Priority queue ADT
Heaps

Lecture 21

Priority queue ADT

¢ Like a dictionary, a priority queue stores a set of
pairs (key, info)
¢ The rank of an object depends on its priority (key)

e O
Rear of e 8 s Front of
queue h @3 rm (m queue
key: 986 5 4
¢ Allows only access to
— Object findMin() /[returns info of smallest key
— Object removeMin() // removes smallest key

— void insert(key k, info i) // inserts pair
¢ Applications: customers in line, Data compression,
Graph searching, Artificial intelligence...

Priority queue ADT

| @0y [6.00] B0y |

> insert(9,0,)
| 4oy [5.00] 80y [00) |

> remove()
[5.00] B0y | 00, |

> insert(6,0,)
[5.00 | 60y | 80y | 00, |

D insert(2,0,)

| 2.0y] 6.00] 60y | 80y | 00, |

Implementation of priority queue

Unsorted array of pairs (key, info)
findMin(): Need to scan array O(n)
insert(key, info): Put new object at the end o(1)
removeMin(): First, findMin, then shift array O(n)
Sorted array of pairs (key, info)
findMin(): Just return first element o(l)

insert(key, info):
Use binary-search to find position of insertion. O(log n)
Then shift array to make space. O(n)

Implementation of priority queue

Using a sorted doubly-linked list of pairs (key, info)
findMin(): Return first element o(l)
insert(key, info):

First, find location of insertion.

Binary Search?

Slow on linked list.

Instead, we have to scan array O(n)

Then insertion is easy o(1)

removeMin(): Remove first element of list o(1)

Heap data structure

* A heap is a data structure that implements a
priority queue:
— findMin(): o)
— removeMin(): O(log n)
— insert(key, info): O(log n)
* A heap is based on a binary tree, but with a
different property than a binary search tree
* heap # binary search tree

Heap - Definition

* A heap is a binary tree such that:

— For any node n other than the root,
key(n) = key(parent(n))

Last node

— Let h be the height of the heap
* First h-1 levels are full:
Fori=0,...,h-1, there are 2! nodes of depth i
* At depth h, the leaves are packed on the left side of the tree

Heap - Example

Last node

Height of a heap

‘What is the maximum number of nodes that fits in a heap
of height h? h

E 2k _ 2h+l 1

k=0

What is the minimum number?

Q2" -1)+1=2"

Thus, the height of a heap with n nodes is:

| log(n)]

Heaps: findMin()

The minimum key is always at
the root of the heap!

Heaps: Insert

Insert(key k, info i). Two steps:
1. Find the left-most unoccupied e

node and insert (k,i) there
temporarily.

2. Restore the heap-order e e

Last node

property (see next)

Heaps: Bubbling-up
Restoring the heap-order property:

— Keep swapping new node with it’ s parent as long as
it’ s key is smaller than it’ s parent’ s key

Last node Last node Last node

Running time? O(h) = O(log(n))

Insert pseudocode

Algorithm insert(key k, info i)
Input: The key k and info i to be added to the heap
Output: (ki) is added

lastNode < nextAvailableNode(lastNode)

lastNode.key < k, lastNode.info < i

n < lastnode

while (n.getParent()!=null and n.getParent().key > k) do
swap (n.getParent(), n)

Heaps: RemoveMin()

¢ The minimum key is always 0
at the root of the heap!

* Replace the root with last node e o

© O 0O

e ° Last node

1
Last node

* Restore heap-order property (see next)

Heaps: Bubbling-down

Restoring the heap-order property:

— Keep swapping the node with its smallest child as
long as the node’ s key is larger than it" s child’ s key

0 @) @)
ONROLNo SROENOSRO
ORONENCEONENON o

Last node Last node Last node

Running time? Q(h) = O(log(n))

removeMin pseudocode

Algorithm removeMin()
Input: The key k and info | to be added to the heap
Output: (k,i) is added

swap(lastNode, root)
Update lastNode
n < root
while (n.key > min(n.getLeftChild().key, n.getRightChild().key)) do
if (n.getLeftChild().key < n.getRightChild().key) then
swap(n, n.getLeftChild)
else swap(n, n.getRightChild)

Finding nextAvailableNode

nextAvailableNode(lastNode) finds the location where
the next node should be inserted. It runs in time O(n).
n <-- lastNode;
while (n is the right child of its parent && n.parent!=null) do
n <-- n.parent
if (n.parent == null) then nextAvailableNode is the left child of
the leftmost node of the tree

else
n <-- n.parent // go up one more level
if (n has no right child) then nextAvailableNode is the right
child of n
else

n <-- n.rightChild // go down the right child
while (n has a left child) do n <-- n.leftChild
nextAvailableNode is the left child of n

NextAvailableNode - Example

Array representation of heaps

¢ A heap with n keys can be stored
in an array of length n+1
012 34 5 678 9 101 12
-12151617110181918191121 |

¢ For a node at index i,
— The parent (if any) is at index |i/2]
— The left child is at index 2*i
— The right child is at index 2*i + 1 Last node
¢ lastNode is the first empty cell of the array. To
update it, either add or subtract one

HeapSort

Algorithm heapSort(array A[0...n-1])
Heap h <— new Heap()
for i=0 to n-1 do
h.insert(A[i])
for i=0 to n-1 do
Ali] < h.removeMin()

Running time: O(n log n) in worst-case
Easy to do in-place: Just use the array A to store the heap

