ ⇒ τ .

Proof. By induction on the given typing derivation, using
Lemma 5.1, the obvious substitution properties, and cover-
age checking as needed.

9

6. Conclusion

We have presented a type-theoretic foundation for pro-
gramming with higher-order dependently typed data that
supports higher-order abstract syntax and first-class substi-
tution. Our framework supports recursion over data defined
with HOAS, and allows pattern matching against open data
and variables based on higher-order patterns. By design,
bound variables in data cannot escape their scope. Although
we have not considered coverage and termination checking
in this paper, we believe this is an important step towards
programming with proofs in a functional setting thereby
providing an alternative functional framework for mecha-
nizing the meta-theory of formal systems. More generally,
our work explores a novel point in combining a rich depen-
dently typed data language with functional programming
while preserving decidability of typing.

References

[1] L. Augustsson. Cayenne—a language with dependent types.
In 3rd International Conference Functional Programming
(ICFP ’98), pages 239–250, ACM Press, 1998.

[2] J. Cheney and R. Hinze. First-class phantom types. Techni-
cal Report CUCIS TR2003-1901, Cornell University, 2003.

[3] J. Despeyroux and P. Leleu. Primitive recursion for higher
order abstract syntax with dependent types. InInternational
Workshop on Intuitionistic Modal Logics and Applications
(IMLA), 1999.

[4] J. Despeyroux and P. Leleu. Recursion over objects of func-
tional type. Mathematical Structures in Computer Science,
11(4):555–572, 2001.

[5] J. Despeyroux, F. Pfenning, and C. Schürmann. Primitive
recursion for higher-order abstract syntax. In3rd Interna-
tional Conference on Typed Lambda Calculus and Applica-
tions (TLCA’97), pages 147–163, 1997. Springer.

[6] M. Gabbay and A. Pitts. A new approach to abstract syntax
involving binders. In14th Annual Symposium on Logic in
Computer Science (LICS’99), pages 214–224, 1999. IEEE
Computer Society.

[7] R. Harper, F. Honsell, and G. Plotkin. A framework for
defining logics. Journal of the ACM, 40(1):143–184, Jan-
uary 1993.

[8] D. R. Licata and R. Harper. An extensible theory of indexed
types. Unpublished manuscript, July 2007.

[9] C. McBride and J. McKinna. The view from the left.Journal
of Functional Programming, 14(1):69–111, 2004.

[10] A. McCreight and C. Schürmann. A meta-linear logi-
cal framework. In4th International Workshop on Logical
Frameworks and Meta-Languages (LFM’04), 2004.

[11] D. Miller. A logic programming language with lambda-
abstraction, function variables, and simple unification.Jour-
nal of Logic and Computation, 1(4):497–536, 1991.

[12] A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal
type theory. ACM Transactions on Computational Logic.
Accepted, to appear in 2008.

[13] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Wash-
burn. Simple unification-based type inference for GADTs.
In 11th International Conference on Functional Program-
ming (ICFP ’06), ACM Press, 2006.

[14] F. Pfenning and C. Schürmann. System description: Twelf
— a meta-logical framework for deductive systems. In16th
International Conference on Automated Deduction (CADE-
16), pages 202–206. Springer, LNAI 1632, 1999.

[15] B. Pientka. Tabled higher-order logic programming. PhD
thesis, Department of Computer Science, Carnegie Mellon
University, 2003. CMU-CS-03-185.

[16] B. Pientka. A type-theoretic foundation for programming
with higher-order abstract syntax and explicit substitutions.
In 35th Annual ACM Symposium on Principles of Program-
ming Languages (POPL’08), pages 371–382. ACM Press,
2008.

[17] A. Poswolsky and C. Schürmann. Practical programming
with higher-order encodings and dependent types. InPro-
ceedings of the European Symposium on Programming
(ESOP ’08), Mar. 2008.

[18] F. Pottier. Static name control for FreshML. In22nd IEEE
Symposium on Logic In Computer Science (LICS’07), pages
356–365. IEEE Computer Society, 2007.

[19] U. Schöpp and I. Stark. A dependent type theory with names
and binding. In13th Annual Conference on Computer Sci-
ence Logic (CSL), pages 235–249. Springer, LNCS 3210,
2004.

[20] C. Schürmann.Automating the Meta Theory of Deductive
Systems. PhD thesis, Department of Computer Science,
Carnegie Mellon University, 2000. CMU-CS-00-146.

[21] C. Schürmann and F. Pfenning. A coverage checking algo-
rithm for LF. In 16th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs’03), pages 120–
135. Springer, LNCS 2758, 2003.

[22] T. Sheard and E. Pasalic. Meta-programming with built-in
type equality. In4th International Workshop on Logical
Frameworks and Meta-languages (LFM ’04), pages 106–
124, 2004.

[23] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML:
programming with binders made simple. In8th Inter-
national Conference Functional Programming (ICFP’03),
pages 263–274. ACM Press, 2003.

[24] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A
concurrent logical framework I: Judgments and properties.
Technical Report CMU-CS-02-101, Department of Com-
puter Science, Carnegie Mellon University, 2002.

[25] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype
constructors. In30th ACM Symposium Principles of Pro-
gramming Languages (POPL ’03), pages 224–235. ACM
Press, 2003.

[26] H. Xi and F. Pfenning. Dependent types in practical pro-
gramming. In26th ACM Symposium on Principles of Pro-
gramming Languages (POPL ’99), pages 214–227. ACM
Press, 1999.

10

	. Introduction
	. Related work
	. Motivation
	. Type-preserving evaluator
	. Self-certifying type inference

	. Data-level terms, substitutions, contexts
	. Data-level typing
	. Substitution

	. Computation-level expressions
	. Computation-level typing
	. Operational semantics

	. Conclusion

