
17-04-06

1

Computer graphics ���
Ray tracing���

Putting it all together

Our last real lecture!!

Computer Graphics Rendering
•  World is represented by a set of 3D objects, with

colors, reflectivity, transparence, etc.
–  Primite objects: Polygons, spheres, cones
–  Complex objects:

Mesh of triangles

•  Goal: Produce a realistic 2D
 picture of the world

The input Ray-tracing

Ray-tracing algorithm
Input: - world: set of 3D objects

 - (x,y,z) position of the eye
 - Position of the 2D screen

Output: Image: array of colors of size nPixels by mPixels
For i = 1…nPixels

For j = 1…mPixels
r = ray(eye -> pixel(i,j))
object = getClosestIntersection(r, world)
if (object!=null) then

image[I,j] = object.getColor();

Recursive Ray-tracing

17-04-06

2

Finding intersections

•  Suppose your world consists of Millions of objects
•  How can you calculate closest intersection

quickly?
–  Computing intersection between ray and each object is

much too slow
•  Idea: Store your objects in a data structure that

allows you to quickly discard objects that can’t
have intersection

Quad trees
For a 2D-world,
Subdivide the world
into four quadrants.

Keep subdividing as long
there is more than one
 object per square

For 3D-world,
Subdivide world into
eight octants

Quad trees
Subdivision is represented as a tree:
Root = complete world
Children = four quadrants

Fast ray intersection problem
To quickly find intersection between ray and world:

Find which main quadrant is intersected

Find which of its subquadrant is intersected

… Keep going down the tree until a leaf is found

If leaf contains an object, test intersection

Continue until intersection is found

ray
Eye

