
1

Survey of problems on graphs

Lecture 31

Outline
•  Graphs model many real-world applications
•  Graphs lend themselves to nice computer

science problems:
– Shortest path
– Cycles: Eulerian, Hamiltonian
– Cliques and independent sets
– Coloring
– Matching

•  We will only consider undirected graphs

Shortest path problem
•  Unweighted Graph Shortest Path:

–  Given an unweighted graph and two vertices u and v,
–  Find the shortest path (minimum number of edges) between

u and v
•  Weighted Graph Shorted Path:

–  Given an weighted graph and
 two vertices u and v,
–  Find the shortest path (minimum total
 edges weight) between u and v

•  Applications:
–  Driving from one city to another
–  Routing packets through the internet
–  Solving the Rubik’s cube using the least number of moves

Algo. for unweighted graph
shortest path

•  Algorithm for unweighted graph:
– Do a breadth-first search starting at u, until v is reached
– For each vertex visited, remember from which vertex it

was reached

– Works because vertices are visited in increasing order of
distance from u

u

v

Algo. for weighted graph shortest path

•  Idea:
–  Visit vertices in increasing order of distance from u
–  The first time you get to v, you came to it via the shortest path.
–  This can be done efficiently using a priority queue (see HW5)

 4 7

 2 5 6

 3 4

1
2

3

8

u

v

Eulerian cycles
•  Recall: A cycle is a path that returns to its starting vertex
•  An eulerian cycle visits each edge exactly once (but

vertices can be visited more than once)
•  Problem:

–  Given a undirected graph
–  Find an eulerian cycle (if one exists)

•  Algorithm: Sounds hard, but actually easy!
–  Start at any vertex u and follow any unvisited edge, as long as

this does not result in a graph whose unvisited edges are
unreachable

–  No need to plan ahead, so algorithm is fast

2

Hamiltonian cycles
• A Hamiltonian cycle visits each vertex exactly once
• Problem:

– Given a undirected graph
– Find an Hamiltonian cycle

 (if one exists)

• Algorithm: Very hard!
– Nobody knows how to do much better than trying all

(n-1)! possible vertex orderings
– Be famous: find an algorithm that runs in

polynomial time

Graph coloring
•  Problem: Given an undirected graph

– Find the minimum number of colors needed to
paint the vertices so that no pair of adjacent
vertices have the same color

•  Application: Coloring maps
– Color countries so that neighbors

 always have different colors
– Draw “contact graph”

•  One vertex per contry
•  Edges between touching contries

•  Be famous: Find a
poly. time algo. for graph coloring

Cliques
•  Given an undirected graph, a clique is a

subset of vertices where all vertices are
adjacent

•  Problem:
– Given an undirected graph
– Find the largest clique it contains

•  Be famous: Find a poly. time algo for
finding maximal cliques

Matching
•  Example:

–  n people want to get married (vertices)
–  Some pairs of people are compatible (good horoscope, shown

by edges), others are incompatible (no edge)
–  Question:

 Can we match everybody?

•  NB:The graph contains triangles:
 what does that mean?

•  Efficient algorithms are known but quite complicated

