Priority queue ADT

Heaps

Lecture 21

Priority queue ADT

• Like a dictionary, a priority queue stores a set of pairs (key, info)
• The rank of an object depends on its priority (key)

Implementation of priority queue

Using a sorted doubly-linked list of pairs (key, info)

findMin(): Return first element O(1)
insert(key, info):
 First, find location of insertion.
 Binary Search?
 Slow on linked list.
 Instead, we have to scan array O(n)
 Then insertion is easy O(1)
removeMin(): Remove first element of list O(1)

Implementation of priority queue

Unsorted array of pairs (key, info)

findMin(): Need to scan array O(n)
insert(key, info): Put new object at the end O(1)
removeMin(): First, findMin, then shift array O(n)

Sorted array of pairs (key, info)

findMin(): Just return first element O(1)
insert(key, info):
 Use binary-search to find position of insertion. O(log n)
 Then shift array to make space. O(n)

Heap data structure

• A heap is a data structure that implements a priority queue:
 – findMin(): O(1)
 – removeMin(): O(log n)
 – insert(key, info): O(log n)
• A heap is based on a binary tree, but with a different property than a binary search tree
• heap ≠ binary search tree
Heap - Definition

- A **heap** is a binary tree such that:
 - For any node n other than the root, $key(n) \geq key(\text{parent}(n))$
 - Let h be the height of the heap
 - First $h-1$ levels are full:
 - For $i = 0, \ldots, h-1$, there are 2^i nodes of depth i
 - At depth h, the leaves are packed on the left side of the tree

Height of a heap

What is the maximum number of nodes that fits in a heap of height h?

$$\sum_{k=0}^{h} 2^k = 2^{h+1} - 1$$

What is the minimum number?

$$(2^h - 1) + 1 = 2^h$$

Thus, the height of a heap with n nodes is:

$$[\log(n)]$$

Heaps: findMin()

The minimum key is always at the root of the heap!

Heaps: Insert

Insert(key k, info i). Two steps:

1. Find the left-most unoccupied node and insert (k, i) there temporarily.
2. Restore the heap-order property (see next)

Heaps: Bubbling-up

Restoring the heap-order property:

- Keep swapping new node with its parent as long as its key is smaller than its parent’s key

Running time? $O(h) = O(\log(n))$
Insert pseudocode

Algorithm insert(key k, info i)
Input: The key k and info i to be added to the heap
Output: (k,i) is added

```
lastNode ← nextAvailableNode(lastNode)
lastNode.key ← k, lastNode.info ← i
n ← lastnode
while (n.getParent()!=null and n.getParent().key > k) do
    swap (n.getParent(), n)
```

Heaps: RemoveMin()

- The minimum key is always at the root of the heap!
- Replace the root with last node

```
Heaps: RemoveMin()
**Algorithm** removeMin()
**Input:** The key k and info I to be added to the heap
**Output:** (k,i) is added

swap(lastNode, root)
Update lastNode
```

Heaps: Bubbling-down

Restoring the heap-order property:
- Keep swapping the node with its smallest child as long as the node’s key is larger than its child’s key

```
Heaps: Bubbling-down
**Algorithm** removeMin()
**Input:** The key k and info I to be added to the heap
**Output:** (k,i) is added

swap(lastNode, root)
Update lastNode
```

Running time? \(O(h) = O(\log(n)) \)

Finding nextAvailableNode

nextAvailableNode(lastNode) finds the location where the next node should be inserted. It runs in time \(O(n) \).

```
Finding nextAvailableNode
nextAvailableNode(lastNode) finds the location where
the next node should be inserted. It runs in time \( O(n) \).
n ← lastNode;
while (n is the right child of its parent & n.parent!=null) do
    n ← n.parent
if ( n.parent == null ) then
    nextAvailableNode is the left child of
    the leftmost node of the tree
else
    n ← n.parent // go up one more level
    if ( n has no left child ) then
        nextAvailableNode is the right
        child of n
    else
        n ← n.rightChild // go down the right child
        while (n has a left child ) do
            n ← n.leftChild
        nextAvailableNode is the left child of n
```

removeMin pseudocode

```
removeMin pseudocode
Algorithm removeMin()
Input: The key k and info I to be added to the heap
Output: (k,i) is added

swap(lastNode, root)
Update lastNode
```

NextAvailableNode - Example

```
NextAvailableNode - Example
```
Array representation of heaps

- A heap with n keys can be stored in an array of length n+1
- For a node at index i,
 - The parent (if any) is at index \(\lfloor i/2 \rfloor \)
 - The left child is at index 2*i
 - The right child is at index 2*i + 1
- lastNode is the first empty cell of the array. To update it, either add or subtract one

HeapSort

Algorithm heapSort(array A[0...n-1])

1. Heap h ← new Heap()
2. for i=0 to n-1 do
 - h.insert(A[i])
3. for i=0 to n-1 do
 - A[i] ← h.removeMin()

Running time: \(O(n \log n) \) in worst-case
Easy to do in-place: Just use the array A to store the heap