
Under consideration for publication in Math. Struct. in Comp. Science

Programming proofs: a novel approach based
on contextual types

Brigitte Pientka

Received February 2011

We present an overview of Beluga, a dependently-typed programming and proof

development environment. Beluga uses a two-level approach: it supports specifying

formal systems within the logical framework LF and on top of LF, it provides a

dependently-typed functional language that supports manipulating and analyzing LF

objects via pattern matching. A distinct feature of Beluga is the explicit support for

contexts and contextual objects, which concisely characterize objects depending on

assumptions. The design of the dependently-typed functional language is generic and

independent of the concrete specification language which in Beluga’s case is LF.

Moreover, it is unique in its treatment of pattern matching in the presence of dependent

types: it is centered around refinement substitutions which refine the types of patterns in

case-expressions. This makes type checking decidable although constraint solving itself

could be undecidable. In addition to a bi-directional decidable type system for Beluga we

give an environment-based operational semantics and show that types are preserved.

Beluga together with type reconstruction is implemented in OCaml and has been used

on a wide variety of examples such as type uniqueness, proofs about compiler

transformations, and preservation and progress for various ML-like languages.

1. Introduction

Formal systems, for example type systems or authorization logics, play a central role in
describing and statically verifying guarantees about the runtime behaviour of programs
and are commonly used nowadays. Unfortunately, we lack a common infrastructure to
integrate the formal specification of the behaviour and the reasoning about these prop-
erties in actual programs. Dependently typed systems allow us to track rich properties
statically and provide one solution to this problem. However, to elegantly and compactly
encode formal systems and program with proofs, we need also good answers to the follow-
ing questions: how do we represent binders and, more generally, how to represent proof
objects which depend on assumptions.

This paper presents an overview of the programming and reasoning framework called
Beluga [Pientka 2008; Pientka and Dunfield 2008]. Beluga uses a two-level approach: it
supports specifying formal systems within the logical framework LF [Harper et al. 1993]
and programming with LF (proof) objects using a dependently-typed functional language
with pattern matching. The LF methodology has been successfully used to define logics
and represent derivations and proofs. Its strength and elegance comes from supporting
encodings based on higher-order abstract syntax (HOAS), in which binders in the object

B. Pientka 2

language are represented as binders in the LF meta-language. Several advantages are
well-known: HOAS obviates the cumbersome, low-level bureaucracy of α-renaming and,
most notably, capture-avoiding substitutions. The combination of HOAS and dependent
types makes LF encodings one of the most advanced technologies for prototyping formal
systems, leading to concise and elegant encodings and providing the most support for
such an endeavour. In Beluga, we generalize LF to support contextual objects and first-
class contexts continuing work by Nanevski et al. [2008]. This allows us to describe and
manipulate (proof) objects which depend on a context of assumptions. The type A[Ψ]
describes a contextual object which has type A in the context Ψ and hence may refer to
the variables and assumptions declared in the context Ψ. Moreover, we support context
variables to abstract over concrete contexts.

On top of contextual LF, we develop a dependently typed functional language that
supports analyzing and manipulating contextual objects via pattern matching. Its de-
sign is generic and independent of the concrete specification language which in Beluga’s
case is LF. Moreover, we describe a novel treatment of pattern matching in the pres-
ence of dependent types: it is centered around refinement substitutions which refine the
types of patterns in case-expressions. This makes type checking decidable and easy to
trust, although constraint solving itself could be undecidable. This work generalizes our
previous presentations [Pientka 2008; Pientka and Dunfield 2008] and forms the inter-
nal core language of Beluga. In addition to the static semantics, we describe a novel
environment-based operational semantics and prove types are preserved.

We have implemented the programming and reasoning environment Beluga [Pientka
and Dunfield 2010b] in OCaml. It reimplements LF [Harper et al. 1993] including LF
type reconstruction [Pientka 2010], constraint-based higher-order unification and type
checking. In addition we also provide an interpreter to execute programs according to
the environment-based semantics and a coverage checker [Dunfield and Pientka 2009].
We have tested Beluga on all examples from the Twelf [Pfenning and Schürmann 1999]
repository in addition to new problems such as the ones described by Felty and Pientka
[2010]. Beluga has three main application domains:

Programming with names and binders A wide range of programs, in particular program
optimizers, type checkers, automated reasoning engines etc., transform data structures
that contain binders. Several approaches to this problem exist [Shinwell et al. 2003;
Pottier 2007; Pouillard and Pottier 2010; Licata and Harper 2009; Schürmann et al. 2005].
Contextual types and contextual objects are one solution to the puzzles surrounding
programming with binders.

Programming as proving . Due to its support for dependent types, Beluga’s main ap-
plication at the moment is to prototype formal systems together with their meta-theory.
Formal systems are specified in the logical framework LF, and proofs about them can be
represented as recursive programs in Beluga, i.e. recursive programs about LF objects.
It is most closely related to logical frameworks such as Delphin [Schürmann et al. 2005]
and Twelf [Pfenning and Schürmann 1999].

Programming with proofs. Beluga also provides an experimental framework for pro-
gramming with proof objects. Its powerful type system not only allows the programmer
to enforce strong invariants about programs statically, but to create, manipulate, and

Mathematical Structures in Computer Science 3

analyze certificates (proofs) that guarantee that a program satisfies a user-defined safety
property. Therefore, Beluga is ideally suited for applications such as certified program-
ming and proof-carrying code [Necula 1997]. Most recently, it has also inspired the design
of novel, strongly typed tactic languages such as VeriML [Stampoulis and Shao 2010]
which support modular proof development.

Overview

The paper begins with a discussion of implementing a recursive program which normal-
izes typed lambda-terms in Beluga. Using this example we introduce Beluga’s surface
language and at the same time illustrate some of the key ideas underlying Beluga’s de-
sign (Section 2). We then introduce the theoretical foundation for contextual LF (Section
3) and the computation language (Section 4). In particular, we present the static and
operational semantics together with the type preservation proof in Section 4.2. Finally,
we discuss implementation (Section 5) and survey related work (Section 6).

Acknowledgement

The author thanks Andreas Abel. His insightful remarks and his desire to understand
the core ideas helped shape this presentation of this paper. The author would also like
to thank Ali Assaf for his initial work on the lazy operational semantics for Beluga.

2. Background: Programming in Beluga

We briefly illustrate the main idea behind Beluga by implementing a program which
normalizes λ-terms. Dependent types ensure that we are only manipulating well-typed
terms and the final normal form preserves the type of the original term.

Representation of simply-typed lambda-terms in LF

We first represent well-typed lambda-terms in the logical framework LF and subsequently
show how to implement a normalizer for simply-typed lambda-terms as a recursive func-
tion. The definition for types in LF is straightforward and since several excellent tutorials
and notes exist already [Pfenning 1997; Twelf Wiki], we will keep this short.

We introduce an LF type tp and define type constructors nat and arr. Next, we repre-
sent terms with the goal to only characterize well-typed lambda-terms. We will achieve
this by indexing the type of expressions. In addition, we will employ higher-order abstract
syntax to encode the binder in the object-language by binders in the meta-language,
namely LF. Hence, the constructor lam takes in a meta-level abstraction of type (exp T1

→ exp T2). To illustrate, consider the object-level term λx.λy.x y. It is represented as
lam λx. lam λy. app x y in LF.

tp: type.
nat: tp.
arr: tp → tp → tp.

exp: tp → type.
lam : (exp T1 → exp T2) → exp (arr T1 T2).
app : exp (arr T1 T2) → exp T1 → exp T2.

B. Pientka 4

Following Twelf’s methodology, type reconstruction for LF will infer the type of the
free variables T1 and T2. The general recipe is that if a variable was free in the declared
type of a constant, then we must omit passing a concrete instantiation for it, when we use
the constant. For example, the user must write lam λx. lam λy. app x y, although the
constant lam and the constant app both take in two additional arguments for T1 and T2

respectively. We will not discuss type reconstruction for LF signatures in this paper, but
refer the interested reader to Pientka [2010] which provides an algorithmic description
for LF type reconstruction and discusses the challenges in detail.

Implementation of normalization in Beluga

We now discuss the implementation of the normalization algorithm. Intuitively, we will
implement a function which when given a lambda-term M in a context Ψ, it produces
a lambda-term N in the same context Ψ which will be in normal form. We interpret
every lambda-term M within a context Ψ, i.e. M is closed with respect to the context Ψ,
since we want to make reductions inside λ-abstractions. This allows us to ensure we are
working with well-scoped lambda-terms, i.e. variables do not escape their scope. Since
the context Γ keeps track of variables, it will grow as we traverse a lambda-abstraction
and we define its shape using context schemas in Beluga as follows:

schema ctx = some [t:tp] exp t;

Schemas classify contexts just as types classify terms. The schema ctx describes a con-
text which contains assumptions x:exp t for some type t. In other words, all declarations
occurring in a context of schema ctx are instances of exp t for some t.

Next, we define the type of the function norm. Since we index expressions with their
types, our statement will naturally enforce that types are preserved. The type will state
that “for all contexts Ψ, given an expression M of type T in the context Ψ, we return an
expression N of type T in the context Ψ”. In Beluga’s concrete syntax, this is written as
{ψ:ctx} (exp T)[ψ] → (exp T)[ψ] where we use {ψ:ctx} to denote quantification over
contexts.

Writing {ψ:ctx} in concrete syntax corresponds to quantifying over concrete contexts
Ψ; the context variable ψ has schema ctx. While we quantify over contexts explicitly in the
type, the user can omit passing the context to the function norm and type reconstruction
will infer the appropriate context. At this point, we do not infer the schema for a context,
and hence this information must always be provided.

The contextual type (exp T)[ψ] directly describes an expression M with type T in
the context ψ. The element inhabiting the computation-level type (exp T)[g] is called
a contextual object, since they may refer to variables listed in the context ψ and hence
only make sense within the context ψ. For example, the contextual object [x:exp nat]

lam λy.app y x has type (exp (arr (arr nat nat) nat))[x:exp nat] and describes an
expression which may refer to the bound variable x. Weakening is built-in; for example the
object lam λy.y can be used in a context [x:exp] or it can be used in the empty context
[]. Accordingly, [x:exp nat] lam λy. y has type (exp (arr nat nat))[x:exp nat] and
[] lam λy.y has type exp (arr nat nat)[].

Mathematical Structures in Computer Science 5

The variable T which is free in the specified computation-level type is implicitly quan-
tified at the outside and has type tp[] denoting a closed object of type tp. Type re-
construction will infer the type of T and abstract over it. Since in general free variables
occurring in computation-level types may depend on the context in which they occur, we
always will create a prefix which first lists context variables and then the types of free
variables. This leads to the following reconstructed type for norm:

{ψ:(ctx)}{T:tp[]} (exp T)[ψ] → (exp T)[ψ]

We highlight the prefix which denotes the implicit arguments of the function norm while
we keep the explicit arguments in black. When using the function norm we must omit
passing instantiations for the context ψ and the type T. Type reconstruction will infer
the concrete instantiation to be passed. We will now show the recursive function which
implements the normalization algorithm. The function proceeds by pattern matching on
elements of type (exp T)[ψ]. For better readability, we write all contextual objects in its
η-expanded form writing lam λx.M ... x instead of simply lam (M ...).

rec norm : {ψ:ctx}(exp T)[ψ] → (exp T)[ψ] =
fn e ⇒ case e of
| [ψ] #p ... ⇒ [ψ] #p ... % Variable

| [ψ] lam (λx. M ... x) ⇒ % Abstraction
let [ψ,x:exp _] N ... x = norm ([ψ, x:exp _] M ... x) in
[ψ] lam λx. N ... x

| [ψ] app (M1 ...) (M2 ...) ⇒ % Application
(case norm ([ψ] M1 ...) of
[ψ] lam (λx. M’ ... x) ⇒ norm ([ψ] M’ ... (M2 ...))

| [ψ] N1 ... ⇒
let [ψ] N2 ... = norm ([ψ] M2 ...) in [ψ] app (N1 ...) (N2 ...)

);

The Beluga syntax follows ideas from ML-like languages with a few extensions. In
particular, we split on an object e which has contextual type (exp T)[ψ]. There are three
cases to consider for e: it is either a variable from the context, it is a lambda-abstraction,
or it is an application. Each pattern is written as a contextual object, i.e. the object itself
together with its context. For the variable case, we use a parameter variable, written as
#pOperationally, #p ... in the pattern [ψ] #p ... will match any declaration from the
context ψ once ψ is concrete. The parameter variable #p is associated with the identity
substitution (written in concrete syntax with ...) to explicitly state its dependency on
the context ψ.

The pattern [ψ] lam λx. M ... x describes the case where the object e is a lambda-
abstraction. We write M ... x for the body of the lambda-abstraction which may refer
to all the variables from the context ψ (written as ...) and the variable x. Technically,
... x describes the identity substitution which maps all the variables from ψ, x:exp T

to themselves. We now recursively normalize the contextual object [ψ,x: exp _] M ...

x. We write an underscore for the type of x in the context ψ, x:exp _ and let type
reconstruction determine it. Note, that we cannot write x:exp T1 since T1 would be free.
Hence, supporting holes is crucial to be able to write the program compactly and avoid
unnecessary type annotations. The result of the recursive call is a contextual object [ψ

,x:exp _] N ... x which we will use to assemble the result. In the case for applications,

B. Pientka 6

we recursively normalize the contextual object [ψ] M1 ... and then pattern match on its
result. If it returned a lambda-abstraction lam λx. M’ ... x, we simply replace x with M2

... . Substitution is primitive in Beluga and ... (M2 ...) describes the substitution which
maps all variables in ψ to themselves (written as ...) and x to M2 In the case where
normalizing [ψ] M1 ... does not return a lambda-abstraction, we continue normalizing
[ψ] M2 ... and reassemble the final result. In conclusion, our implementation yields a
natural, elegant, and very direct encoding of the formal description of normalization.

3. Contextual LF

Beluga’s specification language is an extension of the logical framework LF [Harper et al.
1993] where we also allow meta-variables, parameter variables and context variables.
This continues our work on contextual types [Nanevski et al. 2008] and was previously
described in [Pientka 2008; Pientka and Dunfield 2008]. We give here a more compact for-
mulation merging kinds, types and terms. Following Watkins et al. [2002] we concentrate
on normal forms, since these are the only objects of interest in the logical framework.
While our grammar only enforces that objects are β-normal, our typing rules in Figure
1 will also ensure objects are in η-long form.

Sorts s ::= type | kind

Atomic types P ::= a ~M

Types/kinds A,B,K ::= type | P | Πx:A.B
Heads H ::= x | c | p[σ] | a
Neutral Terms R ::= H | R N | u[σ]
Normal Terms M,N ::= R | λx.M
Substitutions σ ::= · | idψ | σ,M | σ;x
Contexts Ψ ::= · | ψ | Ψ, x:A
Signature Σ ::= · | Σ,a:K | Σ, c:A

Normal objects may contain ordinary bound variables which are used to represent
object-level binders and are bound by λ-abstraction. They may also contain meta-
variables u[σ] and parameter variables p[σ] which we call contextual variables. Contextual
variables are associated with a post-poned substitution σ. The meta-variable u stands
for a contextual object Ψ̂.R where Ψ̂ describes the ordinary bound variables which may
occur in R. This allows us to rename the free variables occurring in R when necessary.
The parameter variable p stands for a contextual object Ψ̂.R where R must be either an
ordinary bound variable from Ψ̂ or another parameter variable.

In the simultaneous substitutions σ, we do not make its domain explicit. Rather we
think of a substitution together with its domain Ψ and the i-th element in σ corresponds
to the i-th declaration in Ψ. We have two different ways of building a substitution either
by using a normal term M or a variable x. Note that a variable x is only a normal term
M if it is of base type. However, as we push a substitution σ through a λ-abstraction
λx.M , we need to extend σ with x. The resulting substitution σ, x may not be well-typed,
since x may not be of base type and in fact we do not know its type. Hence, we allow
substitutions not only be extended with normal terms M but also with variables x.

Mathematical Structures in Computer Science 7

Without loss of generality we require that meta-variables have base type; this can
always be achieved using lowering.

A bound variable context Ψ contains bound variable declarations in addition to context
variables. A context may only contain at most one context variable and it must occur at
the left. This will make it easier to ensure bound variable dependencies are satisfied in
the dependently typed setting.

3.1. Meta-terms and Meta-types

We also introduce a new class of meta-types and meta-terms to treat abstraction over
meta-terms uniformly. Meta-terms are either contextual objects written as Ψ̂.R or con-
texts Ψ. These are the data-objects which computations manipulate and analyze. There
are three different meta-types: P [Ψ] denotes the type of a meta-variable u, #A[Ψ] denotes
the type of a parameter variable p, and G describes the schema (i.e. type) of a context.
The tag # on the type of parameter variables is a simple syntactic device to distinguish
between the type of meta-variables and parameter variables. It does not introduce a
subtyping relationship between the type #A[Ψ] and the type A[Ψ]. The meta-context
in which an LF object appears uniquely determines if X denotes a meta-variable, pa-
rameter variable or context variable. We use the following convention: if X denotes a
meta-variable we usually write u, or v; if it stands for a parameter-variable, we write p
and for context variables we use ψ.

Context schemas G ::= ∃
−−−→
(x:A).B | G+ ∃

−−−→
(x:A).B

Meta Terms C ::= Ψ̂.R | Ψ
Meta Types U ::= P [Ψ] | #A[Ψ] | G
Meta substitutions θ ::= · | θ, C/X
Meta-context ∆ ::= · | ∆, X:U

Context schemas consist of different schema elements ∃
−−−→
(x:A).B which are built using

+. Intuitively, this means a concrete declaration in a context must be an instance of one
of the elements specified in the schema.

The uniform treatment of meta-terms, called C, and meta-types, called U , allows us
to give a compact definition of meta-substitutions θ and meta-contexts ∆.

A consequence of the uniform treatment of meta-terms is that the design of the compu-
tation language is modular and parameterized over meta-terms and meta-types. This has
two main advantages: First, we can in principle easily extend meta-terms and meta-types
without affecting the computation language; in particular, it is straightforward to add
substitution variables which were present in Pientka [2008] or allow for richer context
schemas which are in fact supported in our implementation, but are here omitted for
simplicity. Second, it will streamline the design of computations in Section 4.

B. Pientka 8

Neutral Terms/Types ∆; Ψ ` R⇒ A

Σ(c) = A

∆; Ψ ` c⇒ A

Σ(a) = K

∆; Ψ ` a⇒ K

Ψ(x) = A

∆; Ψ ` x⇒ A

∆(p) = #A[Φ] ∆; Ψ ` σ ⇐ Φ

∆; Ψ ` p[σ]⇒ [σ]ΦA

∆; Ψ ` R⇒ Πx:A.B ∆; Ψ `M ⇐ A

∆; Ψ ` RM ⇒ [M/x]AB

u:P [Φ] ∈ ∆ ∆; Ψ ` σ ⇐ Φ

∆; Ψ ` u[σ]⇒ [σ]ΦP

Normal Terms ∆; Ψ `M ⇐ A

∆; Ψ ` R⇒ P ∆; Ψ ` P = Q : type

∆; Ψ ` R⇐ Q

∆; Ψ, x:A `M ⇐ B

∆; Ψ ` λx.M ⇐ Πx:A.B

Substitutions ∆; Ψ ` σ ⇐ Ψ′

∆; Ψ ` · ⇐ ·
∆; Ψ ` σ ⇐ Ψ′ ∆; Ψ `M ⇐ [σ]Ψ′A

∆; Ψ ` σ,M ⇐ Ψ′, x:A

∆;ψ,Ψ ` idψ ⇐ ψ

∆; Ψ ` σ ⇐ Ψ′ Ψ(x) = [σ]Ψ′A

∆; Ψ ` σ;x⇐ Ψ′, x:A

LF Types and Kinds ∆; Ψ ` A⇐ s

∆; Ψ ` type⇐ kind

∆; Ψ ` P ⇒ type

∆; Ψ ` P ⇐ type

∆; Ψ ` A⇐ type ∆; Ψ, x:A ` B ⇐ s

∆; Ψ ` Πx:A.B ⇐ s

Fig. 1. Typing rules for LF with contextual variables and context variables

3.2. Typing rules for contextual LF

We use a bi-directional type system where we check normal terms against a type and
synthesize a type for neutral terms. LF objects may depend on variables declared in the
context Ψ and variables declared in the meta-context ∆, and hence all typing judgements
for LF objects have access to both contexts. Finally, all typing judgments have access to
a well-typed signature Σ where we store constants together with their types and kinds.

∆; Ψ `M ⇐ A Normal term M checks against type A
∆; Ψ ` R⇒ A Neutral term R synthesizes type A
∆; Ψ ` σ ⇐ Ψ′ Substitution σ has domain Ψ′ and range Ψ.
∆; Ψ ` A⇐ s LF types and kinds are well-formed

The bi-directional typing rules given in Figure 1 are mostly straightforward. We will
tacitly rename bound variables, and maintain that contexts and substitutions declare
no variable more than once. Note that substitutions σ are defined only on ordinary
variables x and not contextual variables. Moreover, we require the usual conditions on
bound variables. For example in the rule for λ-abstraction the bound variable x must
be new and cannot already occur in the context Ψ. This can be always achieved via
α-renaming. Similarly, in meta-terms we tacitly apply α-renaming.

Mathematical Structures in Computer Science 9

Moreover, we rely on hereditary substitutions, written as [N/x]A(B) to guarantee that
when we substitute a term N which has type A for the variable x in the type B, we obtain
a type B′ which is in normal form. Hereditary substitutions continue to substitute, if a
redex is created; for example, when replacing naively x by λy.c y in the object x z, we
would obtain (λy.c y) z which is not in normal form and hence not a valid term in our
grammar. Hereditary substitutions continue to substitute z for y in c y to obtain c z as
a final result.

Hereditary substitution can be defined structurally considering the term to which the
substitution operation is applied and the type of the object which is being substituted.
We define the hereditary substitution operations for normal object, neutral objects and
substitutions. The hereditary substitution operations will be defined by nested induction,
first on the structure of the type A and second on the structure of the objects N , R, and
σ. In other words, we either go to a smaller type, in which case the objects themselves can
become larger, or the type remains the same and the objects become smaller. We write
A ≤ B and A < B if A occurs in B (as a proper subexpression in the latter case)†. For an
in depth discussion, we refer the reader to Nanevski et al. [2008]. Hereditary substitution
is defined in Figure 2.

If the original term is not well-typed, a hereditary substitution, though terminating,
cannot always return a meaningful term. We formalize this as failure to return a re-
sult. However, on well-typed terms, hereditary substitution will always return well-typed
terms. The definition for single hereditary substitutions can be easily extended to simul-
tanous substitutions substitution written as [σ]Ψ(A). We annotate the substitution with
the sub-script Ψ for two reasons. First, σ itself does not carry its domain and hence we
will look up the instantiation for a variable x in σ/Ψ. Second, we rely on the type of x
in the context Ψ to guarantee that applying σ to an object terminates. Either we apply
σ to sub-expressions or the type of the object we substitute will be smaller. We state
here termination property for single hereditary substitutions; it can be appropriately
generalized to simultanous substitutions.

Lemma 3.1 (Termination).

1 If [M/x]A(R) = M ′ : A′ then A′ ≤ A
2 [M/x]A() terminates, either by returning a result or failing after a finite number of

steps.

We have the following substitution properties.

Theorem 3.1 (Substitution property).

1 If ∆; Ψ, x:A ` J and ∆; Ψ `M ⇐ A then ∆; Ψ ` [M/x]AJ .
2 If ∆; Ψ ` J and ∆; Ψ′ ` σ ⇐ Ψ then ∆; Ψ′ ` [σ]ΨJ .

Proof. Each statement is proven by simultaneous induction on the typing derivation
∆; Ψ ` J .

† To ensure termination, it suffices to rely on type approximations of the dependent type; we leave this

out from the discussion.

B. Pientka 10

Normal Terms / Types

[M/x]A(Πy:B1.B2) = Πy:B′1.B
′
2 where B′1 = [M/x]A(B1) and B′2 = [M/x]A(B2),

y 6∈ FV(M), and y 6= x

[M/x]A(type) = type

[M/x]A(λy.N) = λy.N ′ where [M/x]A(N) = N ′, y 6∈ FV(M), and y 6= x

[M/x]A(R) = M ′ if [M/x]A(R) = M ′ : A′

[M/x]A(R) = R′ if [M/x]A(R) = R′

[M/x]A(N) fails otherwise

Neutral terms

[M/x]A(x) = M : A

[M/x]A(y) = y if y 6= x

[M/x]A(p[σ]) = p[σ′] where [M/x]A(σ) = σ′

[M/x]A(u[σ]) = u[σ′] where [M/x]A(σ) = σ′

[M/x]A(R N) = R ′N ′ where [M/x]A(R) = R′ and [M/x]A(N) = N ′

[M/x]A(R N) = M ′′ : B if [M/x]A(R) = λy.M ′ :Πy:A1.B where

Πx:A1.B ≤ A and [M/x]A(N) = N ′

and [N ′/y]A1(M ′) = M ′′

[M/x]A(R) fails otherwise

Substitution

[M/x]A(·) = ·

[M/x]A(idψ) = idψ

[M/x]A(σ , N) = (σ′ , N ′) where [M/x]A(σ) = σ′ and [M/x]A(N) = N ′

[M/x]A(σ ; y) = (σ′ ; y) if y 6= x and [M/x]A(σ) = σ′

[M/x]A(σ ; x) = (σ′ , M) if [M/x]A(σ) = σ′

[M/x]A(σ) fails otherwise

Fig. 2. Hereditary substitutions for LF objects with contextual variables

Before showing decidability of type checking, we remark on equality used in the type
checking rules. Because all terms are in normal form, equality between two LF objects
reduces to syntactic equality with one small caveat: Because we can build simultanous
substitutions with norma terms as in σ,M and also with simply extending it with a
variable σ;x, substitutions are β-normal, but may not be η-long. In other words, the
substitution σ, λx.yx and σ; y are equivalent. Syntactic equality must take into account
η-contraction on substitutions whenever necessary. We are not in a position to state and
prove decidability of type checking for contextual LF.

Mathematical Structures in Computer Science 11

Meta Terms ∆ ` C ⇐ U

∆ ` · ⇐ G

∆(ψ) = G

∆ ` ψ ⇐ G

∆ ` Ψ⇐ G ∃
−−−−−→
(x : B′).B ∈ G A = [σ]−−−−→

(x:B′)
B ∆; Ψ ` σ ⇐

−−−−→
(x:B′)

∆ ` Ψ, x:A⇐ G

∆; Ψ ` R⇐ P

∆ ` Ψ̂.R⇐ P [Ψ]

Ψ(x) = A

∆ ` Ψ̂.x⇐ #A[Ψ]

∆(p) = #A[Φ] where π is a pattern substitution ∆; Ψ ` π ⇐ Φ [π]Φ(A) = B

∆ ` Ψ̂.p[π]⇐ #B[Ψ]

Meta-Substitutions ∆ ` θ ⇐ ∆′

∆ ` · ⇐ ·
∆ ` θ ⇐ ∆′ ∆ ` C ⇐ [[θ]]∆′(U)

∆ ` θ, C/X ⇐ ∆′, X:U

Meta-Types ∆ ` U mtype

∆ ` Ψ ctx ∆; Ψ ` P ⇐ type

∆ ` P [Ψ] mtype

∆ ` Ψ ctx ∆; Ψ ` A⇐ type

∆ ` #A[Ψ] mtype

for all ∃
−−−→
(x:A).B ∈ G. `

−−−→
(x:A) ctx and ·;

−−−→
(x:A) ` B ⇐ type

∆ ` G mtype

Meta-Context ` ∆ mctx

` · mctx

` ∆ mctx ∆ ` U mtype

` ∆, X : U mctx

Fig. 3. Typing rules for meta-terms and meta-types

Theorem 3.2 (Decidability of type checking for contextual LF).
All typing judgments for LF terms, LF types, LF substitutions, and LF contexts are
decidable.

Proof. The typing judgments are syntax-directed and hereditary substitution is termi-
nating; therefore the typing rules are clearly decidable.

3.3. Typing rules for meta-terms and meta-types

On top of LF we define meta-terms and meta-types which provide contextual objects and
context a first-class status. Meta-terms are accessed and manipulated by computations.
We use the following judgments for type checking meta-level objects. Meta-level objects
can depend on meta-context ∆.

B. Pientka 12

` ∆ mctx Check that meta-context ∆ is well-formed
∆ ` U mtype Check meta-type U is well-kinded in meta-context ∆
∆ ` C ⇐ U Check meta-term C against meta-type U in meta-context ∆
∆ ` θ ⇐ ∆′ Check that meta-substitution θ has domain ∆′ and range ∆

The typing rules for meta-terms and meta-types in Figure 3 are mostly straightforward.
To check that a meta-term has a valid meta-type, we revert to LF type checking (see
the first rule for checking Ψ̂.R has type P [Ψ]). Similarly, to verify that a meta-type is
well-kinded, we revert to LF kind checking.

To type check meta-substitutions, we must check that a meta-term C has meta-type U
and we add two more rules which allow us to verify that we have a valid instantiation for
a parameter variable. There are two possibilities: first, we may instantiate a parameter
variable of type #A[Ψ] with an ordinary bound variable from Ψ. This is written as Ψ̂.x.
Second, we may instantiate a parameter variable of type #B[Ψ] with another parameter
Ψ̂.p[πΨ]; note, we appropriately restrict the substitution associated with the parameter
variable p to ensure that the term p[πΨ] is itself only a variable and not an arbitrary
term. To achieve this, we restrict the substitution which is associated with the param-
eter substitution p to be a pattern substitution, i.e. a substitution which maps distinct
variables to distinct variables and is denoted with π.

Contexts must not only be well-formed but also check against a context schema. This
follows similar ideas as in Schürmann [2000]. Intuitively, a context inhabits a context
schema G = ∃

−−−→
(x:A).B′, if every declaration xi:Bi in the context is an instance of the

schema element s.t. [σi]−−−→(x:A)
B′ = Bi.

3.4. Meta-substitution

The two classes of variables, ordinary variables declared in the context Ψ and variables
declared in the meta-context ∆, give rise to two different substitution operations. The
single meta-substitution operation, written as [[C/X]]U (M) (and [[C/X]]U (R) etc.) and
the simultanous meta-substitution written as [[θ]]∆(M) (or [[θ]]∆(R) etc.). Subsequently,
we define the application of the single meta-substitution to a given term and type, but
the simultanous meta-substitution definition can be easily derived from it.

When we apply [[C/X]]U to u[σ], we first apply [[C/x]]U to σ to obtain σ′. Subsequently,
we distinguish two cases: if [[C/X]]U = [[Ψ̂.R/u]], then continue to apply σ′ to R appropri-
ately annotating σ′ with its domain Ψ. Annotating meta-substitution with their domain
allows us to subsequently annotate the operation [σ′]R appropriately; otherwise, we sim-
ply return u[σ′]. The typing rules ensure that the type of the instantiation Ψ̂.R and the
type of u agree, i.e. we can replace u which has type P [Ψ] with a neutral term R if R
has type P in the context Ψ. Because of α-conversion, the variables that are substituted
at different occurrences of u may be different, and we write Ψ̂.R where Ψ̂ binds all the
free variables in R. We can always appropriately rename the bound variable in Ψ̂ such
that they match the domain of the post-poned substitution σ′. This complication can be
eliminated in an implementation of the calculus based on de Bruijn indexes.

Applying the meta-substitution C/X to the parameter variable p[σ] is similar. First, we
substitute C for X in σ to obtain σ′. If [[C/X]]U 6= [[Ψ̂.R/p]]#A[Ψ] then we simply return

Mathematical Structures in Computer Science 13

[[C/X]]U (Πx:A.B) = Πx:A′.B′ where [[C/X]]U (A) = A′ and [[C/X]]U (B) = B′

[[C/X]]U (λx.M) = λx.M ′ where [[C/X]]U (M) = M ′

[[C/X]]U (u[σ]) = R′ where [[C/X]]U (σ) = σ′ and

[[C/X]]U = [[Ψ̂.R/u]]P [Ψ] and [σ′]Ψ(R) = R′

[[C/X]]U (u[σ]) = u[σ′]′ where [[C/X]]U (σ) = σ′ and

[[C/X]]U 6= [[Ψ̂.R/u]]P [Ψ]

[[C/X]]U (R N) = R ′N ′ where [[C/X]]U (R) = R′ and [[C/X]]U (N) = N ′

[[C/X]]U (R N) = M ′′ : B if [[C/X]]U (R) = λy.M ′ :Πx:A1.B where

Πx:A1.B ≤ U and N ′ = [[C/X]]U (N)

and M ′′ = [N ′/y]A1(M ′)

[[C/X]]U (x) = x

[[C/X]]U (c) = c

[[C/X]]U (a) = a

[[C/X]]U (p[σ]) = R′ where [[C/X]]U (σ) = σ′ and

[[C/X]]U = [[Ψ̂.R/p]]#A[Ψ] and[σ′]Ψ(R) = R′

[[C/X]]U (p[σ]) = M ′ : A where [[C/X]]U (σ) = σ′

[[C/X]]U = [[Ψ̂.R/p]]#A[Ψ] and [σ′]Ψ(R) = M ′ : A

[[C/X]]U (p[σ]) = p[σ′] where [[C/X]]U (σ) = σ′ and

[[C/X]]U 6= [[Ψ̂.R/p]]#A[Ψ]

[[C/X]]U (·) = ·
[[C/X]]U (idψ) = σ where [[C/X]]U = [[Ψ/ψ]]G and id(Ψ) = σ

[[C/X]]U (idψ) = idψ where [[C/X]]U 6= [[Ψ/ψ]]G
[[C/X]]U (σ,M) = σ′,M ′ where [[C/X]]U (σ) = σ′ and [[C/X]]U (M) = M ′

[[C/X]]U (σ;x) = σ′;x where [[C/X]]U (σ) = σ′

[[C/X]]U (·) = ·
[[C/X]]U (ψ) = Ψ where [[C/X]]U = [[Ψ/ψ]]G
[[C/X]]U (ψ) = ψ where [[C/X]]U 6= [[Ψ/ψ]]G
[[C/X]]U (Ψ, x:A) = Ψ′, x:A′ where [[C/X]]U (Ψ) = Ψ′ and [[C/X]]U (A) = A′

Fig. 4. Meta-substitution

p[σ′]; otherwise we must replace p by [σ′]Ψ(R). Note that the term R must be a variable,
i.e. either an ordinary bound variable or another parameter variable q[πΦ]. The result of
[σ′]Ψ(R) may either be a neutral term R or a normal term M : A, since σ′ may map
a bound variable x to a normal term M . Because this last step may not always yield a
normal term, we need to hereditarily substitute. Consequently, the operation [[C/X]]U (R)
may either return a neutral term R or a normal term M : A, and we re-normalize the
term in the case for applications.

When applying [[C/X]]U to a context variable ψ in a context and [[C/X]]U = [[Ψ/ψ]]G,
we simply replace ψ with the context Ψ. When applying the meta-substitution [[C/X]]U =
[[Ψ/ψ]]G to the context Ψ, x:A, we apply it to the context Ψ to yield some new context
Ψ′ and return Ψ′, x:A. This will produce a meaningful context since we can always
appropriately rename bound variable occurrences prior to applying the substitution to
avoid name conflicts and overshadowing.

B. Pientka 14

When we apply [[C/X]]U to an ordinary substitution σ, we apply it to its constituents.
The main issue arises when we apply it to the identity substitution idψ. If [[C/X]]U =
[[Ψ/ψ]]G, then we replace the sub-script ψ with a context Ψ and we subsequently expand
Ψ to an identity substitution using the definition id(Ψ). This is defined as follows:

id(·) = ·
id(Ψ, x:A) = id(Ψ) ; x
id(ψ) = idψ

Unfolding the context Ψ to an identity substitution yields a well-typed substitution σ.

Lemma 3.2. [Unfolding identity substitution]
If id(Ψ) = σ then ∆; Ψ,Ψ′ ` σ ⇐ Ψ.

Proof. Induction on the structure of Ψ.

Applying the meta-substitution to an LF object will terminate for the same reasons
as the ordinary substitution operation terminates; either we apply the substitution to a
sub-expression or the objects we substitute are smaller. The following meta-substitution
property holds for meta-terms and meta-types; it is a straightforward extension of the
meta-substitution property for LF objects.

Lemma 3.3 (Termination).

1 If [[C/X]]U (R) = M ′ : A′ then A′ ≤ U .
2 [[C/X]]U () terminates, either by returning a result or failing after a finite number of

steps.

Lemma 3.4 (Meta-substitution property).

1 If ∆ ` C ⇐ U and ∆, X:U ` J then ∆′ ` [[C/X]]U (J)
2 If ∆′ ` θ ⇐ ∆ and ∆ ` J then ∆′ ` [[θ]]∆(J)

Proof. Induction on the structure of ∆ ` J .

We finally state that type checking for LF objects and meta-objects is decidable.

Theorem 3.3 (Decidability of type checking for meta-level).
All typing judgments for meta-terms, meta-types, meta-substitutions, and meta-contexts
are decidable.

Proof. The typing judgments are syntax-directed and therefore clearly decidable.

4. Computation language

4.1. Static semantics for computations

We present here a uniform view of computations and their types where the computation
language is parameterized over meta-terms C and meta-types U . The grammar for our
dependently-typed language supports two different function types: one for computations
and a dependent-function type which allows us to abstract over the meta-objects which

Mathematical Structures in Computer Science 15

can occur in meta-types. Corresponding to the ordinary function type we can create
functions using fn x.E and apply them using I E. Corresponding to the dependent
function type, we support abstractions over meta-objects using λ�X.E and application
to a meta-object written as I dCe. This distinction is justified by its underlying logical
interpretation and the Curry-Howard isomorphism; logical implication corresponds to
the ordinary function type, while the dependent function type corresponds to universal
quantification in first-order logic. In our case, we quantify over meta-terms. Meta-types
not only classify meta-terms which we may quantify over, but at this point they also form
the base types on the computation-level. There is a clear distinction between meta-types
and computation-level types – in particular, computation-level expressions cannot appear
in meta-objects. Following common logic terminology, we call assumptions, introduced
when we traverse a function fn x.E of type T1 → T2 hypothetical and assumptions,
introduced when we traverse a dependent function λ�X.E of type Π�X:U.T , parametric.
Parametric assumptions denote the fact that our computation is parameterized over
meta-terms X and they are kept in the meta-context ∆. Hypothetical assumptions are
stored in the computation-level context Γ.

Our grammar for a branch is noteworthy: Π�∆.C : θ 7→ E. Here, the meta-context
∆ describes all the free variables occurring in the meta-term C. The meta-substitution
θ is a refinement of the variables occurring in the type U of the scrutinee. The idea is
as follows: If the scrutinee I has type U in an outer meta-context ∆′, then θ refines the
variables in ∆′ to ∆. Moreover, our typing rules will guarantee that E only depends on
the meta-context ∆ – not the meta-context ∆′. This already foreshadows one key aspect
of our typing rules for computations: instead of keeping track of a list of constraints and
solve the constraints, when we check whether two types are equal, we will work with
refinement substitutions. Refinement substitutions are essentially constraints in solved
form; by concentrating on solved constraints, we eliminate the need to keep track and
solve constraints during type checking.

Our typing rules generalize previous formulation in Pientka and Dunfield [2008], in two
ways: First, we treat all meta-objects, i.e. context and meta-terms, uniformly. Second,
we attach to patterns in the branches of case-expressions a refinement substitution θ and
unlike previous formulations, also support context refinement.

Types T ::= U | T1 → T2 | Π�X:U.T
Expressions (synth.) I ::= y | I E | I dCe | (E : T)
Expressions (checked) E ::= I | C | fn y.E | λ�X.E | rec f.E | case I of ~B

Branch B ::= Π�∆.C : θ 7→ E

Branches ~B ::= · | (B | ~B)
Program contexts Γ ::= · | Γ, y:T

Next, we present bi-directional typing rules for programs which will minimize the
amount of typing annotations in Figure 5. We distinguish here between typing of expres-
sions and branches. In the typing judgment, we will distinguish between the meta-context
∆ and the context Γ which includes declarations of computation-level variables.

B. Pientka 16

∆; Γ ` I ⇒ T Expression I synthesizes type T

y:T ∈ Γ

∆; Γ ` y ⇒ T

∆; Γ ` I ⇒ T2 → T ∆; Γ ` E ⇐ T2

∆; Γ ` I E ⇒ T

∆; Γ ` I ⇒ Π�X:U.T ∆ ` C ⇐ U

∆; Γ ` I dCe ⇒ [[C/X]]UT

∆; Γ ` E ⇐ T

∆; Γ ` (E : T)⇒ T

∆; Γ ` E ⇐ T Expression E checks against type T

∆; Γ ` I ⇒ T ∆ ` T = T ′

∆; Γ ` I ⇐ T ′
∆ ` C ⇐ U

∆; Γ ` C ⇐ U

∆; Γ, y:T1 ` E ⇐ T2

∆; Γ ` fn y.E ⇐ T1 → T2

∆, X:U ; Γ ` E ⇐ T

∆; Γ ` λ�X.E ⇐ Π�X:U.T

∆; Γ ` I ⇒ U for all k, ∆; Γ ` Bk ⇐ U → T

∆; Γ ` case I of B1 | . . . | Bn ⇐ T

∆; Γ, f : T ` E ⇐ T

∆; Γ ` rec f.E ⇐ T

∆ ` C ⇒ U for all k, ∆; Γ ` Bk ⇐ U → T

∆; Γ ` case C of B1 | . . . | Bn ⇐ T

∆; Γ ` B ⇐ U → T Branch B with pattern of type U checks against T

∆i ` C ⇐ [[θi]]∆(U) ∆i ` θi ⇐ ∆ ∆i; [[θi]]∆(Γ) ` E ⇐ [[θi]]∆(T)

∆; Γ ` Π∆i.C : θi 7→ E ⇐ U → T

Fig. 5. Typing for computations

We observe the usual bound variable renaming conditions in the rule for function
abstraction, recursion, and dependent abstraction. There are a few interesting issues
we briefly highlight: The typing rule for meta-terms checks the meta-term C against a
meta-type U in the meta-context ∆ and computation-level context Γ. Since meta-terms
cannot depend on computations, we simply revert to type-checking C in the meta-context
∆ thereby ensuring it is a pure LF object.

To type-check a case-expression against a type T , we first synthesize the type U of
the scrutinee and then continue to check that each branch maps patterns of type U to
expressions E of type T . A branch B = Π�∆i.Ci : θi 7→ Ei is checked against U → T ,
by verifying that the pattern Ci has type [[θi]]∆(U) in the meta-context ∆i. To ensure we
are working with a meaningful meta-substitution θi, we first check that it has domain ∆
and co-domain ∆i, i.e. it refines all meta-variables from the outer meta-context ∆. Next,
we verify that the body of the branch, Ei has type [[θi]]∆(T) in the meta-context ∆i and
refined computation-level context [[θi]]∆(Γ). Our type system is elegant and compact and
easily shown to be decidable. Unlike other foundations for type-checking dependently
typed programs, we do not collect and subsequently solve constraints. Hence, the type
system is easily trusted.

Decidability of type checking is easily established and only relies on the decidability of
LF type and equality checking. Since LF objects are in canonical form, equality checking
reduces to checking syntactic equality. Although constraint solving for LF objects is in

Mathematical Structures in Computer Science 17

general undecidable, since it relies on higher-order unification, type checking for compu-
tations remains decidable because we manage refinement substitutions in branches which
track constraints in solved form.

Theorem 4.1 (Decidability of type checking for computations).
All typing judgments for computations are decidable.

Proof. The typing judgments are syntax-directed and because LF type and equality
checking is decidable, clearly decidable.

4.2. Operational semantics for computations

Next, we define the operational semantics for computations. Since we keep refinement
substitutions in branches, an eager operational semantics where we propagate the in-
stantiations for meta-variables eagerly is possible, but not elegant. The main difficulty
is that refinement substitutions in branches would need to be refined. This can be done
by pushing constraint solving into the meta-substitution definition for computation-level
expressions, but we will follow a more elegant path here.

Instead of an eager operational semantics, we adopt an environment-based approach.
Recall that we distinguish between meta-variables in ∆ and program variables in Γ.
This is also closer to an actual implementation. We hence define two environments:
θ denotes the instantiation for the meta-context ∆; ρ provides instantiations for the
program context Γ.

Values V ::= C | (fn y.E)[θ; ρ] | (λ�X.E)[θ; ρ]
Extended Values W ::= V | (rec f.E)[θ; ρ]
Closures L ::= C | E [θ ; ρ]
Environments ρ ::= · | ρ,W/y

Closures are snapshots of computations inside an environment. The environment is
represented by the two suspended substitutions θ and ρ for each of the two contexts ∆
and Γ respectively.

We write E[θ; ρ] for a closure consisting of the expression E and the suspended meta-
substitution θ and the program environment ρ. The intended meaning is that first meta-
substitution θ is applied to E and then ordinary substitution ρ to the result. For clarifi-
cation, we show the typing for well-typed environments and values. Unlike our previous
typing rules which were algorithmic, we present them in a type assignment style simply
describing the relationship between computation-level types and expressions.

Definition 4.2 (Closure typing). We define L : T and ρ : Γ simultaneously by the

B. Pientka 18

rules:

· ` θ ⇐ ∆ ρ : [[θ]]∆(Γ) ∆; Γ ` E ⇐ T or ∆; Γ ` E ⇒ T

E [θ ; ρ] : [[θ]]∆(T)
· ` C ⇐ U

C : U

· : ·
ρ : Γ W : T
(ρ,W/y) : Γ, y:T

We present the big-step semantics in Figure 6. Values evaluate to themselves as defined
in the first rule. For an expression E which is annotated with its type, we simply ignore
the type annotation. For computation-level variables, we look up their extended value
W in the environment ρ and continue to evaluate W . This is necessary, since not all
computation-level variables are bound to values, but we also store closures consisting of
a recursive function together with its corresponding meta-substitution and environment.

To evaluate a recursive function rec f.E under the meta-substitution θ and the en-
vironment ρ, we evaluate the body of the function and extend the environment with
(rec f.E) [θ ; ρ]/f .

In the rule for applications, we evaluate (I1 E2) [θ ; ρ] by first evaluating the closure
I1 [θ ; ρ] to a function (fn y.E) [θ1 ; ρ1]; next, we evaluate the second argument E2

under the meta-substitution θ and the environment ρ to some value V2; finally, we con-
tinue evaluating the body E where the meta-substitution θ1 remains unchanged, but the
environment ρ1 is extended with the value V2 for y. The rule for meta-application is dual.
To evaluate I dCe [θ ; ρ] we evaluate first the expression I under the meta-substitution
θ and the environment ρ to a value (λ�X.E) [θ1 ; ρ1]. We then continue to evaluate
E where we extend the meta-substitution θ1 with the closed meta-object [[θ]]C, but the
environment ρ1 remains unchanged.

Technically, we need to annotate the meta-substitution in [[θ]]C with the domain of θ
to prove that applying θ to the meta-object C terminates. For well-typed closures, we
always know that there is a meta-context ∆ s.t. · ` θ ⇐ ∆, and hence meta-substitution
will terminate.

Finally the rules for evaluating a case-expression. They rely on checking that two meta-
substitutions (or two meta-objects) are compatible. We say that a meta-substitution θ is
compatible with a meta-substitution θk if there exists an instantiation θ′, s.t. [[θ′]]θk = θ.
Similarly, we say a meta-object C is compatible with a meta-object Ck, if there exists an
instantiation θ′ s.t. [[θ′]]Ck = C.

There are three possibilities when we evaluate a case-expression: first, the current
meta-substitution is incompatible with the meta-substitution in a given branch. Hence,
this branch is not applicable; the scrutinee has some type [[θ]]U while the branch has type
[[θi]]U and because θi and θ are not compatible, the type of the pattern is incompatible
with the type of the scrutinee. We therefore simply continue to look for an applicable
branch.

The second option is that the meta-substitution θ is compatible with the meta-substitution
of a given branch. Hence, the type of the scrutinee and the type of the pattern are com-
patible. We therefore continue to check whether the scrutinee which evaluated to the

Mathematical Structures in Computer Science 19

L ⇓ V Closure L evaluates to value V

V ⇓ V
E [θ ; ρ] ⇓ V

(E : T) [θ ; ρ] ⇓ V
ρ(y) ⇓ V

y [θ ; ρ] ⇓ V
E [θ ; ρ, (rec f.E) [θ ; ρ]/f] ⇓ V

(rec f.E) [θ ; ρ] ⇓ V

I1 [θ ; ρ] ⇓ (fn y.E) [θ1 ; ρ1] E2 [θ ; ρ] ⇓ V2 E [θ1 ; ρ1, V2/y] ⇓ V
(I1 E2) [θ ; ρ] ⇓ V

I [θ ; ρ] ⇓ (λ�X.E) [θ1 ; ρ1] E [θ1, [[θ]]C/X ; ρ1] ⇓ V
I dCe [θ ; ρ] ⇓ V

∆k ` θ 6
.
= θk case I of ~B [θ ; ρ] ⇓ V

case I of (Π�∆k.Ck : θk 7→ Ek | ~B) [θ ; ρ] ⇓ V

∆k ` θ
.
= θk/(θ

′; ∆′k) I [θ ; ρ] ⇓ C ∆′k ` C 6
.
= [[θ′]]Ck case I of ~B [θ ; ρ] ⇓ V

case I of (Π�∆k.Ck : θk 7→ Ek | ~B) [θ ; ρ] ⇓ V

∆k ` θ
.
= θk/(θ

′; ∆′k) I [θ ; ρ] ⇓ C ∆′k ` C
.
= [[θ′]]Ck/(θ

′′; ·) Ek [[[θ′′]]θ′ ; ρ] ⇓ V
case I of (Π�∆k.Ck : θk 7→ Ek | ~B) [θ ; ρ] ⇓ V

Fig. 6. Big-step semantics

value C is compatible with the pattern Ck in a given branch. If this fails, we again look
for an applicable branch.

We reach an applicable branch, if the meta-substitution θ is compatible with the meta-
substitution θk of the given branch and in addition the pattern Ck is compatible with
the meta-object C which is the result of evaluating the scrutinee I [θ ; ρ]. In this case,
we have a partial instantiation θ′ for the meta-context ∆k, i.e. θ′ maps the variables
from the meta-context ∆k to some meta-context ∆′k. Matching C against the pattern
[[θ′]]∆k

Ck will then return a ground instantiation θ′′ for the meta-context ∆′k. The meta-
substitution [[θ′′]]θ′ hence denotes the combined meta-substitution under which the value
of the scrutinee is equal to the pattern, i.e. C = [[θ′′]][[θ′]]Ck. We hence continue to evaluate
the body Ek of the applicable branch under the meta-substitution [[θ′′]]θ′, but we keep
the environment ρ for computation-level variables unchanged because patterns do not
contain any computation-level variables in our language. We show next that types are
preserved during evaluation.

Theorem 4.3 (Subject reduction). Let L : T . If L ⇓ V then V : T .

Proof. Structural induction on L ⇓ V .

5. Implementation of Beluga

Beluga is implemented in OCaml. It provides a complete reimplementation of the logi-
cal framework LF. Similarly to the Twelf core, Beluga supports type reconstruction for
LF signatures based on higher-order pattern unification with constraints. Building on

B. Pientka 20

the presented foundation, we also designed a palatable source language for Beluga pro-
grams and implemented a type reconstruction algorithm for dependently-typed Beluga
programs.

Type reconstruction for LF is in general undecidable [Dowek 1993]. Our algorithm
reports a principal type, a type error, or that the source term needs more type infor-
mation. As in Twelf, it is always possible to make typing unambiguous by adding more
annotations. We tested our implementation of LF type reconstruction on many examples
from the Twelf repository [Pfenning and Schürmann 1999].

Type reconstruction for Beluga programs is also undecidable. In our implementation,
we check functions against a given type and either succeed, report a type error, or fail
by asking for more type information.

An efficient implementation of higher-order unification is central to Beluga; it plays a
crucial role in type reconstruction and in executing Beluga programs. We implemented
a higher-order dynamic unification algorithm, solving higher-order patterns [Miller 1991]
eagerly and delay working on some subterms which fall outside the decidable fragment
until more information has been gathered. In our implementation, we support a limited
form of Σ-types which we omitted from this presentation and we follow ideas described
in [Abel and Pientka 2011] to apply type isomorphisms to translate objects of Σ-type
back into the pattern fragment.

We also implemented a broad range of proofs as recursive Beluga functions, including
proofs of the Church-Rosser theorem, proofs about compiler transformations, subject
reduction, and translation from natural deduction to Hilbert style. To illustrate the
expressive power of Beluga, our test suite includes simple theorems about structural
relationships between expressions and proofs about the paths in expressions. These latter
theorems have nested quantifiers and implications, placing them outside the fragment of
propositions directly expressible in systems such as Twelf (see also Felty and Pientka
[2010]). Our experience with coverage checking Beluga programs shows that problems
and difficulties sometimes encountered in systems such as Twelf and Delphin are avoided
(see Pientka and Dunfield [2010a]) and Beluga programs require fewer lemmas to work
around existing limitations.

Finally, Beluga provides an interpreter, based on the described lazy environment-based
semantics, to execute computation-level programs.

The Beluga system, including source code, examples, and an Emacs mode, is available
from http://complogic.cs.mcgill.ca/beluga/.

6. Related Work

6.1. Programming with HOAS

One of the first proposals for functional programming with support for binders and
higher-order abstract syntax was presented by Miller [1990]. Later, Despeyroux et al.
[1997] developed a type-theoretic foundation for programming which supports primitive
recursion. To separate data from computation, they introduce modal types �A which
can be injected into computation. However, data in their work must always be closed

Mathematical Structures in Computer Science 21

and hence pattern matching on objects using higher-order abstract syntax is not sup-
ported. Our work essentially continues the path set out in Despeyroux et al. [1997], and
generalizes their work to allow for open data-objects and first-class contexts building on
contextual modal type theory [Nanevski et al. 2008].

Closely related to our approach is the work by Schürmann et al. [2005]; Poswolsky and
Schürmann [2008] where the authors present the ∇-calculus which provides a foundation
for programming with higher-order abstract syntax which underlies the programming and
reasoning environment Delphin [Poswolsky and Schürmann 2009]. The main difference
between the theoretical foundation for Delphin and Beluga is in the treatment of contexts
and meta-terms. In Beluga, we employ the contextual type A[Ψ] to denote LF objects
of type A which may refer to the variables declared in the context Ψ, and contexts
are treated explicit in our foundation. Contexts are meta-data; contexts can be passed
around explicitly and the programmer can analyzed and manipulated them using pattern
matching. For example, our test-suite includes a program which translates terms in HOAS
representation to de Bruijn representation by pattern matching on the context directly.
Moreover, contextual objects allow us to specify and enforce fine-grained invariants and
allows us distinguish between closed objects which have type A[·] and objects which
depend on assumptions.

In Delphin, the context containing binding occurrences is global and left implicit. In-
stead of associating the context with the LF object, it is associated with the computation.
A function is executed within a bound variable context and case-expressions can intro-
duce assumptions and extend the context. When a new assumption is introduced into
the context, the computation moves from the present world to a world where the context
is extended. As a consequence, the programmer does not have direct access to the con-
text and it is common practice to employ a variable-carrying continuation as an extra
argument to keep track of and easily retrieve assumptions.

The primary application of Beluga and Delphin is in prototyping the meta-theory of
formal systems, i.e. representing proofs as recursive functions. Beluga and Delphin sepa-
rate the LF specifications and LF data from computations. One important consequence
is that we cannot mix computation-level functions which support pattern matching and
recursion with LF-abstractions which are used to model binders. More recently, Licata
and Harper [2009] have proposed a system based on contextual type theory where we can
mix computation functions and binding abstractions; this builds on their earlier ideas in
Licata et al. [2008]. Their notion of a contextual type A[Ψ] is similar, i.e. it describes an
object of type A in a context Ψ. There is however one main differences: their framework
does not support context variables as first-class objects; hence, a function runs within
an outer context Ψ and we interpret a contextual object of type A[Ψ′] as an object
of type A in a context Ψ,Ψ′. Note, that the contexts Ψ and Ψ′ are combined. Licata
and Harper [2009] have implemented a prototype for their framework in Agda thereby
supporting programming with HOAS within Martin Löf type theory. Unlike Beluga or
Delphin, structural properties such as weakening or substitution do however not hold in
general, but they can be implemented generically. While [Licata and Harper 2009] demon-
strate convincingly that their library within Agda elegantly supports programming with
binders, it is less clear whether their prototype will scale to support meta-reasoning.

B. Pientka 22

6.2. Nominal programming approaches

The nominal approach [Gabbay and Pitts 1999] to allow manipulation of binding struc-
tures which serve as a foundation of for example FreshML [Shinwell et al. 2003] is more
pragmatic. In this approach, names and α-renaming are supported but implementing
substitution is left to the user. The type system distinguishes at the type-level between
expressions and names, and provides a special type atom which is inhabited by all names.
Generation of a new name and binding names are separate operations which means it is
possible to generate data which contains accidentally unbound names since fresh name
generation is an observable side effect. To address this problem, Pottier [2007] describes
pure FreshML where we can reason about the set of names occurring in an expression via
a Hoare-style proof system. The system relies on assertions written by the programmer
to reason about the scope of names. This static-analysis approach is quite expressive
since the language of constraints includes subset relations, equality, intersection etc. In
contrast, our work aims to provide a type-theoretic understanding of open data, binders,
and substitutions. This has various benefits: For example, it is possible to provide pre-
cise error messages on where names escape their scope. Moreover, the programmer can
directly analyze and manipulate contexts and it scales elegantly to dependent types.

More recently, Pouillard and Pottier [2010] provide a fresh look at programming with
names and binders. Similar to Licata and Harper [2009] they provide a library within
Agda to support programming with names and binders. Their proposal may also be
viewed as an extension of a standard calculus such as system Fω, with new primitive types
and operations. To control the use of names, their framework introduces the abstract
notion of world ; the type system associates a world with each name, and allows two
names to be compared for equality only if they inhabit a common world. Similar to
[Licata and Harper 2009; Poswolsky and Schürmann 2008], we move to a new world
whenever a new bound variable is introduced. Unlike the existing work however they
give worlds names and keep track of how worlds relate to a previous world using links.
At this point, it is unclear how the proposed framework scales to support dependent
types and prototyping the meta-reasoning about systems.

7. Conclusion

We have presented a type-theoretic foundation for programming with higher-order ab-
stract syntax and first-class contexts which is implemented in the Beluga framework.
Our framework consists of two levels: The logical framework LF is used to specify for-
mal systems; to describe and manipulate (proof) objects which depend on a context of
assumptions, we use contextual type A[Ψ]. To abstract over a context of assumptions
we support context variables. We give a decidable bi-directional type system and discuss
various substitution properties.

On top of LF, we designed a dependently typed functional language that supports
analyzing and manipulating contextual objects and contexts. Its design is kept generic; to
keep track of type refinement in pattern matching, we attach to each pattern a refinement

Mathematical Structures in Computer Science 23

substitutions. This makes type checking decidable and easy to trust. We show type
checking is decidable and our lazy operational semantics preserves types.

We have implemented the given theoretical foundation in the Beluga language [Pientka
and Dunfield 2010b] and used it on a wide variety of examples. In the future, we plan to
address two significant issues.

Totality.

Type-checking guarantees local consistency and partial correctness, but does not guaran-
tee that functions are total. Thus, while we can implement, partially verify, and execute
functions about derivations in deductive systems, Beluga does not currently guarantee
the validity of a meta-proof. The two missing pieces are coverage and termination. We
formulated a coverage algorithm [Dunfield and Pientka 2009] to ensure that all cases are
covered, and plan to implement it over the next few months. Verifying termination will
follow ideas in Twelf [Rohwedder and Pfenning 1996; Pientka 2005] for checking that
arguments in recursive calls are indeed smaller.

Automation.

Currently, the recursive functions that implement induction proofs must be written by
hand. We plan to explore how to enable the user to interactively develop functions in
collaboration with theorem provers that can fill in parts of functions (that is, proofs)
automatically.

References

Andreas Abel and Brigitte Pientka. Higher-order dynamic pattern unification for depen-
dent types and records. Technical report, McGill University, February 2011.

Joëlle Despeyroux, Frank Pfenning, and Carsten Schürmann. Primitive recursion for
higher-order abstract syntax. In Proceedings of the Third International Conference on
Typed Lambda Calculus and Applications (TLCA’97), pages 147–163. Springer, 1997.
Extended version available as Technical Report CMU-CS-96-172, Carnegie Mellon Uni-
versity.

Gilles Dowek. The undecidability of typability in the lambda-pi-calculus. In International
Conference on Typed Lambda Calculi and Applications(TLCA ’93), pages 139–145,
London, UK, 1993. Springer-Verlag. ISBN 3-540-56517-5.

Joshua Dunfield and Brigitte Pientka. Case analysis of higher-order data. In Inter-
national Workshop on Logical Frameworks and Meta-Languages: Theory and Prac-
tice (LFMTP’08), volume 228 of Electronic Notes in Theoretical Computer Science
(ENTCS), pages 69–84. Elsevier, June 2009.

Amy P. Felty and Brigitte Pientka. Reasoning with higher-order abstract syntax and
contexts: A comparison. In Matt Kaufmann and Lawrence C. Paulson, editors, Inter-
national Conference on Interactive Theorem Proving, LNCS. Springer, 2010.

B. Pientka 24

Murdoch Gabbay and Andrew Pitts. A new approach to abstract syntax involving
binders. In G. Longo, editor, Proceedings of the 14th Annual Symposium on Logic
in Computer Science (LICS’99), pages 214–224. IEEE Computer Society Press, 1999.
URL citeseer.ist.psu.edu/gabbay99new.html.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, January 1993.

Daniel R. Licata and Robert Harper. A universe of binding and computation. In Gra-
ham Hutton and Andrew P. Tolmach, editors, 14th ACM SIGPLAN International
Conference on Functional Programming, pages 123–134. ACM Press, 2009.

Daniel R. Licata, Noam Zeilberger, and Robert Harper. Focusing on binding and compu-
tation. In F. Pfenning, editor, 23rd Symposium on Logic in Computer Science, pages
241–252. IEEE Computer Society Press, 2008.

Dale Miller. A logic programming language with lambda-abstraction, function variables,
and simple unification. Journal of Logic and Computation, 1(4):497–536, 1991.

Dale Miller. An extension to ML to handle bound variables in data structures. In
Proceedings of the First Workshop on Logical Frameworks, pages 323–335, 1990.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type
theory. ACM Transactions on Computational Logic, 9(3):1–49, 2008.

George C. Necula. Proof-carrying code. In 24th Annual Symposium on Principles of
Programming Languages (POPL’97), pages 106–119. ACM Press, January 1997.

Frank Pfenning. Computation and deduction, 1997.
Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical

framework for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th
International Conference on Automated Deduction (CADE-16), volume 1632 of Lecture
Notes in Artificial Intelligence, pages 202–206. Springer, 1999.

Brigitte Pientka. Verifying termination and reduction properties about higher-order logic
programs. Journal of Automated Reasoning, 34(2):179–207, 2005.

Brigitte Pientka. A type-theoretic foundation for programming with higher-order ab-
stract syntax and first-class substitutions. In 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’08), pages 371–382. ACM
Press, 2008.

Brigitte Pientka. An insider’s look at LF type reconstruction: Everything you (n)ever
wanted to know. Technical report, McGill University, August 2010.

Brigitte Pientka and Joshua Dunfield. Covering all bases: design and implementation of
case analysis for contextual objects. Technical report, McGill University, 2010a.

Brigitte Pientka and Joshua Dunfield. Beluga: a framework for programming and reason-
ing with deductive systems (System Description). In Jürgen Giesl and Reiner Haehnle,
editors, 5th International Joint Conference on Automated Reasoning (IJCAR’10), Lec-
ture Notes in Artificial Intelligence (LNAI), 2010b.

Brigitte Pientka and Joshua Dunfield. Programming with proofs and explicit contexts. In
ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming
(PPDP’08), pages 163–173. ACM Press, July 2008.

Adam Poswolsky and Carsten Schürmann. System description: Delphin—a functional
programming language for deductive systems. In International Workshop on Logical

Mathematical Structures in Computer Science 25

Frameworks and Meta-Languages: Theory and Practice (LFMTP’08), volume 228 of
Electronic Notes in Theoretical Computer Science (ENTCS), pages 135–141. Elsevier,
2009.

Adam B. Poswolsky and Carsten Schürmann. Practical programming with higher-order
encodings and dependent types. In Proceedings of the 17th European Symposium on
Programming (ESOP ’08), volume 4960, page 93. Springer, 2008.

François Pottier. Static name control for FreshML. In 22nd IEEE Symposium on Logic
in Computer Science (LICS’07), pages 356–365. IEEE Computer Society, July 2007.

Nicolas Pouillard and Franois Pottier. A fresh look at programming with names and
binders. In Proceedings of the fifteenth ACM SIGPLAN International Conference on
Functional Programming (ICFP 2010), pages 217–228, September 2010.

Ekkehard Rohwedder and Frank Pfenning. Mode and termination checking for higher-
order logic programs. In Hanne Riis Nielson, editor, Proceedings of the European
Symposium on Programming, pages 296–310, Linköping, Sweden, April 1996. Springer-
Verlag Lecture Notes in Computer Science (LNCS) 1058.

Carsten Schürmann. Automating the Meta Theory of Deductive Systems. PhD thesis,
Department of Computer Science, Carnegie Mellon University, 2000. CMU-CS-00-146.

Carsten Schürmann, Adam Poswolsky, and Jeffrey Sarnat. The ∇-calculus. Func-
tional programming with higher-order encodings. In Pawel Urzyczyn, editor, Pro-
ceedings of the 7th International Conference on Typed Lambda Calculi and Applica-
tions (TLCA’05), volume 3461 of Lecture Notes in Computer Science, pages 339–353.
Springer, 2005.

Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay. FreshML: programming
with binders made simple. In 8th International Conference on Functional Programming
(ICFP’03), pages 263–274, New York, NY, USA, 2003. ACM Press. .

Antonis Stampoulis and Zhong Shao. Veriml: typed computation of logical terms inside a
language with effects. In Paul Hudak and Stephanie Weirich, editors, 15th ACM SIG-
PLAN International Conference on Functional Programming (ICFP 2010), Baltimore,
USA, pages 333–344. ACM, 2010.

Twelf Wiki. Twelf wiki, 2009. http://twelf.plparty.org/wiki/Main_Page.
Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent

logical framework I: Judgments and properties. Technical Report CMU-CS-02-101,
Department of Computer Science, Carnegie Mellon University, 2002.

