
Homework #1 – COMP 250, Winter 2017 Mathieu Blanchette
Due date: January 30th 2017 , 23:59.

What to submit?

1. Your TestLargeInteger.java file
2. A PDF file containing your solution to Question 4.

How to submit?
• On MyCourses, under assignment 1 submissions, upload the two files.
• Do not zip the files
• Do not upload any .class files
• Only modify the portions of the code labeled as

/*WRITE YOUR CODE HERE */
• You can write new methods if you want, but do not change those we give you.

IMPORTANT: Copying code that is not your own (e.g. found on the internet or
elsewhere) is cheating. We have tools that will check for that automatically.

Background
Multiplying two integer numbers can be done using a surprisingly large number of
different algorithms, some much more efficient than others. In this assignment, you are
going to investigate some of these algorithms and you are going to implement them in
Java. To make things more interesting, your algorithms will have to be able to multiply
arbitrarily large non-negative integers, for example numbers with several thousand digits.
For this purpose, we are providing you with a partially implemented Java class called
LargeInteger. The code for this class is available at:
http://www.cs.mcgill.ca/~blanchem/250/hw1

The class stores integers in an array of digits, with each element of the array
corresponding to one digit of the number. The numbers manipulated can thus have as
many digits as will fit in your computer memory (for example, an integer with 1 Million
digits (e.g. 10^1000000) would easily be conceivable). The class LargeInteger currently
has several methods already implemented: the add method adds two LargeInteger and
returns the resulting LargeInteger, the subtract method does subtraction, the equals
method tests if two LargeInteger have the same value, etc. We also provide you with a
few constructors as well as a toString method. All you need to do (!) is to implement each
of the multiplication algorithms described below, test them with small LargeInteger
multiplications that you can check by hand, and measure their running time for
multiplying LargeIntegers of several hundred digits (see below). Note: Java actually
already has a class called BigInteger that is very similar to our LargeInteger class. Please
do not use anything from the BigInteger class, except possibly for checking your results
if you want.

Before starting writing your own code, take some time to become familiar with the code
already provided in the LargeInteger class. This will help you in two ways: (i) it will give

you examples of how these large numbers are stored and manipulated, and (ii) it will give
you the tools that you will need to use to implement the multiplication algorithms.

Your code will be evaluated on several criteria

1) Correctness (80%). Your program always returns the correct product.
2) Reuse of available code (10%): You use the code already provide as much as

possible.
3) Style and comments (10%): You document the new methods you write. You

indent your code properly and use meaningful variable names.
4) Speed (0%), so don’t spend time optimizing your program. This is not a speed

competition.

Question 1. (20 pts)
The most naive way to compute a * b is to repeatedly add b in a loop executed a times:
8 * 4 = 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4. Implement this algorithm in the method called
iterativeAddition of the LargeInteger class. Make sure to use the add and equals methods
that are provided! Remember that the counter in your loop will need to be a LargeInteger
too!

Question 2. (30 pts)
A better way to multiply two non-negative integers is the method taught to kids in grade
school. (Let me know if you’re not familiar with this method; different countries use
different variants.)

For example:
 3758937
 x 370821

 3758937
 7517874
 30071496
 0000000
 26312559
+11276811

 1393892777277

Algorithm standardMultiplication(a,b)

 Input: a = a0a1...ak-1 and b = b0b1...bn-1 are non-negative integers of k and n digits
respectively. In other words, a = 10k-1 a0 + 10k-2 a1 + ... + 100 ak-1,
and similarly for b.

 Output: a * b
 total ← 0
 for i ← n-1 to 0 do
 carry ← 0
 tmpAdd ← Array of k+1 digits
 for j = k-1 downto 0 do

 c ← bi * aj + carry /*This is a single-digit multiplication, so you should
 use the normal Java multiplication “*” defined on int. */

 tmpAddj+1 ← c mod 10 // this is the remainder of the integer division
 // In java, write c % 10.

carry ← ⎣c/10⎦ // this is the floor of the division c/10. If c is
 // an int, then carry = c/10; will work.

 tmpAdd0 ← carry
total ← total + tmpAdd*10(n-i-1) // Note: this is not a difficult multiplication:

//simply add n-i-1 zeros at the end of tmpAdd!
 return total

Implement this pseudocode in the standardMultiplication method of the LargeInteger
class. It is OK to use the Java multiplication operator * defined on int but only to multiply
single-digit numbers.

Question 3. (20 pts)

Background: The code given to you contains a method called recursiveMultiplication,
which implements the following recursive algorithm. I’m giving you this code as an
example, because it will help you implement the “recursiveFastMultiplication” algorithm
described further below.

RecursiveMultiplication:
Suppose a has k digits and b has n digits. Suppose la and ra are the left and right halves of
the digits of a, and lb and rb are the left and right half of the digits of b. In other words,
a = 10⎣

k/2
⎦ la + ra and b = 10⎣

n/2
⎦ lb + rb . N.B. The notation ⎣k/2⎦ means the largest integer

smaller or equal to k/2 (in java, if k is an int, then simply writing k/2, as an integer
division, gives you ⎣k/2⎦).
Then
a b = (10⎣

k/2
⎦ la + ra) (10⎣

n/2
⎦ lb + rb) = ra rb + 10⎣

n/2
⎦ ra lb + 10⎣

k/2
⎦ la rb + 10⎣

k/2
⎦ +⎣

n/2
⎦ la lb

So, we have reduced the problem of multiplying an n-digit number with a k-digit number
to four multiplications of numbers of about n/2 and k/2 digits, three multiplications by
powers of ten (which consist of simply adding zeros), and three additions. Here is an
example: Assume a= 891 and b=1234, so that k=3, n =4.
Then la = 89, ra = 1, lb = 12, rb = 34.
term1 = ra rb = 1 * 34 = 34
term2 = 102 * ra lb = 100 * 1 * 12 = 1200
term3 = 101 * la rb = 10 * 89 * 34 = 30260
term4 = 101+2 * la lb = 1000 * 89 * 12 = 1068000
Finally a b = 34 + 1200 + 30260 + 1068000 = 1099494

Here is the pseudocode:

Algorithm recursiveMultiplication(a,b)
 Input: a = a0a1...ak-1 and b = b0b1...bn-1 are non-negative integers of k and n digits
 respectively. In other words, a = 10k-1 a0 + 10k-2 a1 + ... + 100 ak-1,
 and similarly for b.

 Output: a*b
if (k=1 and n=1) return a0* b0;

 term1 ← term2 ← term3 ← term4 ← 0;
 la ← (a0...ak-⎣k/2⎦-1)
 ra ← (ak-⎣k/2⎦...ak-1)
 lb ← (b0...bn-⎣n/2⎦-1)
 rb ← (bn-⎣n/2⎦...bn-1)
 if (n>1 and k>1) then term1 ← recursiveMultiplication(ra , rb)
 if (k>1) then term2 ← 10⎣

n/2
⎦ * recursiveMultiplication(ra , lb)

 if (n>1) then term3 ← 10⎣
k/2

⎦
 * recursiveMultiplication(la , rb)

term4 = 10 ⎣k/2
⎦
+

⎣
n/2

⎦ * recursiveMultiplication(la, lb)
 return term1 + term2 + term3 + term4

RecursiveFastMultiplication: (what you actually need to implement)
In the previous example, to compute the product of two integers, we needed four
multiplications of numbers half as long as the original ones. Here, we will show that we
can actually do it with only three such multiplications, and the difference will be
extremely significant when multiplying very large integers.

Again, suppose a = 10⎣

k/2
⎦ la + ra and b = 10⎣

n/2
⎦ lb + rb . Assume that n ≥ k (if this is not the

case, then simply switch a and b so that the longest number is then b). We have
a b = (10⎣

k/2
⎦ la + ra) (10⎣

n/2
⎦ lb + rb)

 = ra rb + 10⎣
n/2

⎦ ra lb + 10⎣
k/2

⎦ la rb + 10⎣
k/2

⎦
+
⎣
n/2

⎦ la lb
 = ra rb + 10⎣

k/2
⎦ (10⎣

n/2
⎦
-
⎣
k/2

⎦ ra lb + la rb) + 10⎣
k/2

⎦
+
⎣
n/2

⎦ la lb

It turns out that it is possible compute (10⎣

n/2
⎦
-
⎣
k/2

⎦ ra lb + la rb) using only one
multiplication instead of two. How is this miracle possible? Consider the product
(la +ra) * (10⎣

n/2
⎦
-
⎣
k/2

⎦
 lb+rb) = 10⎣

n/2
⎦
-
⎣
k/2

⎦
 la lb + (la rb + 10⎣

n/2
⎦
-
⎣
k/2

⎦
 ra lb) + ra rb

Thus, (10⎣

n/2
⎦
-
⎣
k/2

⎦
 ra lb + la rb) = (la +ra) (10⎣

n/2
⎦
-
⎣
k/2

⎦
 lb+rb) - 10⎣

n/2
⎦
-
⎣
k/2

⎦
 la lb – ra rb

But it so happens that la lb and ra rb are two of the products needed in [1];
Thus, if we compute
term1 = ra * rb
term2 = la * lb
term3 = (la +ra) * (10⎣

n/2
⎦
-
⎣
k/2

⎦
 lb+rb) - 10⎣

n/2
⎦
-
⎣
k/2

⎦
 term2 – term1

we get a * b = 10⎣
k/2

⎦ +⎣
n/2

⎦ term2 + 10⎣
k/2

⎦ term3 + term1.
Thus, we have computed a*b using just three multiplications of numbers about half as
long as the originals. Notice that the method doesn’t work when k=1 (why?), so in that
case, we will have to rely on one of the multiplication algorithms defined previously.

[1]

Here is an example:
Assume a= 891 and b=1234, so that k=3, n =4.
Then la = 89, ra = 1, lb = 12, rb = 34.
term1 = ra rb = 1 * 34 = 34
term2 = la lb = 89 * 12 = 1068
term3 = (89 + 1) * (102-1* 12 + 34) - 102-1*1068 – 34 = 90 * 154 – 10680 – 34
 = 3146
then a b = 101+2 1068 + 101 3146 + 34 = 1099494.

So we’ve worked very hard for saving one single multiplication. Big deal, say you?
You’ll see that the answer is yes, at least when the numbers multiplied are very long.

So the pseudocode is:

Algorithm recursiveFastMultiplication(a,b)

Input: : a = a0a1...ak-1 and b = b0b1...bn-1 are non-negative integers of k and n
digits respectively. In other words, a = 10k-1 a0 + 10k-2 a1 + ... + 100 ak-1,

 and similarly for b.
 Output: a * b

 if (n<k) then return recursiveFastMultiplication(b, a);
if (k=1) then return standardMultiplication(a, b);

 term1←term2 ← term3 ← 0;
 la ← (a0...ak-⎣k/2⎦-1)
 ra ← (ak-⎣k/2⎦...ak-1)
 lb ← (b0...bn-⎣n/2⎦-1)
 rb ← (bn-⎣n/2⎦...bn-1)
 term1 ← recursiveFastMultiplication(ra , rb)

term2 ← recursiveFastMultiplication(la , lb)
term3 ← recursiveFastMultiplication(la + ra , 10⎣

n/2
⎦
-
⎣
k/2

⎦
 lb + rb)

- 10⎣
n/2

⎦
-
⎣
k/2

⎦
 term2 – term1

 return 10⎣
k/2

⎦ +
⎣
n/2

⎦
 term2 + 10⎣

k/2
⎦ term3 + term1

Implement this pseudocode in the recursiveFastMultiplication method of the
LargeInteger class. This will be a recursive method. It is OK to use the Java
multiplication operator * but only to multiply single-digit numbers.

Question 4. (30 pts) (to be turned-in as a PDF file)
So, which algorithm is best? This is for you to discover! For each multiplication
algorithm implemented (and for recursiveMultiplication too), try to measure the average
running time needed to compute product of two random numbers of

- 2 digits each
- 4 digits each
- 8 digits each
- 16 digits each
- ...
- 1024 digits each

- 2048 digits each
- 4096 digits each

For small numbers, the execution will be too fast to be measured reliably, so you should
measure the time to do, say, 1000 such multiplications (each time on a different pair of
random numbers), and then divide the total running time by 1000.
You can use

long currentTime = System.nanoTime();
to get the time (in nanoseconds) before and after the execution of the 1000 repetitions.

Don’t worry about the fact that the time measured will include that for generating the
random numbers; it is negligible. When running your experiments, make sure that your
computer isn’t running too many other jobs; this may affect your measurements.

For larger numbers, certain methods will take too long to run, so you should reduce the
number of repetitions so that the total running time is not more than a few minutes. Don’t
spend hours doing this! For some methods, even multiplying two 8-digits numbers will
take forever. If a method takes more than one minute to do a single multiplication, simply
abort the computation and report that it was too slow.

Question:
a) Report a table for the average running time for a single multiplication using each
method for each number of digits above (when possible).

Based on your observations, try to detect the pattern in the increase of running time as the
size of the numbers is doubled. The pattern will be clearer for large numbers and should
involve small whole numbers. It will help to see the pattern if you understand clearly how
each algorithm works.
b) Predict (approximately) what would be the running time of each method for
multiplying two 8192-digit numbers.
d) For each method, give a formula that describes (approximately) the running time for
multiplying two n-digit numbers? Your formula should only try to be accurate for large
values of n, as for small values of n several factors complicate the analysis.
e) For which value of n does the recursiveFastMultiplication algorithm become faster
than the other three?

Good luck!

