Functional programming with dependently-typed higher-order data

Brigitte Pientka Joshua Dunfield
McGill University
School of Computer Science
Montreal, Canada
{bpientka,joshup@cs.mcgill.ca

Abstract higher-order abstract syntax (HOAS) encoding and supports
renaming, fresh name generation, and capture-avoiding
This paper explores a new point in the design space ofsubstitution. Proofs can be directly encoded as highesrord
functional programming: functional programming with de- dependently typed objects, and there is built-in suppart fo
pendently typed higher-order data structures described in applying substitution lemmas. Over the past decade, the
the logical framework LF. This allows us to program with strengths of HOAS have been compellingly proven in LF
proofs. The contributions of this paper are twofold: First, and its implementation in the Twelf system]14].
we present a syntax-directed bidirectional type systerh tha But combining dependent types and HOAS encodings
distinguishes between dependently typed data and compuwith functional programming has been plagued with dif-
tations and locally resolves constraints arising from depe ficulties. HOAS encodings are not inductive in the usual
dent types using unification. Our foundation is unique in sense, since we must traverse binding structures and recur-
the sense that data objects may be open and encoded igively analyze and manipulate open data containing binders
higher-order abstract syntax. In addition, our language How, then, do we know that a variable occurring in data
supports first-class substitutions, a feature which is abse does not extrude its scope? How do we access and manipu-
in the competing proposals. Second, we describe an oper{ate variables in data objects?
ational semantics for this language based on higher-order |t has been said that “[tihe whole HOAS approach by
pattern matching for dependently typed objects and provejts very nature disallows a feature that we regard of key
progress and preservation for our language. practical importancethe ability to manipulate names of
bound variables explicitiyn computation and proof'[]6].
Thus, nominal approache§] [6], which provide first-class
1. Introduction names andv-renaming, but not capture-avoiding substitu-
tion, have been advocated as a good compromise. More
Over the last decade, various forms of dependent typesrecently, this approach has been extended to support depen-
have found their way into mainstream functional program- dent types[[I9]. However, nominal systems themselves are
ming languages to allow programmers to express strongemot free from difficulties. In FreshMLI23], for example,
properties about their programs. Generalized algebraicname generation and binding are separate operations, and
datatypes (GADTs)[I221Z_ 2%, 13] can index types by fresh name generation is an observable side effect. Unfor-
other types and have entered mainstream languages such dgnately, this means that data can accidentally contain un-
Haskell. Other approaches, such as DI [26], use indexedbound names. To address this problem, Potfier [18] pro-
types with a fixed constraint domain, such as integers with posedpure FreshML, in which one reasons about sets of
linear inequalities, for which efficient decision proceemr ~ free variables via a Hoare-style proof system.
exist. In this paper, we tackle the problem of combining depen-
This paper explores a new point in the design spacedent types and HOAS with functional programming, and
of functional programming with dependent types. Specif- show that these concepts can be elegantly incorporated into
ically, we are interested in functional programming with functional programming using contextual modal type the-
dependently typed higher-order data structures desciibed ory [I2]. The contextual modalit[¥] characterizes data
the logical framework LF[]7]. LF provides a rich meta- objects of typed in the contextV, that is, data objects refer-
language that represents binders in the object language asng to variables declared ifr. Every data object is there-
binders in the meta-language. This technique is calledfore locally closed. Since we want to allow recursion over

open data, and the local contektassociated with the type problem, is presently receiving widespread attentionr&he
A can grow, our foundation supportentext variableshat are two central challenges: First, we must support higher-
abstract over contexts. Consequently, different argusnent order encodings in which objects refer to variables. Second
to a computation can have different local contexts and wewe must support dependent types, including matching on
can distinguish between closed data of tyfjd and open the index objects of dependent types.
data of typeA[V]. By design, variables occurring in open Most closely related to our work is the Delphin lan-
data cannot escape their scope, avoiding a problem commoguage [1V], a dependently typed functional programming
in previous attempts and yielding a name-safe foundationjanguage which supports HOAS encodings. However, our
for the operations typical in nominal systems. In addition theoretical approach differs substantially. Most of thaise
to supporting binders ang-renaming, we provide capture- ferences arise because we build our type-theoretical foun-
avoiding substitution together with first-class subsitios. dation on contextual modal types whe#é¥| denotes an
Our foundation provides direct access to variables and al-objectM of type A in a contextV. This means that the ob-
lows us to manipulate and compare them in computationsject M/ can refer to the variables declareddn Every data
and proofs, providing an essential feature which typically object is therefore locally closed. In Delphin, howevee th
has been difficult to marry with HOAS. whole function and all its arguments are executed in a global
This paper extends the first author’s prior work on pro- context. This is less precise and can express fewer proper-
gramming with higher-order abstract syntax in the simply- ties on individual data objects. Delphirfg-quantifier in-
typed setting [[16] to dependent types. The programmertroduces a new parameter in a computation and extends the
can directly construct and manipulate proofs as dependentl current context. However, the actual context of dynamic as-
typed higher-order data structures. This allows the pro- sumptions is kept implicit, while we have explicit context
grammer to directly express why properties about data ob-variables. Finally, we provide first-class substitutions.
jects hold. More importantly, our functional language is pespeyroux et al[]5] presented a type-theoretic founda-
powerful enough to be a general proof language for im- tjon for programming with HOAS that supports primitive
plementing, as functions, inductive properties about &rm recursion. To separate data from computation, they intro-
deductive SyStemS. As SUCh, it is an alternative to the ap-duced modal type@A that can be injected into Computa_
proach taken in Twelf, in which metatheory about deduc- tjon. However, data is always closed and can only be an-
tive systems is encoded via relations. Our contribution is alyzed by a primitive recursive iterator. Despeyroux and
twofold: First, we present a syntax-directed bidirectiona | gley [4,[3] extended this work to dependent types. Our
type system that distinguishes between dependently typeqyork may be seen as a continuation and extension of theirs,
data and computations and locally resolves constrairgs ari in which we relativize the modal necessity.
ing from dependent types using unification. Our foundation 1 work shares many of the same goals as the work
is unique in the sense that dependently typed data object%y Licata and Harpef]8] who proposed an extensible the-
may be open and supports encodings based on higher-ordegyy of indexed domains. However, their current work does
abstract syntax and provides first-class substitutionss Th 6t consider full LF, but a framework of abstract binding
facilitates the encoldlngs of proofs as data. .We achieve thisyees that is expressive enough to describe higher-order ab
by cleanly separating dependently-typed higher-ordea dat gyract syntax, but not judgments. In this sense, their frame
objects from computations using contextual modal types. ok lacks the power to manipulate and analyze proofs as

Second, we describe the operational semantics for thisyata - Technically, their work is quite different from ours
language based on higher-order pattern matching for depeng g provides no inherent type-theoretic foundation forope
dently typed objects and prove progress and preservationpiects,

for our language, assuming that programs are covering all
cases. The formal development of a coverage and termina
tion checker which guarantees the totality of the functions
is beyond the scope of this paper.

Finally, there have been several proposals in the func-
tional programming community to allow full dependent
types but not HOAS encodings. Languages such as
Cayennel[ll] and Epigraril[9] support full dependent types

we be_lleve our C"?"C“'”S IS an |m_p0rt_ant step towards un- but do not distinguish between dependently typed data and
derstanding syntactic structures with binders and depgnde computations

types, and providing direct support for binders in the sgtti
of typed functional programming.
3. Motivation

2. Related work

To illustrate our approach and motivate the problem, we
Enriching functional programming with dependently give two examples: a type-preserving environment-based
typed higher-order data structures, a longstanding openinterpreter and a self-certifying type inference engine.

3.1. Type-preserving evaluator

First, we show an environment-based interpreter for a
simple language with natural numbers datlexpressions.

Expressions are indexed with their types to ensure that only

well-typed expressions are evaluated. We first define the
basic types, in the LF style.

tp: type . nat: tp.

Next, we define the object terms, which are indexed by
the typestp. We write dependent types explicitly, though
explicit abstraction over index arguments in the dependent
type is not necessary in practice.

exp: tp — type .

Z . exp nat.

Suc : exp nat — exp nat.

Add : exp nat — exp nat — exp nat.
Let : Iltl:tp Il t2:tp.

exp t1 — (exp tl — exp t2) — exp t2.

The expressiofet val « = 1 in Add(0, z) end, for ex-

ample, is represented 88t nat nat (Suc z) (A\x.Add z

x). When we recursively analyze objects, we will analyze
Add z x, in which x is free. The expressiomd z x has
typeexp nat in the contexk:exp nat. We express this by
the contextual modal typé&xp nat) [x:exp nat].

This example illustrates the need to characterize open
data objects. Since the context of free variables grows dur-
ing recursion, we haveontext variableshat abstract over
concrete contexts. Just as types classify objesttisemas
classify contexts. Schemas resemble Schirmann’s world
[20], but our type-theoretic foundation makes context ab-
straction and schemas explicit. In this example, the cantex
1 =x1:exp t1,...,Xn:exp t, IS Classified by the schema
(allt:tp. exp t)*. All declarations iy are instances of
the schema whereis instantiated with a concrete typg

The interpreter takes as input an expressioof type
t that may have free variables:exp ti,...,x,:exp tn

together with an environment that maps all free vari-
ablesxy, ..., x, to closed well-typed values such that=
v1/%1,...,0,/%, @and every; has typet;. The resultis a
closed value of type. The environment that maps all free
variables in the context to closed values of the appropriate
type is represented as a first-class substitution with domai
 and empty range; its type is writtei[.].

ctx schema W = all t:tp .
rec eval : IT¢:(W)*. II°T:tpl.].

(exp T[.1D[Y] — 9v[.] — (exp TL.1DI[.1 =

exp t.

A= AT = fn e = fn r = let sbox S[.] =1 in
case e of
box(¢. z) : (exp nat) [¢Y] = box(. z)

| TI°U:: (exp nat) [4] .
box (¢. Suc ULidy])
= let box(. V[.]1) =
eval [¢] < . nat> box(¢. Ulidyl) r

(exp nat) [¥]

in
box (
end

| TI°T::tpl.1. IIPp::(exp TL.1) [¥]
box(¢p. plidyl) : (exp TL[.1) [¥]
= box(. p[S[.1])

| TI°T1::tpl.]1.11° T2::tpl.].
T1°W:: (exp T1[.1) [4].
T1°U:: (exp T2[.1) [, x:exp T1[.1].
box(¢.Let T1[.] T2[.1 W[idy]
(Ax. Ulidy, x1)) : (exp T2[.1) [¥]
box(. V[.]1) =
eval [¢] <. T1[.1> box(¢.Wlidy1) ¢
n
eval [¢,x:exp T1[.1] <. T2[.1>
box (¢,x. Ulidy,x]1) (sbox s[.1, V[.1)

. Suc V[.1)

= let

end

In the function, we first introduce the context variable
1 using A-abstraction and which binds every occurrence
of ¢ in the body. Next, we introduce the index variable
T, followed by the computation-level variabdewhich has
type (exp T[.1) [¢1 and which will be analyzed by pattern
matching.

We use contextual variables written in capital letters to
represent open data. There are two situations which neces-
sitate the use of contextual variables: describing data in-
dexing types, as ifexp T[.1) [«]1, and supporting pattern
matching in branches. In the above program, we explicitly
declared all the contextual variables as well as the type of
each pattern, reflecting the type-theoretic foundation pre

Sented in this paper. We will begin by first discussing con-

textual variables in patterns.

In patterns, the closure consisting of a contextual vari-
ableu and apostponed substitutiooharacterizes “holes”
instantiated using higher-order pattern matching. Fomexa
ple, inbox (¢). Suc Ulidy1), the closures[id,] describes a
“hole” that is to be filled. As soon as we know wluagtands
for, we apply the substitution which essentially corregfmn
to a-renaming. We writed,, for the identity substitution
with domaine. Intuitively, one may think of the substitu-
tion associated with contextual variables as a list of vari-
ables that may occur in the hole. tiiid,,] the contextual
variableu can be instantiated with an expression containing
variables declared irh.

Similarly, index objects are characterized by contextual
variables.TT°T:tp[.] .7 introduces a contextual variabte
denoting a closed index object of type. In addition to
meta-variables, which may be instantiated with an arbi-
trary data object, we also supppdrameter variableg. A
parameter variable represents a bound variable and can only
be instantiated with a variable from the data level. Similar
to meta-variables, they are treated as closures. We usé smal
letters for parameter variables, in contrast to capitéé¢ist
for meta-variables which can be instantiated with an arbi-
trary object. Parameter variables allow us to write, in @&cas

expression, a pattern that only matches variables, and allo — oft (Let el Ax.e2 x) t2.
us to collect and even compare variables.

When we encounter a parameter from the contextas in - The functioninfer accepts arexp and returns a tuple
the third case, we can simply apply the substituionl to consisting of its type and the typing derivation. Since we
the objectp. Since the substitutiosi[.] has domainy and |l traverse binding constructs, the function will have to
range empty, applying it to the parameter varighfgeldsa handle open objects, which depend on assumptions about
closed object. Because we apply.] as soon as we know types of variables. The context keeps track of the vari-
whatp stands for, the variable occurring in the instantia- aplex:exp together with its proof, which has the (object-

tion for p will now be replaced by its correct corresponding |evel) typeott x T. The following schema classifies ex-
value. Closures thereby provide us with built-in supportfo actly those contexts.

substitutions. The type system guarantees that the enaviron

mentr has closed instantiations for all variables in the local ctx schema W = all t:tp. X x:exp. oft x t

contexty, and applying the substitutica{.] to the param-

eter variable must yield a closed value. Next, we show the implementation of the functiniter.
To recursively analyze expressions we have to consider

different cases. The cases for zero and successor arec infer: IIy:(W)*. II"U::exply]

straightforward. In the recursive call in the case for suc- oy iﬂT:tp[']' (oft Ulid,] TL.D[y] =
cessor, we writeval [¢] for context application and . Cgsj box(y. Ulid,1) of

nat> for applying an index argument. To evaluate tee box(y. z) : explyl =

expression, we evaluabex (¢ .Wlid,]1) in the environment pack< . nat, box(y. o_z) >

r to some closed valug and then evaluatsox (v, x.W[id., | TI°E1:exply].11° E2:exply, x:exp].

,x] in the extended environment that associates the binder box(y. Let Etlid,] Ax.E2[id,,x]) : exp[y] =
x with the valuev. Since we think of substitutions by posi- let paﬁk;nfeil E]] s <b°X (%iD[ild[I?ZJ) >
tion, we do not make their domain explicit and simply write T 7

pack< . T2[.], box(y. D2[id,]) >
sboxC . sL.1, VL.ID. = infer [y, d:¥ x:exp. oft x S1[.]]
o) <y, d . E2[idy, proj; d] >
3.2. Self-certifying type inference in
pack< . S2[.1,
In this example, we consider the implementation of a box (7. o/_\}l{&tﬂgﬂ;gid% <x,us]) >
simple type inference algorithm which will not only infer end

the type of a given term but also return its typing derivation | o1, .¢p[.] 11%p:: (X x::exp. oft x T[.1)[v]
We consider the same expressions as above, but instead of box (y. proj; plid,]) : exply]l =

indexing the expressions with their types, we define typing pack< . T[.J, box(y. projz plid,1)

judgments separately. We begin by defining expressions,

types and typing derivations. Typically a type inference algorithm is implemented by

exp: type . recursively analyzing expressions. Because the expressio
Z: exp. Suc: exp — exp. is an index object in our function and we cannot directly

Let exp — (exp — exp) — exp. match against index objects, we applyx to lift it to a

Typing rules are represented as a dependent type whictflata object that we can pattern-match. To return a depen-
describes the relation between object-level expressiods a dent tuple, we useack, which pairs a data object with a
their types. A typing judgmerit - ¢ : T is translated into ~ cOMputation-level expression. In general, a dependent pai
a dependent type declaration in LF and a typing derivation has the fornpack<¥.1,e> wherer is a data object with free
concludingl I ¢ : T is described by an object of type Variablesl ande is a computation-level expression.
type oft t T. We use higher-order abstract syntax in the In the recursive call foret, we extend the context with
specification of the typing rule to model hypothetical typ- the declaratiortx:exp.oft x S1[.]. Our context there-

ing derivations, eliminating need to explicitly manip@at fore keeps track not only of parameters occurring in the ex-
Every typing rule fol I- ¢ : T'is translated into a constant pression, but also assumptions about their type. Thus, our
whose type encodes the actual typing rule. typing context is implicit, and does not have to be modeled
oft: exp — tp — type . with a list or some other explicit data structure.

o_z: lo]ft z nat. X) Inthe case for a variable, we use a parameter varigiole

o_s: e:exp. oft e nat — oft (Suc e) nat. . . : .

01 Mel:exp. It1:tp. I1t2:tp. Il e2:expexp. .m.atch agalnst declarations-in Whep matching succeeds,
oft el t1 — it instantiates not only but also the index argument We
(IT x:exp. oft x t1 — oft (e2 x) t2) can thus returmr and the witnesgroj» plid].

4. Data-level terms, substitutions, contexts

domain of the substitutions explicit, which simplifies the
theoretical development and avoids having to rename the

We begin describing the type-theoretic foundation of our domain of a given substitution. Similar to meta-variables,
languages by presenting the data layer. We essentially supsubstitution variables are closures with a postponed subst

port the full logical framework LF together with-types.

Our data layer closely follows contextual modal type the-

tution. We also require a first-class notion of identity gisbs
tution id,,. Our convention is that data-level substitutions,

ory [12], extended with parameter variables, substitution as defined operations on data-level terms, are writtgN.

variables, and context variablés]16], and finally with de-
pendent pairs and projections. Perhaps most importantly,va

we formalize schemas, which classify contexts.

Kinds K u= type|llz:AK
Atomic types P w= abMi...M,
Types A,B = P |lx:A.B|Xx:A.B
Normal terms M,N:= Xe.M|(M,N)|R
Neutral terms R w= c| x| ulo] | plo]

| RN | proj, R
Substitutions o,p = -lo;M|o,R

| slo] | idy
Elementtypes A" = Ix:A. A" |aNi...N,
Schema elements F’ = all®.Xy AT, ...yt AfL AT
Schemasums S = Fi+---+Fy
Schemas w = (9)"
Context variables v, ¢
Contexts U = -|¢|P,x:A
Meta-contexts A = | AyunA[Y]

| A, pA[Y] | A, 5:0[D]
Schema contexts n= | QW

Contextual variables such as meta-variablgzarameter
riablesp, and substitution variables are declared in a
meta-level context\, while ordinary bound variables are
declared in a contex¥.

Finally, our foundation supportsontext variablesy
which allow us to reason abstractly with contexts. Abstract
ing over contexts is an interesting and essential next step t
allow recursion over higher-order abstract syntax. Cadntex
variables are declared {. Unlike previous uses of context
variables[[1D], a context may contain at most one context
variable. In the same way that types classify objects, and
kinds classify types, we introduce the notion of a schéra
which classifies context§. We say that contex¥ checks
against a schemd” = (Fy + --- + F,)* if there exists an
elementFy, = all®.3y;: A7, ..., y;:Af. A* such thatl is
an instance oby;: A7, ..., y;:A;. A" where all variables in
® have been appropriately instantiated.

We assume that type constants and object constants are
declared in a signatur®, which we suppress since it is
the same throughout a typing derivation. However, we will

We only characterize normal terms since only these arekeep in mind that all typing judgments have access to a well-

meaningful in the logical framework, following Watkins et
al. [24] and Nanevski et al[T12]. This is achieved by dis-
tinguishing between normal terndd and neutral term®.
While the syntax only guarantees that teriiscontain no
(-redexes, the typing rules will also guarantee that all-well
typed terms are fully-expanded.

We distinguish between four kinds of variables in our
theory: Ordinary bound variablesare used to represent
data-level binders and are bound hyabstraction. Con-
textual variablesstand for open objects, and includeta-
variablesu, which represent general open objegaram-
eter variablesgp which can only be instantiated with an or-
dinary bound variable, anslbstitution variables, which
represent a mapping from one context to another.
textual variables are introduced in computation-levekcas

formed signature.
4.1. Data-level typing

We present a bidirectional type system for data-level
terms. Typing is defined via the following judgments:

Q;A; 0 M« A Check normal object/ againstA
Q;A; 0 - R= A Synthesized for neutral object?
Q;A;® o« ¥ Checko against contex¥

For readability, we omif2 in the subsequent development

Con-since it is constant; we also assume thaand ¥ are well-

formed. First, the typing rules for objects.

expressions, and can be instantiated via pattern matching.

They are associated with a postponed substitutitrereby
representing a closure. Our intention is to applgs soon

as we know which term the contextual variable should stand
for. The domain ob thus describes the free variables that

can possibly occur in the object which represents the con-
textual variable, and the type system statically guarantee

this.
Substitutionsos are built of either normal terms (in
o; M) or atomic terms (ino, R). We do not make the

Data-level normal terms
AU, o AFM < B
AU E A e M < Tlxe:A.B —

AWM <A AU E M, < [M/2]4, A
A; U - (Ml, MQ) <~ Zx:Al.AQ

AUFR=P P =P
AUFR<=P

1

turn

Data-level neutral terms reader to[[1R] for details. For the subsequent development

pAET cAe¥ o we use the operatiod//z]* (N) wherex € {n,r, s, a}.

AVFz=A" AUblc=A Schema checking relies on higher-order pattern match-
ing. If ¥ checks againdt/, then every declaratian;: A; in
u Al e A AVFo=® <ubst W will be independent from any other declaratiopA; in
AU Fufo] = o)A U because dependencies are only allowgtin a schema
prA[@Ple A AT o< aram elementr”.
AU plo] = [0]3 A param Theorem 4.1. [Decidability of Typechecking]
’ All judgments in the contextual modal type theory are de-
A;UER=1xr:AB AVEN<«<A IE cidable.
AU RN = [Nz} B o Proof. The typing judgments are syntax-directed and there-
AU FR= Yx:A. Ay SE fore clearly decidable assuming hereditary substitution o
AU F proj R = A, —+ eration is decidable. O
AU ER= Baid A SE, 4.2. Substitution

A; W F proj, R = [projy R/x|% Az —
The different variables (context variablgs ordinary
Data-level substitutions variablesz, and contextual variables) give rise to different
. substitution operations. We briefly summarize the substitu
AU F e Ay, TEidy =19 tion operations for context variablgsand contextual vari-
s:D1[Ba] EA A TFpe=dy LD ables in this section, aqd reft_ar the _reader to previous work
AT (slp]) = B [16,[12] for a more detailed discussion. _
' We begin by considering substitution for context vari-
AUEo«=d AVER=A [0]3A=A4 ables. If we encounter a context variablewe simply re-

AUF (0, R) < (D, 2:4) place it with the contexi.

ATFo=d AU M« [a]%A Data-level context
v .

@ﬂ:c:A) if z ¢ V(P

We assume that data level type constartisgether with and[¥/y]® = ¢’
constants: have been declared in a signature. We will tac- [/%1(¥) - v "
itly rename bound variables, and maintain that contexts and [v/41() = ¢ ifo#v

substitutions declare no variable more than once. Note thatwhen we apply the substitutiofi? /] to the context
substitutionso are defined only on ordinary variables ®, x:A, we apply the substitution to the contekito yield
not on modal variables. We also require the usual con- some new contex®’. However, we must make sure that
ditions on bound variables. For example, in the rule for is not already declared i®’. This can always be achieved
lambda-abstraction the bound variablenust be new and by appropriately renaming bound variable occurrences. We
cannot already occur in the contekt This can always be write V(®’) for the set of variables declareddr. The rest
achieved vian-renaming. The typing rules for data-level of the definition is mostly straightforward. Since context
neutral terms rely ohereditary substitutiong/hich ensure variables occur in the identity substitutiah,, we must ap-
that canonical forms are preservedl[24, 12]. ply the context substitution to objects and in particular to
The idea is to define a primitive recursive functional that substitutions. When we replagewith ¥ in id,,, we unfold
always returns a canonical object. In places where the or-the identity substitution.
dinary substitution would construct a redexy. M) N we Expansion of the identity substitution is defined by the
must continue, substitutiny for 5 in M. Since this could operationd(¥) for valid contextsl:
again create a redex, we must continue and hereditarily sub-

stitute and eliminate potential redexes. Hereditary stubst 'jg\l)/ A) B :d(\I/)
tion can be defined recursively, considering both the struc- :d(lﬂ)’ v B :d » &
= Wy

ture of the term to which the substitution is applied and the
type of the object being substituted. For this operation to Substitutions for contextual variables are a little more
terminate, it suffices to keep track of the approximate (non- difficult. We have three kinds of contextual variables: meta
dependent) type of the object being substituted. We omit thevariablesu, parameter variablegs, and substitution vari-
definition of ordinary hereditary substitutions and refegt ables (se€[16]).

We can think ofu[o] as a closure where, as soon as via the contextual typel[¥], which denotes an object of
we know which termu should stand for, we can appdy type A that may contain the variables specifiedlinTo al-
to it. The typing will ensure that the type dff and the low quantification over context variablgs we introduce a
type of u agree, i.e. we can replaeeof type A[¥] with dependent typé&ly:W.T and context abstractiafi).e. We
a normal termM if M has typeA in the contextV. Be- write — for computation-level functions. We introduce ab-
cause ohv-conversion, the variables substituted at different straction over the arguments which could occur in a depen-
occurrences of, may differ, and we write the contextual dent typeA on the computation level using the dependent
substitution as¥. M /ul’y 4 (N), [¥.M/u]’y4y(R), and typell® A[¥].7.

[[\I/.M/u]]z[q,] (), whereW binds all free variables id/. Types 7 ou= A[U] | B[0] |7 — 7 | T Wor
The annotatiod[¥] is necessary since we apply the sub- | P A[U].7 | 200 = A[U].7
stitution o hereditarily once we know which termrepre- Expressions e == i |rec f.e | fny.e | Av.e | \u.e
sents, ar_1d hereditary substitution requires the type torens (checked) | box(W. M) | sbox(. o)
termination.

| pack(W.M | e) | case i of bs
Expressions i == y|ie|i[¥]|i[P.M]]|(e:7)
(synth.) | let pack(u,) = ein ¢’ end

In defining substitution, we must make sure that normal
forms are preserved. For example, applyﬂltIgM/u]]g[q,]

to the closureu[o] first obtains the simultaneous substitu-

tion o’ = [[\i/.M/u]]Z[\I,]cr, but instead of returning/[o’], Patterns ¢ == IHAbox(V. M) : A[V]
it eagerly appliesr’ to M. To enforce that we always re- | HA.sbox(V. o) : @[]
turn a normal object as a result of contextual substitution, Branch bu= (e

we resort to ordinary hereditary substitution. Since cadjn ~~ Branches bs = - | (b | bs)

hereditary substitution requires the type of the argumentb Contexts o= | Tyt

ing substituted, we carry the type of the meta-variable
which will be replaced. For a thorough explanation, see
[L2]. For clarity, we omit the typing annotation when we
subsequently write contextual substitution.

Contextual substitution for parameter variables follows
similar principles, but substitutes an ordinary varialde f

a parameter varla}ple. This could not b,e gchleved With 5 cterized by contextual variables. [¥.)/| describes the
the previous definition of contextual substitution for meta application of an index argumentto an expression. The con-

variables since it only allows us to substitute a normal term textual variables in branches which are declared\imre

for a meta-variable, and is only normal if it is of atomic jqtantiated using higher-order pattern matching. We only

type. We write parameter SUbSt'tUt'_onS 8. /P] - consider patterns a la Miller [L1] where meta-variables th

When we encounter a parameter variahlle], we replace re subject to instantiation must be applied to a distinct se

p with the ordinary variabler and apply the substitution of hound variables. In our setting this means all contex-

[[‘I’-x/]?]]i[xp] to o obtaining a substitution’. Instead of re- ;a1 variables must be associated with a substitution such

turning a closurer[o’] as the final result we apply tothe asuq(y) /21, ..., 240, /2, This fragmentis decidable and

ordinary variable:. This may again yield a normal term, so has efficient algorithms for pattern matching.

we must ensure that contextual substitution for parameter patterns in case expressions are annotated with their

variables preserves normal forms. types, since in the dependently typed setting, the type of
Substituting for substitution variables follows the same each pattern need not be identical to the type of the expres-

ideas. To ensure it works correctly with the previously de- sjon being case analyzed.

fined substitution operations, we also annotate it with the

type of the substitution variable. Applyiri[g/.a/s]];[\p] to 5.1. Computation-level typing

the closures[p] first obtains the simultaneous substitution

We will enforce that all context variables are bound by
A-abstractions. To suppoat-renaming of ordinary bound
variables, we writéox(W. M) where is a list of variables
which can possibly occur id/. Index objects to dependent
types are introduced using the constructon. e which has
typeII°u::A[¥].7. In other words, index objects are char-

p = [[\i/.o/s]];[\p]p, but instead of returning|y’], it pro- We describe computation-level typing using the follow-
ceeds to eagerly apply to o. ing judgments:

Q;A;THe< 71 echecksagainst
5. Computation-level expressions QAT Hi= 7 isynthesizes

Q;A;T' b« 7 branchb checks against,

Our goal is to cleanly separate the data level from the when case-analyzing

computation level, which describes programs operating on The most interesting rule in the bidirectional typecheck-
data. Computation-level types may refer to data-leveldype ing algorithm is the one for branches, since the tyipé¥ |

Expressiore checks against type

QAT firbke<sr QW ATFesr QAT ymbesn
QAT kHrec fe=T rec QAT Ae <= Tyy:Wer I UGATHfnyesn —m

QA uA[U;TFe<= T - QAVEM<A . QLA VFEo<=d

o P b - b
QGATF Nue = PwAWr T 0 AT Fbox(. M) < A[W] ° Q; AT F sbox(W. 0) < [¥]
QAT i = AV forallk ;AT Eby <7 B A TR = OV forallk ;AT &= by <o) T
Q;A;TkHcaseiof by | ... | bn =T case Q;A;Thcaseiof b | ... | bn <=7 scase
QA VEFM <A QATEe<= [U.M/u]r
Q; A;T F pack(U.M | e) < X0u:A[U].7
QAT Fe = X u A7 QA us AU T, e’ Fe<=T | " AT Hi= 71 GAFT =71
Q; AT letpack(u,) =€’ ineend < 7 et-pac GATHIi<=T turn
Expression synthesizes type
QGATHe<sT yrel A THFi=sm—T QA TFesm
Q;A;Fl—(e:T):>Tanno Q;A;Fl—y:>Tvar QA TkHie=T -
QAT Fi= IIy:Wr QGAFT =W _ AT Fi= TPucA[Y]r Q;A;\IJFM<:AHE

GATE V] = [V HE AT i (.M = [§.0)/ ully g7
Body e, checks against type assuming the value cased upon has tpé&]

Q; A, Ak F \I/ = \I/k/(ol, A/)
QA" F[61]A=[6:]Ak / (62, A7)

QAT TIAgbox (. My) : Ap[Wx] v e < app) 7

Q; Ap; Uy = My, <= Ay Q; A" [62][0:]T F [02]161]ex <= [02][01]7

Figure 1. Computation-level typing rules

of each of the patterns must be considered equal to the typerder patterng[11], and higher-order pattern unificat®on i
A[¥], the type of the expression we analyze by cases. Indecidable, unification of the contexts and types is dec&labl
some approaches to dependently typed programriirig [26],For a formal description of a higher-order pattern unifica-
branches are checked under certain equality constramts. | tion algorithm for contextual variables, s€el[15].

stead we propose here to solve these constraints eagerly

using higher-order pattern unification. This approach sim- 5.2. Operational semantics

plifies the later preservation and progress proof. It is also

closer to a realistic implementation, which would support Next, we define a small-step evaluation judgment:
early failure and point out the offending branch.

1 /

Branched are of the formlIA.box(¥. M) +— e (resp. ¢ evaluates in one SteP t cT e
sbox), whereA contains all the contextual variables intro- Branchb matchesox(V. M) and steps te’
duced and occurring in the gualsdx(¥. M). We concen- (box(U. M) : A[T] =b) — ¢

trate here on the last rule for checking the pattern in a case B hb matchesbox(d st @’

expression. After typing the pattern in the case expression ranchb matches ox(¥. o) an' Steps @/

we unify the type of the subject of the case expression with (sbox(V.) : @[W] =b) — ¢

the type of the pattern. First, however, we must unify the |, the presence of full LF we cannot erase type infor-

context with the contextl; of the pattern. Finally, we maiion completely during evaluation, since not all imglici

apply the result of higher-order unificatiérto the body of e arguments can be uniquely determined. Because eval-

the branch and check that it is well-typed. uation relies on pattern matching, and higher-order patter
Since we restrict all occurrences of contextual variables matching requires that we only match two terms if they have

in the patterns of case expressions such that they are higheithe same type, we match against the pattern’s type before

Evaluation of computations:

rec f.e — [rec f.e/fle (fny.e:m — 1) v — [v/yle (Au.e) [U.M] — [¥.M/u]e

ih — i) €2 — € i — i

i1eg — ifes wvey — weh i[U] — i [U] (Av.e) [T] — [T/Y]e

let pack(u ,) = pack(¥.M , ¢’) in e end — [W.M/u][e' /x]e

i — g i =< (1
case i of bs — case i’ of bs (casei of (; — ey | bs) — case i of bs

i=¢ /0 G =TAbox(W.M): A[¥] i=¢ /60 ¢ =IAsbox(V.0): ®[T]

(case i of (1 +— ey | bs) — [0]es (case i of {1+ ey | bs) — [0]ex

Evaluation of branches:
AFT, =T /(01,A1) ApUEA=[0L]AL) (02,A2) 0=1[0:2]01 Ag; U M=][0]My/ (0s,)
(box(¥. M) : A[¥] = IA.box(¥. My) : Ax[¥1]) / [03]0
AFT =T, /(01,A1) AEO=[01]P /[(02,2) 0=1[60:2]01 AoV Fo=][0)or/(0s,)
(sbox(W. o) : ®[¥] = ITA.sbox(V. o) : Pr[Vx]) / [05]0

Figure 2. Operational semantics

matching against the pattern itself. This also means we im-ing the ideas of{[21]. First we state and prove a canonical

plicitly translate the computational language into onerghe forms lemma.

general type annotations are erased, bli@llexpressions,

including patterns in branches, carry their corresponding .)

type. We denote this translation by and|i| for checked ~ (1) Ifiisavalueand, ;- -i=7 — 7/

and synthesizing expressions, respectively. then|i| = fn y.|e'| and; y:7 - ' <= 7",
Otherwise, the operational semantics is straightforward.(2) If i is avalue and; ;- i = A[V]

In function application, values for program variables are then|i| = (box(W. M) : A[W])

propagated by computation-level substitution. Instantia and-; ;- = box(¥. M) <= A[V].

tions for context variables are propagated by applying a(3) If i is avalue and: ;- - i = TT°u :: A[U].7

concrete contex¥ to a context abstractiofiy.e. Index ar- theni| = A°u. |¢/| and-; us:A[U]; - F ¢ < 7

guments are propagated by applying a concrete data object T ' '

.M to the expression®u. e. (4) If iis avalue and; ;- i = X7u :: A[U].7
Evaluation in branches relies on higher-order pattern then|i| = PaICk(‘I’-]W, le’|)and-; ;U - M <= A

matching against data-level terms to instantiate the sente and-; ;- = ¢ <= [W.M/u]r.

tual variables occurring in a branch and data-level instan- Proof. By induction on the typing derivation. O

tiations are propagated via contextual simultaneous subst

tution. We assume thatox(W. M) does not contain any

Lemma 5.1. [Canonical Forms]

Theorem 5.1. [Preservation and Progress]

meta-variables, i.e. it is closed and its typgl] is known. (1) If ;;- F e <= 7 ande coverage checks then either
Because of dependent typesin we must first matchl is a value or there exists such thate| — |¢/| and
againsty,, and then proceed to matdli against\,. Dur- kel =T

ing execution, the only type annotations needed arkosn @) If -
expressions. We define evaluation on expressions with all -
other type annotations erased. Given the current setup, we
can now prove type safety for our proposed functional lan-
guage with higher-order abstract syntax and explicit subst Proof. By induction on the given typing derivation, using
tutions. We assume that patterns cover all cases here, but ikemmeaR.1, the obvious substitution properties, and cover-
should be possible to incorporate coverage checking fellow age checking as needed. O

-+ ¢ = 7 andi coverage checks then either
is a value or there exist$ such thati| — || and
gk =T

6. Conclusion

We have presented a type-theoretic foundation for pro-
gramming with higher-order dependently typed data that
supports higher-order abstract syntax and first-clasgisubs
tution. Our framework supports recursion over data defined
with HOAS, and allows pattern matching against open data
and variables based on higher-order patterns. By design,

[13]

[14]

[15]

bound variables in data cannot escape their scope. Although

we have not considered coverage and termination checking
in this paper, we believe this is an important step towards
programming with proofs in a functional setting thereby
providing an alternative functional framework for mecha-
nizing the meta-theory of formal systems. More generally,
our work explores a novel point in combining a rich depen-
dently typed data language with functional programming
while preserving decidability of typing.

References

[1] L. Augustsson. Cayenne—a language with dependent types
In 3rd International Conference Functional Programming
(ICFP '98), pages 239-250, ACM Press, 1998.

[2] J. Cheney and R. Hinze. First-class phantom types. Techn
cal Report CUCIS TR2003-1901, Cornell University, 2003.

[3] J. Despeyroux and P. Leleu. Primitive recursion for leigh
order abstract syntax with dependent typednternational
Workshop on Intuitionistic Modal Logics and Applications
(IMLA), 1999.

[4] J. Despeyroux and P. Leleu. Recursion over objects af-fun
tional type. Mathematical Structures in Computer Science
11(4):555-572, 2001.

[5] J. Despeyroux, F. Pfenning, and C. Schirmann. Primitiv
recursion for higher-order abstract syntax. 3ial Interna-
tional Conference on Typed Lambda Calculus and Applica-
tions (TLCA'97) pages 147-163, 1997. Springer.

[6] M. Gabbay and A. Pitts. A new approach to abstract syntax
involving binders. In14th Annual Symposium on Logic in
Computer Science (LICS'99pages 214-224, 1999. IEEE
Computer Society.

[7] R. Harper, F. Honsell, and G. Plotkin. A framework for
defining logics. Journal of the ACM40(1):143-184, Jan-
uary 1993.

[8] D.R. Licata and R. Harper. An extensible theory of indixe
types. Unpublished manuscript, July 2007.

[9] C.McBride and J. McKinna. The view from the leflournal
of Functional Programmingl4(1):69-111, 2004.

[10] A. McCreight and C. Schurmann. A meta-linear logi-
cal framework. In4th International Workshop on Logical
Frameworks and Meta-Languages (LFM’'02p04.

[11] D. Miller. A logic programming language with lambda-
abstraction, function variables, and simple unificatigour-
nal of Logic and Computatiqri(4):497-536, 1991.

[12] A. Nanevski, F. Pfenning, and B. Pientka. Contextuatiaio
type theory. ACM Transactions on Computational Logic
Accepted, to appear in 2008.

10

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Wash-
burn. Simple unification-based type inference for GADTSs.
In 11th International Conference on Functional Program-
ming (ICFP '06) ACM Press, 2006.

F. Pfenning and C. Schurmann. System description:|fTwe
— a meta-logical framework for deductive systems1@th
International Conference on Automated Deduction (CADE-
16), pages 202—-206. Springer, LNAI 1632, 1999.

B. Pientka. Tabled higher-order logic programmingPhD
thesis, Department of Computer Science, Carnegie Mellon
University, 2003. CMU-CS-03-185.

B. Pientka. A type-theoretic foundation for programigi
with higher-order abstract syntax and explicit substitogi

In 35th Annual ACM Symposium on Principles of Program-
ming Languages (POPL'08pages 371-382. ACM Press,
2008.

A. Poswolsky and C. Schiurmann. Practical programming
with higher-order encodings and dependent typesPro:
ceedings of the European Symposium on Programming
(ESOP '08) Mar. 2008.

F. Pottier. Static name control for FreshML. 22nd IEEE
Symposium on Logic In Computer Science (LICS'p@pes
356-365. IEEE Computer Society, 2007.

U. Schopp and I. Stark. A dependent type theory withesm
and binding. In13th Annual Conference on Computer Sci-
ence Logic (CSL)pages 235-249. Springer, LNCS 3210,
2004.

C. Schiurmann.Automating the Meta Theory of Deductive
Systems. PhD thesis, Department of Computer Science,
Carnegie Mellon University, 2000. CMU-CS-00-146.

C. Schurmann and F. Pfenning. A coverage checking-algo
rithm for LF. In 16th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs'03pages 120—
135. Springer, LNCS 2758, 2003.

T. Sheard and E. Pasalic. Meta-programming with hinilt-
type equality. In4th International Workshop on Logical
Frameworks and Meta-languages (LFM '04)ages 106—
124, 2004.

M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML:
programming with binders made simple. 8th Inter-
national Conference Functional Programming (ICFP’03)
pages 263-274. ACM Press, 2003.

K. Watkins, |. Cervesato, F. Pfenning, and D. Walker. A
concurrent logical framework I: Judgments and properties.
Technical Report CMU-CS-02-101, Department of Com-
puter Science, Carnegie Mellon University, 2002.

H. Xi, C. Chen, and G. Chen. Guarded recursive datatype
constructors. 1B0th ACM Symposium Principles of Pro-
gramming Languages (POPL 'O3jpages 224-235. ACM
Press, 2003.

H. Xi and F. Pfenning. Dependent types in practical pro-
gramming. In26th ACM Symposium on Principles of Pro-
gramming Languages (POPL '99pages 214-227. ACM
Press, 1999.

	. Introduction
	. Related work
	. Motivation
	. Type-preserving evaluator
	. Self-certifying type inference

	. Data-level terms, substitutions, contexts
	. Data-level typing
	. Substitution

	. Computation-level expressions
	. Computation-level typing
	. Operational semantics

	. Conclusion

