
On subexponential running times for approximating directed

Steiner tree and related problems

Marek Cygan∗ Guy Kortsarz† Bundit Laekhanukit‡

February 27, 2018

Abstract

This paper concerns proving almost tight (super-polynomial) running times, for achieving desired
approximation ratios for various problems. To illustrate the question we study, let us consider the
Set-Cover problem with n elements and m sets. Now we specify our goal to approximate Set-Cover
to a factor of (1 − α) lnn, for a given parameter 0 < α < 1. What is the best possible running
time for achieving such approximation ratio? This question was answered implicitly in the work of
Moshkovitz [Theory of Computing, 2015]: Assuming both the Projection Games Conjecture (PGC) and
the Exponential-Time Hypothesis (ETH), any ((1 − α) lnn)-approximation algorithm for Set-Cover

must run in time at least 2n
c·α

, for some small constant 0 < c < 1.
We study the questions along this line. Our first contribution is in strengthening the above result. We

show that under ETH and PGC the running time requires for any ((1−α) lnn)-approximation algorithm
for Set-Cover is essentially 2n

α

. This (almost) settles the question since our lower bound matches the
best known running time of 2O(nα) for approximating Set-Cover to within a factor (1 − α) lnn given
by Cygan et al. [IPL, 2009]. Our result is tight up to the constant multiplying the nα terms in the
exponent.

The lower bound of Set-Cover applies to all of its generalization, e.g., Group-Steiner-Tree,
Directed-Steiner-Tree, Covering-Steiner-Tree and Connected-Polymatroid. We show that,
surprisingly, in almost exponential running time, these problems reduce to Set-Cover. Specifically, we
complement our lower bound by presenting an (1−α) lnn approximation algorithm for all aforementioned
problems that runs in time 2n

α·logn · poly(m).
We further study the approximation ratio in the regime of log2−δ n for Group-Steiner-Tree and

Covering-Steiner-Tree. Chekuri and Pal [FOCS, 2005] showed that Group-Steiner-Tree admits

(log2−α n)-approximation in time exp(2logα+o(1) n), for any parameter 0 < α < 1. We show the run-
ning time lower bound of Group-Steiner-Tree: any (log2−α n)-approximation algorithm for Group-
Steiner-Tree must run in time at least exp((1 + o(1))logα−ε n), for any constant ε > 0, unless the
ETH is false. Our result follows by analyzing the hardness construction of Group-Steiner-Tree due
to the work of Halperin and Krauthgamer [STOC, 2003]. The same lower and upper bounds hold for
Covering-Steiner-Tree.

∗Department of Math and information, University of Warsaw, Warsaw, Porland. Email: cygan@nimuw.edu.pl
†Computer Science Department, Rutgers University – Camden, Camden NJ, USA. Email: guyk@camden.rutgers.edu
‡Max Planck Institute for Informatics, Saarbrücken, Germany & Institute for Theoretical Computer Science, Shanghai

University of Finance and Economics, Shanghai, China. Email: blaekhan@mpi-inf.mpg.de

1

1 Introduction

The traditional study of approximation algorithms concerns designing algorithms that run in polynomial
time while producing a solution whose cost is within a factor α away from the optimal solution. Once the
approximation guarantees meet the barrier, a natural question is to ask whether the approximation ratio
can be improved if the algorithms are given running time beyond polynomial. This has been a recent trend
in designing approximation algorithms that allows ones to break through the hardness barrier; see, e.g.,
[11, 55, 2222, 66, 66, 77, 77, 1515, 1414].

While ones ask for improving the approximation ratio, another interesting question is to ask the converse:
Suppose the approximation ratio has been specified at the start, what is the smallest running time required
to achieve such approximation ratio? This question has recently been an active subject of study; see, e.g.,
[99, 33, 44].

To answer the above question, ones need complexity assumptions stronger than P 6= NP as this standard
assumption does not precisely specify the running times besides polynomial versus super-polynomial. The
most popular and widely believed assumption is the Exponential-Time Hypothesis (ETH), which states that
3-SAT admits no 2o(n)-time algorithm. This together with the almost linear size PCP theorems [1616, 3333]
yields many running time lower bounds for approximation algorithms [99, 33, 44]. Let us give an example of
the results of this type:

Example: Consider the Maximum Clique problem, in which the goal is to find a clique of maximum size
in a graph G = (V,E) on n vertices. This problem is known to admit no n1−ε-approximation, for any ε > 0,
unless P = NP [2626, 3535]. Now, let us ask for an α-approximation algorithm, for α ranging from constant to√
n. There is a trivial 2n/αpoly(n)-time approximation algorithm, which is obtained by partitioning vertices

of G into to α parts and finding a maximum clique from each part separately. Clearly, the maximum clique
amongst these solutions is an α-approximate solution, and the running time is 2n/αpoly(n). The question is
whether this is the best possible running-time. Chalermsook et al. [99] showed that such a trivial algorithm
is almost tight11. To be precise, under the ETH, there is no α-approximation algorithm that runs in time
2n

1−ε/α1+ε

, for any constant ε > 0, unless the ETH is false.

In this paper, we consider the question along this line. We wish to show the tight lower and upper bounds
on the running times of polylogarithmic approximation algorithms for Set-Cover, Group-Steiner-Tree
and Directed-Steiner-Tree (which we will define in the next section) and related problems.

• For any constant 0 < α < 1, what is the best possible running times for (1 − α)-approximation
algorithms for Set-Cover and Directed-Steiner-Tree.

• For any constant 0 < α < 1, what is the best possible running time for log2−α-approximation algorithms
for Group-Steiner-Tree.

In fact, one of our ultimate goals is to find an evidence on which ranges of running-times that the
Directed-Steiner-Tree problem admits poly-logarithmic approximations. To be precise, we would like to
partially answer the question of whether Directed-Steiner-Tree admits polylogarithmic approximations
in polynomial-time, which is a big open problem in the area. While we are far from solving the above
question, we aim to prove possibly tight running-time for Directed-Steiner-Tree in the logarithmic range
in a very fine-grained manner, albeit assuming two strong assumptions, the Exponential-Time Hypothesis
(ETH) [2727, 2828] and the Projection Game Conjectures (PGC) [3232], simultaneously.

1.1 The problems studied in this paper

1.1.1 The Set-Cover problem and its extensions

In the weighted Set-Cover problem, the input is a universe U of size n and a collection S of m subsets of
U . Each set s ∈ S has a cost c(s). The goal is to select a minimum cost subcollection S ′ ⊆ S such that the
union of the sets in S ′ spans the entire universe U .

1 Recently, Bansal et al. [11] showed that Maximum Clique admits α-approximation in time 2n/Õ(α log2 α)poly(n).

2

The more general Submodular-Cover problem admits as input a universe U with cost c(x) on every
x ∈ U . A function is submodular if for every S ⊆ T ⊆ V and for every x ∈ U \ T , f(S + x) − f(S) ≥
f(T + x) − f(T). Let f : 2U 7→ R be a submodular non-decreasing function. The goal in the submodular
cover problem is to minimize c(S) subject to f(S) = f(U). This problem strictly generalizes the weighted
Set-Cover problem.

The Connected-Polymatroid problem is the case that the elements in U are leaves of a tree, and
both the elements and tree edges have costs. The goal is to select a set S so that f(S) = f(U) and that
c(S) + c(T (S)) is minimized, where T (S) is the unique tree rooted at r spanning S.

1.1.2 The Group-Steiner-Tree problem

In the Group-Steiner-Tree problem, the input consists an undirected graph with cost c(e) on each edge
e ∈ E, a collection of subsets g1, g2, . . . , gk ⊆ V (called group) and a special vertex r ∈ V . The goal is
is to find a minimum cost tree rooted at r that contains at least one vertex from every group gi. In the
Covering-Steiner-Tree problem, there is a demand di for every gi and di vertices of gi must be spanned
in the tree rooted by r This Group-Steiner-Tree problem strictly contains the Set-Cover problem.
Every result for Group-Steiner-Tree holds also for the Covering-Steiner-Tree problem given that
there is a reduction from Covering-Steiner-Tree to Group-Steiner-Tree [1919, 2424].

1.1.3 The Directed-Steiner-Tree problem

In the Directed-Steiner-Tree problem, the input consists of a directed graph with costs c(e) on edges,
a collection S of terminals, and a designated root r ∈ V . The goal is to find a minimum cost directed graph
rooted at r that spans S. This problem has Group-Steiner-Tree as a special case.

1.2 Related work

The Set-Cover problem is a well-studied problem. The first logarithmic approximation, to the best of our
knowledge, is traced back to the early work of Johnson [2929]. Many different approaches have been proposed
to approximate Set-Cover, e.g., the dual-fitting algorithm by Chvátal [1313]; however, all algorithms yield
roughly the same approximation ratio. The more general problem, namely, the Submodular-Cover prob-
lem was also shown to admit O(log n)-approximation in the work of Wolsey [3434]. The question of why all
these algorithms yield the same approximation ratio was answered by Lund and Yannakakis [3131] who showed
that the approximation ratio Θ(log n) is essentially the best possible unless NP ⊆ DTIME(nlog logn). Subse-
quently, Feige [2121] showed the more precise lower bound that Set-Cover admits no (1− ε)-approximation,
for any ε > 0, unless NP ⊆ DTIME(npolylog(n)); this assumption has been weaken to P 6= NP by the recent
work of Dinur and Steurer [1717]. These lower bounds are, however, restricted to polynomial-time algorithms.
In the regime of subexponential-time, Cygan, Kowalik and Wykurz [1515] showed that Set-Cover admits an
approximation ratio of (1−α) lnn in 2O(nα+poly(logn)) time. On the negative side, Moshkovitz [3232] introduced
the Projection Games conjecture (PGC) to prove the approximation hardness of Set-Cover. Originally,
the conjecture was introduced in an attempt to show the (1−ε) log n-hardness of Set-Cover under P 6= NP
(which is now proved by Dinur and Steurer [1717]). It turns out that this implicitly implies that Set-Cover

admits no (1− α)-approximation algorithm in 2n
O(α)

time under PGC and ETH.
The generalization of the Set-Cover problem is the Group-Steiner-Tree problem. Garg, Konjevod

and Ravi [2323] presented a novel LP rounding algorithm to approximate Group-Steiner-Tree on trees to
within a factor of O(log2 n). Using the probabilistic metric-tree embedding [22, 2020], this implies an O(log3 n)-
approximation algorithm for Group-Steiner-Tree in general graphs. On the negative side, Halperin and
Krauthgamer showed the lower bound of log2−ε n for any ε > 0 for approximating Group-Steiner-Tree
on trees under the assumption that NP 6⊆ ZPTIME(npolylog(n)). This (almost) matches the upper bound
given by the algorithm by Garg et al. For the related problem, the Connected Polymatroid problem was
given a polylogarithmic approximation algorithm by Cálinescu and Zelikovsky [88]; their algorithm is based

3

on the work of Chekuri, Even and Kortsarz [1111], which gave a combinatorial polylog(n) approximation for
Group-Steiner-Tree on trees.

The problem that generalizes all the above problems is the Directed-Steiner-Tree problem. The
best known approximation ratio for this problem is nε for any constant ε > 0 [1010, 3030] in polynomial-time.
In quasi-polynomial-time, Directed-Steiner-Tree admits an O(log3 n)-approximation algorithm. The
question of whether Directed-Steiner-Tree admits a polylogarithmic approximation in polynomial-time
has been a long standing open problem.

2 Our results

We show that under the combination of ETH and PGC, the running time for approximating Set-Cover to
within a factor of (1−α) lnn must be at least 2n

α

, where 0 < α < 1 is a given parameter. This improves the

work of Moshkovitz who (implicitly) showed the running time lower bound of 2n
O(α)

. We complement this
by showing that Directed-Steiner-Tree admits a (1−α) lnn approximation algorithm that runs in time
2n

α·logn time. Since Directed-Steiner-Tree is the generalization of Set-Cover, Group-Steiner-Tree
and Directed-Steiner-Tree, the lower bounds apply to all the aforementioned problems. Hence, up to
a small factor of log n in the exponent, we get tight running time lower bounds for approximating all these
problems to within (1 − α) lnn. Essentially, the same algorithm and proof give the same result for the
Connected-Polymatroid problem.

We also investigate the work of Chekuri and Pal [1212] who showed that, for any constant 0 < δ < 1,

Group-Steiner-Tree admits a log2−δ n approximation algorithm that runs in time exp(2(1+o(1)) logδ n). We
show that, for any constant ε > 1, there is no log2−δ−ε n approximation algorithm for Group-Steiner-Tree

(and thus Covering-Steiner-Tree) that runs in time exp(2(1+o(1)) logδ−ε n). This lower bound is nearly
tight. We note that a reduction from Covering-Steiner-Tree to Group-Steiner-Tree was given in [1919].
Thus, any approximation algorithm for Group-Steiner-Tree also applies for Covering-Steiner-Tree.

3 Formal definition of our two complexity assumptions

Definition 3.1. In the Label-Cover problem with the projection property (a.k.a., the Projection game),
we are given a bipartite graph G(A,B,E), two alphabet sets (also called labels) ΣA and ΣB, and for any
edge (also called query) e ∈ E, there is a function φe : ΣA 7→ ΣB. A labeling (σA, σB) is a pair of functions
σA : A 7→ ΣA and σB : B 7→ ΣB assigning labels to each vertices of A and B, respectively. An edge e = (a, b)
is covered by (σA, σB) if φe(σA(a)) = σB(b). The goal in Label-Cover is to find a labeling (σA, σB) that
covers as many edges as possible.

In the context of the Two-Provers One-Round game (2P1R), every label is an answer to some ”question”
a sent to the Player A and some question b sent to the Player B, for a query (a, b) ∈ E. The two answers
make the verifier accept if a label x ∈ Σx assigned to a and a label y ∈ ΣB assigned to b satisfy φ(x) = y.
Since any label x ∈ ΣA has a unique label in ΣB that causes the verifier to accept, y is called the projection
of x into b.

We use two conjectures in our paper. The first is the Exponential Time Hypothesis (ETH). Consider
the 3-SAT problem with n literals and m clauses. Impagliazzo, Paturi and Zane [2727] stated the hypothesis
which together with the sparsification lemma [2828] by Calabro, Impagliazzo and Paturi implies the following:

Exponential-Time Hypothesis combined with the Sparsification Lemma: Given a boolean 3-CNF
formula φ on n variables and m clauses, there is no 2o(n+m)-time algorithm that decides whether φ is
satisfiable. In particular, 3-SAT admits no subexponential-time algorithm.

The following was proven by Moshkovitz and Raz [3333].

Theorem 3.2 ([3333]). There exists c > 0, such that for every ε ≥ 1/nc, 3-SAT on inputs of size n can be
efficiently reduced to Label-Cover of size N = n1+o(1)poly(1/ε) over an alphabet of size exp(1/ε) that has

4

soundness error ε. The graph is bi-regular (namely, every two questions on the same side participate in the
same number of queries).

There does not seem to be an inherent reason that the alphabet would be so large. This lead to the
following conjecture posed by Moshkovitz [3232].

Conjecture 3.3 (The Projection Games Conjecture [3232]). There exists c > 0, such that for every ε ≥ 1/nc,
3-SAT on inputs of size n can be efficiently reduced to Label-Cover of size N = n1+o(1)poly(1/ε) over an
alphabet of size poly(1/ε) that has soundness error ε. Moreover, the graph is bi-regular (namely, every two
questions on the same side participate in the same number of queries).

The difference between Theorem 3.23.2 and Conjecture 3.33.3 is in the size of the alphabet.
For our purposes, we only need soundness ε = 1/polylog(n), and we know that the degree and alphabet

size of the graph in Conjecture 3.33.3 are always polylog(n) (which are inverse of the soundness). Hence, we
may assume the (slightly) weaker assumption (obtained by setting ε = 1/polylog(n) in Conjecture 3.33.3) as
below.

Conjecture 3.4 (Projection Games Conjecture, a variant). There exists c > 0, such that for every ε =
1/polylog(n), 3-SAT on inputs of size n can be efficiently reduced to Label-Cover of size N = n1+o(1)poly(1/ε)
where the graph is bi-regular and all degrees are bounded by polylog(n). The size of the alphabet is
polylog(n) and the soundness is 1/polylog(n). and the completeness is 1.

We need to inspect very carefully and slightly change the proof of [3232] since we do not want the
Label-Cover instance to grow by a lot by the modification in [3232]. Hence, in fact we have to go over
all steps of [3232] and bound the size more carefully in all steps that require that.

4 First part of the proof

We start with the same definition as in [3232].

Definition 4.1 (Total disagreement). Let (G = (A,B,E),ΣA,ΣB ,Φ) be a Label-Cover instance. Let
φA : A → ΣA be an assignment to the A-vertices. We say that the A-vertices totally disagree on a vertex
b ∈ B, if there are no two neighbors a1, a2 ∈ A of b, for which

πe1(φA(a1)) = πe2(φA(a2)) ,

where e1 = (a1, b), e2 = (a2, b) ∈ E.

The above simply states that for a given assignment φA and a vertex b ∈ B, no matter which label we
assign to the vertex b, we will satisfy only one edge incident to it.

Definition 4.2 (Agreement soundness). Let G = (G = (A,B,E),ΣA,ΣB ,Φ) be a Label-Cover for de-
ciding whether a Boolean formula φ is satisfiable. We say that G has agreement soundness error ε, if for
unsatisfiable φ, for any assignment φA : A → ΣA, the A-vertices are in total disagreement on at least 1− ε
fraction of the b ∈ B.

For a Yes-Instance (of 3-SAT), a standard argument implies that you can label the vertices so that every
edge is covered. The usual condition of soundness required is that the number of edges covered is a small
fraction of the edges, for every label assignment. The total disagreement is stronger than that. It states that
for any assignment φA, no matter how we set φB almost all of vertices of B will have at most one incident
edge satisfied.

In the rest of this subsection the goal is to show (list) agreement soundness error of bounded degree
Label-Cover instances. First, we use the following lemma (we do not alter its proof).

5

Lemma 4.3 (Combinatorial construction). For 0 < ε < 1, for a prime power D, and ∆ that is a power
of D, there is an explicit construction of a regular graph H = (U, V,E) with |U | = n, V -degree D, and
V ≤ nO(1) that satisfies the following. For every partition U1, . . . , U` of U into sets such that |Ui| ≤ ε|U |,
for i = 1, . . . , `, the fraction of vertices v ∈ V with more than one neighbor in any single set Ui, is at most
εD2.

It is rather trivial to show the above lemma by a probabilistic method. Moshkovitz showed in [3232] that
such graphs can be constructed deterministically via a simple and elegant construction.

In the next lemma, we show how to take a Label-Cover instance with standard soundness and convert
it to a Label-Cover instance with total disagreement soundness, by combining it with the graph from
Lemma 4.34.3. Here (as opposed to [3232]) we have to bound the size of the created instance more carefully ([3232]
only states that the size is raised to a constant power).

Lemma 4.4. Let D ≥ 2 be a prime power and let ∆ be a power of D. Let ε > 0. From a Label-Cover
instance with soundness error ε2D2 and B-degree n, we can construct a Label-Cover instance with agree-
ment soundness error 2εD2 and B-degree D. The transformation preserves the alphabets, and the size of the
created instance is increased by a factor poly(∆), namely by polynomial in the original B-degree.

Proof. Let G = (G = (A,B,E),ΣA,ΣB ,Φ) be the original Label-Cover from the Projection Game Con-
jecture. Let H = (U, V,EH) be the graph from Lemma 4.34.3, where ∆, D and ε are as given in the current
lemma. Let us use U to enumerate the neighbors of a B-vertex, i.e., there is a function E← : B × U → A
that, given a vertex b ∈ B and u ∈ U , gives us the A-vertex which is the u neighbor of b.

We create a new Label-Cover (G = (A,B × V,E′),ΣA,ΣB ,Φ′). The intended assignment to every
vertex a ∈ A is the same as its assignment in the original instance. The intended assignment to a vertex
〈b, v〉 ∈ B × V is the same as the assignment to b in the original game. We put an edge e′ = (a, 〈b, v〉) if
there exist u ∈ U such that E←(b, u) = a and (u, v) ∈ EH . We define πe′ = π(a,b).

If there is an assignment to the original instance that satisfies c fraction of its edges, then the corresponding
assignment to the new instance satisfies c fraction of its edges (this follows from the regularity of the graph
H).

Suppose there is an assignment for the new instance φA : A→ ΣA in which more than 2εD2 fraction of
the vertices in B × V do not have total disagreement.

Let us say that b ∈ B is good if for more than an εD2 fraction of the vertices in {b} × V the A-vertices
do not totally disagree. Note that the fraction of good b ∈ B is at least εD2.

Focus on a good b ∈ B. Consider the partition of U into |ΣB | sets, where the set corresponding to σ ∈ ΣB
is:

Uσ = {u ∈ U |a = E←(b, u) ∧ e = (a, b) ∧ πe(φA(a)) = σ} .

By the goodness of b and the property of H, there must be σ ∈ ΣB such that |Uσ| > ε|U |. We call σ the
champion for b.

We define an assignment φB : B → ΣB that assigns good vertices b their champions, and other vertices
b arbitrary values. The fraction of edges that φA, φB satisfy in the original instance is at least ε2D2.

The new instance is bigger by a factor |V |, which is poly(∆).

Next we consider a variant of Label-Cover that is relevant for the reduction to Set-Cover. In this
variant, the prover is allowed to assign each vertex ` values, and an agreement is interpreted as agreement
on one of the assignments in the list.

Definition 4.5 (List total disagreement [3232]). Let (G = (A,B,E),ΣA,ΣB ,Φ) be a Label-Cover Let

` ≥ 1. Let φ̂A : A→
(

ΣA
`

)
be an assignment that assigns each A-vertex ` alphabet symbols. We say that the

A-vertices totally disagree on a vertex b ∈ B if there are no two neighbors a1, a2 ∈ A of b, for which there
exist σ1 ∈ φ̂A(a1), σ2 ∈ φ̂A(a2) such that

πe1(σ1) = πe2(σ2) ,

where e1 = (a1, b), e2 = (a2, b) ∈ E.

6

Definition 4.6 (List agreement soundness [3232]). Let (G = (A,B,E),ΣA,ΣB ,Φ) be a Label-Cover for
deciding membership whether a Boolean formula φ is satisfiable. We say that G has list-agreement soundness
error (`, ε), if for unsatisfiable φ, for any assignment φ̂A : A→

(
ΣA
`

)
, the A-vertices are in total disagreement

on at least 1− ε fraction of the b ∈ B.

If a PCP has low error ε, then even when the prover is allowed to assign each A-vertex ` values, the game
is still sound. This is argued in the next corollary.

Lemma 4.7 (Lemma 4.7 of [3232]). Let ` ≥ 1, 0 < ε′ < 1. Any instance of Label-Cover with agreement
soundness error ε′ has list-agreement soundness error (`, ε′`2).

The following corollary summarizes this subsection.

Corollary 4.8. For any ` = `(n) = polylog(n), for any constant prime power D and constant 0 < α < 1,
3-SAT on input of size n can be reduced to a Label-Cover instance of size N = n1+o(1) with alphabet size
polylog(n), where the B-degree is D, and the list-agreement soundness error is (`, α).

Proof. Our starting point is the Label-Cover instance from 3.43.4 with soundness error ε, such that 2
√
ε · l2 ≤

α. Note that the B-degree of the instance is ∆ = polylog(n). The corollary then follows by invoking
Lemma 4.44.4 and Lemma 4.74.7.

4.1 From Label-Cover to Set-Cover

Lemma 4.9 (Partition System [3232]). For natural numbers m, D, and 0 < α < 1, for all u ≥ (DO(logD) logm)1/α,
there is an explicit construction of a universe U of size u and partitions P1, . . . ,Pm of U into D sets that
satisfy the following: there is no cover of U with ` = D ln |U |(1−α) sets Si1 , . . . , Si` , 1 ≤ i1 < . . . < i` ≤ m,
such that each set Sij belongs to the partition Pij .

We will use the contrapositive of the lemma: if U has a cover of size at most `, then this cover must
contain at least two sets from the same partition. Next follows the reduction, which is almost the same as
in [3232], where the only difference is the parameter setting.

We take a Label-Cover instance G from Corollary 4.84.8 and transform it into an instance of Set-Cover.
In order to do so, we invoke Lemma 4.94.9 with m = |ΣB | and D which is the B-degree of G. The parameter
u will be determined later. Let U be the universe, and Pσ1

, . . . ,Pσm be the partitions of U , where the
partitions are indexed by symbols of ΣB . The elements of the Set-Cover instance are B×U , i.e., for each
vertex b ∈ B there is a copy of U . Covering {b}×U corresponds to satisfying the edges that touch b. There
are m ways to satisfy the edges that touch b – one for every possible assignment σ ∈ ΣB to b. The different
partitions covering U correspond to those different assignments.

For every vertex a ∈ A and an assignment σ ∈ ΣA to a, we have a set Sa,σ in the Set-Cover instance.
Taking Sa,σ to the cover would correspond to assigning σ to a. Notice that a cover might consist of several
sets of the form Sa,· for the same a ∈ A, which is the reason we consider list agreement. The set Sa,σ
is a union of subsets, one for every edge e = (a, b) touching a. Suppose e is the i-th edge coming into b
(1 ≤ i ≤ D), then the subset associated with e is {b}× S, where S is the i-th subset of the partition PΦe(σ).

If we have an assignment to the A-vertices such that all of the neighbors of b agree on one value for b,
then the D subsets corresponding to those neighbors and their assignments form a partition that covers bs
universe. On the other hand, if one uses only sets that correspond to totally disagreeing assignments to the
neighbors, then by the definition of the partitions, covering U requires ≈ ln |U | times more sets. The formal
claim proved by Moshkovitz is as follows.

Claim 4.10 (Claim 4.10 of [3232]). The following holds

• Completeness: If all the edges in G can be satisfied, then the created instance admits a set cover of size
|A|.

• Soundness: Let ` := |D| ln |U |(1 − α) be as in Lemma 4.94.9. If G has agreement soundness (`, α), then
every set cover of the created instance is of size more than |A| ln |U |(1− 2α).

7

The following is our main theorem, where we fine-tune the parameters to get the best possible (and thus
almost tight) running time lower bound.

Theorem 4.11. Fix a constant γ > 0 and ε > 0. Assuming PGC there is an algorithm that given an
instance φ of 3-SAT of size n one can create an instance I of Set-Cover with universe of size n1+o(1) · u
such that if φ is satisfiable, then I has a set cover of size x, while if φ is not satisfiable, then I does not
admit a set cover of size at most x ln |u|(1− ε).

Proof. Given a sparsified 3-CNF formula φ of size n we transform it into a Label-Cover instance G, by
Corollary 4.84.8, obtaining a list-agreement soundness error (`, α), where we set α = ε/2 and ` = |D| ln |U |(1−α).
Next, we perform the reduction from this section and by Claim 4.104.10 we have the following:

• If φ is satisfiable, then there exists a solution of size |A| (where A is one side of G).

• If φ is not satisfiable, then any set cover has size more than |A| ln |U |(1− 2α) = |A| ln |U |(1− ε).

By setting the value of |U | = u appropriately we get a tradeoff between the approximation ratio and
running time in the following lower bound obtained directly from Theorem 4.114.11.

Corollary 4.12. Unless the ETH fails, for any 0 < α < 1 and ε > 0 there is no (1−α) lnn approximation

for Set-Cover with universe of size n and m sets in time 2n
α−ε

poly(m).

Proof. Set u = |φ|1/α−1, then the created instance has at most |φ|1/α+o(1) elements, which fits the desired
running time in the lower bound. It remains to analyze the approximation ratio. Note that |A| ≤ uα/(1−α),
hence

(1− α) ln(|A| · u) ≤ (1− α)(α/(1− α) + 1) lnu = lnu .

5 Approximating Directed Steiner Tree

In this section, we present a (1 − ε) · lnn-approximation for Directed-Steiner-Tree running in time
2O(nα logn).

Lemma 5.1. For any rooted tree T with ` leaves, there exists a set X ⊆ V (T) of O(nα) vertices together
with a family of edge disjoint trees T1, . . . , Tq, such that:

• the trees are edge (but not vertex) disjoint

• each Ti is a subtree of T ,

• the root of each Ti belongs to X,

• each leaf of T is a leaf of exactly one Ti,

• each Ti has more than nα but less than 2nα leaves.

Proof. As long as the tree has more than nα leaves do the following: pick the lowest vertex v in the tree, the
subtree rooted at which has more than nα leaves. This implies that all its children contain strictly less than
nα leaves. Accumulation subtrees gives at most 2nα leaves since before the last iteration there were less that
nα leaves, and the last iteration adds a tree of at most nα leaves. Remove the collected tree, but do not
remove their root (namely this root may later participate in other trees). Note that after the accumulated
trees are removed, the tree rooted by our chosen root may still have more than nα leaves. This gives Θ(nα)
edge disjoint trees with Θ(nα) leaves each. Thus, there is a tree with Θ(nα) leaves, and density (cost over
the number of leaves) no larger than the optimum density.

8

For simplicity, we make sure that the number of leaves in each tree is exactly nα by discarding leaves.
Since the trees are edge disjoint there must be a tree whose density: cost over the number of leaves is not
worse (up to a factor of 2) than the optimum density opt/`.

Let (G,K, r) be an instance of Directed-Steiner-Tree. Our algorithm enumerates guesses the
(roughly) nα leaves L′ in the tree whose density is no worse than the optimal density, and also guesses
the subset XL′ ⊆ V (G) that behaves as Steiner vertices. Assuming the graph went via a transitive closure,
the size of XL′ is at most the size of L′ of size O(nα). For a fixed set X, the algorithm first finds an optimum
directed Steiner tree T0. We note that assuming that the graph went via transitive closure, we may assume
that the number of Steiner vertices is less than the number of leaves, and so we may guess the Steiner
vertices at time n

√
n as well. It is known that given the Steiner vertices and the leaves of the tree, we can, in

polynomial time, find the best density tree with these leaves and these X vertices. The first such algorithm
is due to Dreyfus and Wagner [1818]. The algorithm is quite non trivial and that uses dynamic programming.
The running time of the algorithm is O(3n) time which is negligible in our context.

We iterate adding more trees in this way. Each time we find the best density tree rooted at some vertex
of X which covers nα leaves, and add the edges to S. Each time it requires 2O(nα logn) time. Finally, when
there are less than (e2 + 1)nα unconnected terminals left, we find an optimum directed Steiner tree for those
vertices.

Lemma 5.2. The approximation ratio of the above algorithm is at most (1− α) lnn.

Proof. Let T be an optimum Steiner tree spanning K, let opt be its cost and let X be the set from Lemma 5.15.1
for the tree T . Let us analyze the algorithm in the iteration when it chooses the set X properly, that is picks
the same set as Lemma 5.15.1. Note that since vertices of X belong to T the cost of the first tree T0 found by
the algorithm is at most opt. The last property of Lemma 5.15.1 guarantees, that our algorithm always finds
a tree with at least as good density as opt/r, where r is the number of not yet connected terminals. By the
standard set-cover type analysis we can bound the cost of all the best density trees found by the algorithm
by

e2·21−α∑
i=n

opt

i
= opt · (Hn −He2·21−α)=̃(1− α) lnn · opt.

Finally, the last tree is of cost at most opt, and it can be found in time 2O(nα logn).

Now we observe that the same theorem applies for the Connected-Polymatroid problem. Since
the function is both submodular and increasing for every collection of pairwise disjoint sets {Si}i=1k ,∑k
i=1 f(Si) ≥ f(

⋃k
i=1 Si). Thus for a given α, at iteration i there exists a collection of leaves Si so that

f(Si)/c(Si) ≥ f(U)/c(U). We can guess Si in time exp(nα · log n) and its set of Steiner vertices Xi in time
O(3n

α

). Using the algorithm of [1818], we can find a tree of density at most 2 · opt/nα. The rest of the proof
is identical.

6 Hardness for Group Steiner Tree under the ETH

In this section, we show that the approximation hardness of the group Steiner problem under the ETH,
which implies that the subexponential-time algorithm for Group-Steiner-Tree of Chekuri and Pal [1212] is
nearly tight. This hardness result is implicitly in the work Halperin and Krauthgamer [2525]. More precisely,
the following is a corollary of Theorem 1.1 in [2525].

Theorem 6.1 (Corollary of Theorem 1.1 in [2525]). Unless the ETH is false, for any parameter 0 < δ < 1,

there is no exp(2logδ−εN)-time log2−δ−ε k-approximation algorithm for Group-Steiner-Tree, for any 0 <
ε < δ.

Proof Sketch of Theorem 6.16.1. We provide here the parameter translation of the reduction in [2525], which will
prove Theorem 6.16.1.

9

The Reduction of Halperin and Krauthgamer. We shall briefly describe the reduction of Halperin and
Krauthgamer. The starting point of their reduction is the Label-Cover instance obtained from ` rounds of
parallel repetition. In the first step, given a d-regular Label-Cover instance G = (G = (A,B,E),ΣA,ΣB , φ)
completeness 1 and soundness γ, they apply ` rounds of parallel repetition to get a d`-regular instance of
Label-Cover G′ = (G` = (A`, B`, E′),Σ`A,Σ

`
B , φ

′). To simplify the notation, we let m = |A| = |B|, σ =
|Σ`A| = |Σ`B | be the number of vertices and the alphabet size of the Label-Cover instance G, respectively.
Then we have that the number of vertices and the alphabet size of G′ is 2m` and σ`, respectively. In the
second step, they apply a recursive composition to produce an instance I of Group-Steiner-Tree on a
complete (2 ·m` · σ`)-ary tree T̂ of height H on k = d`m`·H groups. Moreover, if G is a Yes-Instance (i.e.,
there is a labeling that covers all the constraints), then there is a feasible solution to Group-Steiner-Tree
with cost H with high probability, and if G is a No-Instance (i.e., every labeing covers at most γ fraction of
the edges), then there is no solution with cost less than βH2 log k, for some sufficiently small constant β > 0.

In short, the above reduction gives an instance of Group-Steiner-Tree on a tree with N = O((σm)`H)
vertices, k = O(d`m`H) groups, and with approximation hardness gap Ω(H log k). Additionally, the reduc-
tion in [2525] requires ` > c0(logH + log logm+ log log d) for some sufficiently large constant c0 > 0.

Subexponential-Time Approximation-Hardness. Now we derive the subexponential-time approxi-
mation hardness for Group-Steiner-Tree. We start by the nearly linear-size PCP theorem of Dinur [1616],
which gives a reduction from 3-SAT of size n (the number of variables plus the number of clauses) to a
label cover instance G = (G = (A,B,E),ΣA,ΣB , φ) with completeness 1, soundness γ for some 0 < γ < 1,
|A|, |B| ≤ n · polylog(n), degree d = O(1) and alphabet sets ΣA|, |ΣB | = O(1).

For every parameter 0 < δ < 1, we choose H = log1/δ−1 n, which then forces us to choose ` = Θ((1/δ −
1) log log n). Note that we may assume that δ � n since it is a fixed parameter. Plugging in these parameter
settings, we have an instance of Group-Steiner-Tree on a tree with N vertices and k groups such that

N =
(
O(1) · n1+o(1)

)Θ((1/δ−1) log logn)·log1/δ−1 n

= exp
(

log1/δ+o(1) n
)

and

k = O(1)Θ((1/δ−1) log logn)
(
n1+o(1)

)Θ((1/δ−1) log logn)·log1/δ n

= exp
(

log1/δ+o(1) n
)

Observe that H ≥ log1−δ−o(1) k. Thus, the hardness gap is Ω(H log k) = Ω(log2−δ−o(1) k). This means that
any algorithm for Group-Steiner-Tree on this family of instances with approximation ratio log2−δ−ε k,
for any constant ε > 0, would be able to solve 3-SAT.

Now suppose there is an exp(2logδ−εN)-time log2−δ−ε k-approximation algorithm for Group-Steiner-
Tree, for some 0 < ε < δ. We apply such algorithm to solve an instance of Group-Steiner-Tree derived
from 3-SAT as above. Then we have an algorithm that runs in time

exp(2logδ−εN) = exp(2(log1/δ+o(1) n)δ−ε) = exp(2(log
(1+o(1))(δ−ε)

δ n)) = exp(2o(logn)) = 2o(n)

This implies a subexponential-time algorithm for 3-SAT, which contradicts the ETH. Therefore, unless the

ETH is false, there is no exp(2logδ−εN)-time log2−δ−ε k-approximation algorithm for Group-Steiner-Tree,
thus proving Theorem 6.16.1

Since we take log from the expression, the above is also true if we replace k by N . Combined with [1212]
and [1919], we have the following corollary which shows almost tight running-time lower and upper bounds for
approximating Group-Steiner-Tree and Covering-Steiner-Tree to a factor log2−δ N .

Corollary 6.2. The Group-Steiner-Tree and Covering-Steiner-Tree problems on graphs with n ver-

tices admit log2−δ n-approximation algorithms for any constant δ < 1 that runs in time exp(2(1+o(1)) logδ n).
In addition, for any constant ε > 1 there is no log2−δ−ε n approximation algorithm for Group-Steiner-Tree

and Covering-Steiner-Tree that runs in time exp(2(1+o(1)) logδ−ε n).

10

Remark: We omit the algorithm for the Connected-Polymatroid problem, as its similar to the
algorithm for Directed-Steiner-Tree. The lower bound holds because Connected-Polymatroid has
Set-Cover as a special case.

Acknowledgments. The work of Marek Cygan is part of a project TOTAL that has received funding
from the European Research Council (ERC) under the European Unions Horizon 2020 research and innova-
tion programme (grant agreement No 677651). Guy Kortsarz was partially supported by NSF grant 1540547.
Bundit Laekhanukit was partially supported by ISF grant no. 621/12, and I-CORE grant no. 4/11. Parts of
the work were done while Guy Kortsarz and Bundit Laekhanukit were at the Weizmann Institute of Science,
Israel.

References

[1] N. Bansal, P. Chalermsook, B. Laekhanukit, D. Nanongkai, and J. Nederlof. New tools and connections
for exponential-time approximation. CoRR, abs/1708.03515, 2017.

[2] Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In 37th
Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-
16 October, 1996, pages 184–193, 1996.

[3] E. Bonnet, B. Escoffier, E. J. Kim, and V. T. Paschos. On subexponential and fpt-time inapproxima-
bility. Algorithmica, 71(3):541–565, 2015. Preliminary version in IPEC’13.

[4] É. Bonnet, M. Lampis, and V. T. Paschos. Time-approximation trade-offs for inapproximable problems.
J. Comput. Syst. Sci., 92:171–180, 2018.

[5] É. Bonnet and V. T. Paschos. Sparsification and subexponential approximation. Acta Inf., 55(1):1–15,
2018.

[6] N. Bourgeois, B. Escoffier, and V. T. Paschos. Efficient approximation of min set cover by moderately
exponential algorithms. Theor. Comput. Sci., 410(21-23):2184–2195, 2009.

[7] N. Bourgeois, B. Escoffier, and V. T. Paschos. Approximation of max independent set, min vertex
cover and related problems by moderately exponential algorithms. Discrete Applied Mathematics,
159(17):1954–1970, 2011.

[8] G. Călinescu and A. Zelikovsky. The polymatroid steiner problems. J. Comb. Optim., 9(3):281–294,
2005. Preliminary version in ISAAC’04.

[9] P. Chalermsook, B. Laekhanukit, and D. Nanongkai. Independent set, induced matching, and pricing:
Connections and tight (subexponential time) approximation hardnesses. In 54th Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA,
pages 370–379, 2013.

[10] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Approximation algorithms
for directed steiner problems. J. Algorithms, 33(1):73–91, 1999. Preliminary version in SODA’98.

[11] C. Chekuri, G. Even, and G. Kortsarz. A greedy approximation algorithm for the group steiner problem.
Discrete Applied Mathematics, 154(1):15–34, 2006.

[12] C. Chekuri and M. Pál. A recursive greedy algorithm for walks in directed graphs. In 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh,
PA, USA, Proceedings, pages 245–253, 2005.

[13] V. Chvátal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4(3):233–235, 1979.

11

[14] M. Cygan, L. Kowalik, M. Pilipczuk, and M. Wykurz. Exponential-time approximation of hard prob-
lems. CoRR, abs/0810.4934, 2008.

[15] M. Cygan, L. Kowalik, and M. Wykurz. Exponential-time approximation of weighted set cover. Inf.
Process. Lett., 109(16):957–961, 2009.

[16] I. Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. Preliminary version in
STOC’06.

[17] I. Dinur and D. Steurer. Analytical approach to parallel repetition. In Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 624–633, 2014.

[18] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1(3):195–207, 1971.

[19] G. Even, G. Kortsarz, and W. Slany. On network design problems: Fixed cost flows and the covering
steiner problem. In Algorithm Theory - SWAT 2002, 8th Scandinavian Workshop on Algorithm Theory,
Turku, Finland, July 3-5, 2002 Proceedings, pages 318–327, 2002.

[20] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics by tree
metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004. Preliminary version in STOC’03.

[21] U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998. Preliminary
in STOC’96.

[22] D. Fotakis, M. Lampis, and V. T. Paschos. Sub-exponential approximation schemes for csps: From
dense to almost sparse. In 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016,
February 17-20, 2016, Orléans, France, pages 37:1–37:14, 2016.

[23] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group steiner
tree problem. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
25-27 January 1998, San Francisco, California., pages 253–259, 1998.

[24] A. Gupta and A. Srinivasan. On the covering steiner problem. In FST TCS 2003: Foundations of
Software Technology and Theoretical Computer Science, 23rd Conference, Mumbai, India, December
15-17, 2003, Proceedings, pages 244–251, 2003.

[25] E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In STOC, pages 585–594, 2003.

[26] J. H̊astad. Clique is hard to approximate within n1-epsilon. In 37th Annual Symposium on Foundations
of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October, 1996, pages 627–636, 1996.

[27] R. Impagliazzo and R. Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367–375, 2001.
Preliminary version in CCC’99.

[28] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity? J.
Comput. Syst. Sci., 63(4):512–530, 2001. Preliminary version in FOCS’98.

[29] D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci., 9(3):256–
278, 1974. Preliminary version in STOC’73.

[30] G. Kortsarz and D. Peleg. Approximating the weight of shallow steiner trees. Discrete Applied Mathe-
matics, 93(2-3):265–285, 1999. Preliminary version in SODA’97.

[31] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. J. ACM,
41(5):960–981, 1994.

[32] D. Moshkovitz. The projection games conjecture and the np-hardness of ln n-approximating set-cover.
Theory of Computing, 11:221–235, 2015. Preliminary version in APPROX’12.

12

[33] D. Moshkovitz and R. Raz. Two-query PCP with subconstant error. J. ACM, 57(5):29:1–29:29, 2010.
Preliminary version in FOCS’08.

[34] L. A. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem. Combina-
torica, 2(4):385–393, 1982.

[35] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number.
Theory of Computing, 3(1):103–128, 2007. Preliminary version in STOC’06.

13

	Introduction
	The problems studied in this paper
	The Set-Cover problem and its extensions
	The Group-Steiner-Tree problem
	The Directed-Steiner-Tree problem

	Related work

	Our results
	Formal definition of our two complexity assumptions
	First part of the proof
	From Label-Cover to Set-Cover

	Approximating Directed Steiner Tree
	Hardness for Group Steiner Tree under the ETH

