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.thAbstra
tWe view the problem of dete
ting and 
leaning intrud-ers in sensor networks using mobile agents as a ver-sion of the graph sear
hing problem. The goal is tominimize the number of agents running at the sametime. Three s
enarios are 
onsidered, ea
h differs inthe relative power of the agents and the intruders. Ourmain idea is to use breadth-�rst-sear
h (BFS) trees toorganize the sear
h. In the 
ase where the intruderis most powerful, we sear
h the graph by levels ofthe nodes on the BFS tree. However, in the se
ond
ase where the network is 
on�gurable, the number ofagents 
ould be improved signi�
antly if a good sub-graph 
an be found. This motivates us to de�ne theMinimum Sear
h Number Spanning Tree problem, ofwhi
h we also prove its hardness. We however showthat one 
an still use a BFS tree to get a good result. Inthe last s
enario where the intruder has no informationon the status of the agents, random walks are used. Inea
h 
ase, we prove upper bounds on the number ofagents and provide experiment results.1 Introdu
tionThe networks of small but numerous sensors withwireless 
ommuni
ation prove to be very useful inremote sensing tasks (see, for example, [17, 13, 6℄).Their unique 
hara
ters are the sour
es of many 
hal-lenges [5, 7℄. Very often, as in military examples,they are pla
ed in hostile environment, a result of bothphysi
al fa
tors, su
h as heat, wind, and radio a
tivity,and also logi
al fa
tors, i.e., software intruders, whi
hare the fo
us of this paper.If the sensor nodes are powerful enough, it ispossible to equip them with management software,e.g., system diagnosing or intrusion dete
tion sys-tem. However, the resour
e, espe
ially the mem-ory resour
e, is very limited in ea
h node. Storingthese huge, infrequently used programs might 
ausethe nodes to be unable to perform their main sens-ing task due to memory shortage. Thus, this 
ru
ial

managing 
apability is provided through mobile soft-ware agents. The agent is a program that 
an migrateitself on the network. When residing on some sen-sor node, it takes 
are of various system managementtasks. However, it also takes large amount of 
ompu-tational resour
e of the node, interrupting the node'sprimary work. Thus, simply �ooding the entire net-work with agents would stop the whole network fromfun
tioning.The problem addressed in this paper is how to or-ganize a small group of agents to tra
k down an in-truder, whi
h is a kind of mali
ious software agent1.We dis
uss the problem of dete
ting and 
leaning theintruder. We note that one way to dete
t the intruder isby a
tually 
leaning the network. This problem is es-sentially a well-studied problem, 
alled graph sear
h-ing [3, 16℄, in graph theory. Furthermore, the re-quirement that the agents only move along the edgeof the 
ommuni
ation graph results in the 
ontagiousversion of the problem, de�ned by Barri�ere, Flo
-
hini, Fraigniaud, and Santoro [1℄ who also give a dis-tributed algorithm that 
omputes the sear
h strategywhen the graph is a tree. They leave the 
ases of otherfamilies of graphs as the open problem. This paper
an be 
onsidered as an attempt to give partial answersto the problem for 
ommuni
ation graphs indu
ed bytypi
al sensor networks.We study three versions of the problem, ea
h withdifferent agent-intruder relative power. In all 
ases,the intruder is in�nitely faster than the agents. The�rst 
ase is when the intruder is adversarial, and theagents have no 
ontrol over the network. The se
-ond is when the network is dynami
ally 
on�gurable,so that it is possible to �
onstrain� the intruder (andagents) to move only on sele
ted edges. In these �rsttwo 
ases, the fast intruder knows the status of the net-work and the agents, and utilizes this knowledge tomove, or evade the agents a

ordingly. Therefore, todete
t the intruder, one essentially has to 
lean the en-tire network, and the problem of dete
ting and 
lean-1From here on, we will refer to the agents doing the dete
tingand 
leaning tasks simply as agents, and the intruding agent as in-truder.



ing be
ome the same problem. The third 
ase is whenthe intruder does not know the states of the agents. It
an move very fast, but 
annot plan its a
tion based onthe agents's 
hoi
es. Only in this 
ase, we provide an-other dete
tion algorithm based on random walks ongraphs.1.1 The problemThe problem addressed in this paper is how to orga-nize a small group of agents to tra
k down a fasterintruder. We dis
uss the problem of dete
ting and
leaning the intruder. We show that one way to dete
tthe intruder is by a
tually 
leaning the network. Thisproblem is essentially a well-studied problem, 
alledgraph sear
hing in graph theory.In the graph-sear
hing problem, introdu
ed byBreis
h [3℄ and by Parson [16℄, we 
onsider the fol-lowing situation. A group of agents move along theedges of the graph to �nd an intruder, who movesalong the edges of the graph in�nitely faster and alsohas a 
omplete knowledge of the status of the agents.Given a graph G, the graph-sear
hing problem is todetermine the minimum number k su
h that there is asear
h strategy for k sear
hers that guarantees the 
ap-ture of the intruder. The minimum number k is 
alledthe sear
h number of the graphG.The variant of the graph-sear
hing problemwe 
on-sider in this paper is the 
ontagious graph sear
h, de-�ned by [1℄. The problem 
an be formulated as fol-lows.We are given a graph G whose edges are �
on-taminated.� A group of sear
hers are pla
ed on thenodes of G. At any step, we 
an move a sear
heralong an edge. An edge fu; vg be
omes temporarily�
leaned� if a sear
her moves from u to v. However itonly remains 
leaned if and only if (1) there is anothersear
her at u or (2) all edges adja
ent to u are 
leaned.Another requirement for the 
ontagious graph sear
his that the set of 
leaned edges must form a 
onne
tedsubgraph.1.2 Related resultsMegiddo, Hakimi, Garey, Johnson, and Papadim-itriou [14℄ prove that determining the sear
h numberis NP-Hard. They also give a linear time algorithmto �nd the sear
h number on trees. The problem hasmany variants whi
h are related to 
on
epts in graphtheory (see, for examples, [10, 9, 2, 19℄).The problem has been formulated as a pursuer-evader problem in Demirbas, Arora, and Gouda [4℄where a single faster agent tries to tra
k a singleslower adversarial intruder. We, however, fo
us onthe opposite 
ase, i.e., when the intruder is in�nitelyfaster, but many agents are allowed.

1.3 OrganizationWe give a formal des
ription of the model and a sum-mary of results in Se
tion 2. This paper fo
uses onthree s
enarios. The �rst 
ase when the intruder is ad-versarial and the agents have no 
ontrol over the net-work is des
ribed in Se
tion 3. Se
tion 4 deals withthe se
ond where the network is 
on�gurable. Finally,when the intruder is oblivious, Se
tion 5 gives a briefdis
ussion on how to use random walks to �nd the in-truders. The experiment results are presented in Se
-tion 6. We 
on
lude and list a few interesting openproblems in Se
tion 7.2 Preliminaries2.1 The model2.1.1 The networkWe model the situation as follows. There are n sen-sor nodes, ea
h with a unique id, lo
ating in a 
ir
ulararea of diameterD. The lo
ations of the nodes are uni-formly distributed over the area2. Among the nodes,a spe
ial node s is 
hosen to be the base station, theonly node that the intruder 
annot reside. We de�nethe density of the nodes to be � = n�D2=4 . This pa-rameter is not entirely independent of D and r if wewant to ensure 
onne
tivity, as will be dis
ussed lateron.Ea
h sensor node has a two-way broad
ast 
ommu-ni
ation 
apability with maximum radius r. The lo-
ations of the sensor nodes, together with the param-eter r, indu
e a possible 
ommuni
ation graph. Nowwe formalize this. We let V = fv1; v2; : : : ; vng de-note the set of n sensor nodes. For ea
h node vi,denote its lo
ation with (xi; yi). There is an edge(vi; vj) in the 
ommuni
ation graph G = (V;E) iffp(xi � xj)2 + (yi � yj)2 � r. Sin
e the distan
efun
tion is symmetri
, the graph is undire
ted.We do not require only the 
onne
tivity of G butalso the property that the distan
es between nodes inG approximates the a
tual distan
es in the plane, i.e.,for any pair of nodes x and y whose distan
e on theplane is l, there is a path from x to y inG with�(l=r)edges. The lowerbound 
learly holds. The followinglemma states the suf�
ient 
ondition for � that ensurethis property with high probability.Lemma 1 If � = 
(r2 logD=r), or equivalentlyn = 
((D=r)2 log(D=r)), the distan
es in the graphapproximate the a
tual distan
es of the nodes in theplane.2This is not a stri
t requirement. We only need to be able tobound the expe
ted number of nodes in a given area.



Proof: Cover the 
ir
ular area with non-overlapping(r=2p2) by (r=2p2) squares whose diagonals are oflength r. This 
an be done with O((D=r)2) squares.Now 
onsider only the squares whi
h lie entirely inthe area; 
all them full squares. The rest are 
alledpartial squares. If there is at least one sensor node inea
h of the full squares, the graph is 
learly 
onne
ted.Furthermore, for any pair of nodes x and y whose dis-tan
e is l, every full square interse
ting a line segmentfrom x to y 
ontains at least one sensor; this impliesthat there is a path of length at most O(l=r) 
onne
t-ing x and y.We now think of a random pro
ess of pla
ing sen-sors into all the squares. We 
laim that the probabilitythat we pi
k full squares is at least a 
onstant. Thereare O(D2=((r=2p2) � (r=2p2))) = O((D=r)2) fullsquares. We want to �gure out the expe
ted number ofnodes to 
over these squares. This is a 
oupon 
olle
-tor problem, and we have what we need, on expe
ta-tion, 
((D=r)2 log(D=r)). The lemma thus follows.We believe that this assumption is not an arti�
ialone. Normally, sensor nodes are pla
ed so that they
an perform a sensing task. To be able to 
over theentire area, the designer must ensure the 
overage.The lowerbound on the density � if the 
overage isrequired 
an be proved as well (see [8, 18℄). For thestudy on the 
onne
tivity and 
overage for sensor net-works, see [15, 21℄.2.1.2 Relative power of the network and the in-trudersThe intruder is a software agent that 
an migrate itselfand (possibly) do harms on the network. In this paper,we allow the intruder to move in�nitely faster than theagents.We have three s
enarios.� Adversarial intruder, general network. In thiss
enario, not only the intruder is in�nitely faster,it is also adversarial, i.e., it knows 
ompletely allthe state of the network. It has the informationon where the agents are and how they move.� Adversarial intruder, 
on�gurable network. Inthis se
ond s
enario, we make the network morepowerful. Ea
h node 
an 
on�gure itself fromwhi
h node it 
an 
ommuni
ate with. The prob-lem turns out to be a network design problem,i.e., to �nd a subgraph having a good sear
h strat-egy.� Oblivious intruder. In the �nal s
enario, we re-move almost all power of the intruder. It 
anmove as fast as the previous s
enario, but itknows nothing about the agents.

Ex
ept for the last s
enario, we also allow the in-truder to dupli
ate itself, i.e., there 
an be more thanone intruder at the same time.2.2 The resultWe show the following.� In Se
tion 3, we show that in the �rst s
enarioa simple algorithm using breadth-�rst sear
h 
an
lean the network using O(rn=D) agents. Wealso prove that the number of agents is optimalfor this 
ase (up to a 
onstant fa
tor).� Se
tion 4 shows a simple sear
h strategy on aspanning tree. This 
an be applied in the se
-ond s
enario where the network is 
on�gurable.We show that a breadth-�rst-sear
h tree 
an beused and prove that the number of agents neededis O(D=r), independent of the number of sensornodes.� Finally, if the intruder has limited power, i.e., the
ase that the intruder does not know the statusof the agents, we des
ribe in Se
tion 5 how todete
t the intruder by random walks, the sameapproa
h that has been used in [4℄. The analysisof that work uses the 
over time of the randomwalk, be
ause its goal is for a single agent to seethe tra
e of the intruders on
e. We, however, donot require the intruder to leave any tra
e on thenetwork. The property that we use is the near-uniform distribution of the agents, resulted fromthe memory loss property of a random walk.We also provide experiment results for these algo-rithms.3 BFS 
lean-up: adversarial in-truder, general networkIn this 
ase, the intruder is most powerful. To 
leanthe network, one needs to quarantine the intruder. Weperform this task in a breadth-�rst-sear
h fashion. Thealgorithm pro
eeds in iterations. In the �rst iteration,the agent, initially at s, migrates3 itself to all neigh-bors of s. Next iteration, ea
h agent migrates to itsun
leaned neighbors. The pro
ess 
ontinues until allnodes are 
leaned (See Figure 1 for illustration).We need to give a te
hni
al detail on how an agentmigrates. When an agent at node v migrates to allnodes in set S, it �rst dupli
ates itself to nodes in S,a
tivates them, and deletes itself from v. It must guar-antee that the 
opies in S are running before deletingitself to prevent the intruder from migrating ba
k to v.3We allow a single agent to migrate to more than one nodes bymeans of dupli
ation.
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Figure 1: How the sear
h progresses in BFS levels.Theorem 1 The above algorithm 
leans the network,and the expe
ted number of agents running simultane-ously is O(rn=D).Proof: We note that ea
h level of a BFS tree is a node
ut of the graph. Spe
i�
ally, there is no edge adja-
ent to nodes at level i and nodes at level i + 2. Thisobservation implies the 
orre
tness.We 
onsider now the number of agents. On iterationi, the agents resides only in the nodes whose distan
esfrom s are between (i � 1)r and ir. The area of thisstrip of width r is at most (2�ir) � r. The maximumis obtained when i = O(D=r), the maximum numberof iterations. This gives the upperbound of O(Dr)on the area. Hen
e, the expe
ted number of agents isO(Dr � �) = O(rn=D).It 
an also be proved that the bound of O(rn=D) isthe best one 
ould hope for in this 
ase.Lemma 2 No deterministi
 algorithm performs bet-ter than O(rn=D).Proof: Again 
over the 
ir
ular area with squareswhose diagonals are of length r. At any step t ofan algorithm, we de�ne the square to be 
leaned ifall of its nodes are 
leaned. For any algorithm thatperforms better than O(rn=D), ea
h new 
leanedsquare needs agents for all of its nodes. The num-ber of new squares must be bounded by O(D=r) inorder to maintain the expe
ted number of agents atO(Dr �r2 ��) = O(rn=D). Hen
e, there exists the stept su
h that the number of 
leaned squares is within[((D=r)2=2)�O(D=r); (D=r)2=2℄ � �((D=r)2).We 
alled the 
leaned square risky if it is adja
entto the un
leaned square. There must be an agent re-siding at ea
h node of the risky squares. We willshow that if there are k 
leaned squares, the num-ber of risky squares is 
(pk). Given a �xed num-ber of 
leaned squares, we 
an obtain a 
on�gurationthat 
ontains least number of risky squares when the

Figure 2: Con�guration with smallest proportion ofrisky squares to peripheral squares. Peripheral squaresare shown in gray, with lighter ones being riskysquares.
leaned squares form a 
onne
ted shape and are ad-ja
ent to the boundary of the network area. Let theperipheral squares be the squares on the border ofthe shape, i.e., all the risky squares and the 
leanedsquares adja
ent to the network boundary. The num-ber of risky squares 
an be proved to be at leastproportional to the number of the peripheral squares(the proportion is minimum at 
(1), when the riskysquares form a 
ord of the 
ir
ular area, as illustratedin Figure 2). Let s denote the number of 
leanedsquares, and s is not more than half of the numberof all squares, the minimum number of peripheralsquares is bounded to 
(ps) by forming 
ir
le-likeshape. Our argument thus follows.Now we prove the theorem. At some step of the al-gorithm, there are �((D=r)2) 
leaned squares, whi
hrequire 
(p(D=r)2) = 
(D=r) agents. It followsthat the expe
ted number of agents is 
(rn=D).4 Cleaning along a tree: ad-versarial intruder, 
on�gurablenetworkIn this se
tion, we introdu
e a problem on graphs
alled Minimum Sear
h Number Spanning Tree, andshow that it is NP-Hard in general graph. Althoughin this paper we neither solve the problem nor �nd anapproximation algorithm for the problem, we provethat a simple BFS tree gives a provable bound on thenumber of agents in Se
tion 4.1 We also show the ex-isten
e of a good tree under the density assumption, inSe
tion 4.2.Given a graph G = (V;E),the Minimum Sear
hNumber Spanning Tree problem is to �nd a spanningtree of G that minimizes the 
ontagious sear
h num-ber. The following proposition states that the problemis NP-Hard in general graphs.Proposition 1 The Minimum Sear
h Number Span-ning Tree is NP-Hard in general graphs.



Figure 3: Agents remains at shaded nodes whild doinga depth-�rst sear
h along the tree.Proof: We prove the hardness by a redu
tion to theHamiltonian Path problem. Given a graphG, we wantto �nd a spanning tree that minimizes the 
ontagioussear
h number. Note that only one agent is needed to
lean a path. Therefore, if G 
ontains a Hamiltonianpath, that path must be the tree with minimum sear
hnumber. Now, if one 
an solve the Minimum Sear
hNumber Spanning Tree, one 
an determine if a graph
ontains a Hamiltonian path. This 
ompletes our re-du
tion.4.1 Cleaning along a BFS treeIn this 
ase, we have some 
ontrol over how the nodes
ommuni
ate. More spe
i�
ally, we 
an enfor
e allthe 
ommuni
ations to take pla
e only on the edgesof a 
ommuni
ation subgraph H of G. The goal isto �nd the subgraph that admits a good sear
h strat-egy. We fo
us only in the 
ase that the subgraph is atree. This 
ase has been studied by Barri�ere et al. [1℄who show that given a 
ommuni
ation tree, one 
an�nd the optimal 
ontagious sear
h strategy in lineartime. However, to �nd the best tree seems to be dif-�
ult be
ause the best possible tree is a Hamiltonianpath, whi
h is NP-Hard in general graphs.In this paper, we 
annot �nd the best tree or a treewhi
h approximates it. However, we settle for a prov-able bound. The following lemma gives an upper-bound on the number of agents needed in a tree withsome stru
ture. A node in a tree is 
alled a bran
hingnode if its degree is greater than two.Lemma 3 Consider a tree T rooted at s. Let m bethe maximum number of bran
hing nodes along anypath from s to any nodes in the tree. There is a sear
hstrategy whi
h usesm agents.Proof: (sket
h) Consider running a depth-�rst sear
hon the tree starting from s. At any bran
hing node v,

p q p q

Figure 4: Illustration of lune and diamondwhen we move further to visit its 
hildren we leave a
opy of the agent with v (see Figure 3). This agentis deleted when the sear
h ba
ktra
ks. Clearly, thereare at most m agents at any time. Furthermore, itis straight forward to show that any node remains
leaned after the sear
h leaves it.We have a simple 
orollary.Corollary 1 A tree of depth d requires at most dagents.Note that Lemma 1 implies that the depth of abreadth-�rst-sear
h tree is O(D=r). We have the fol-lowing theorem.Theorem 2 When the network is 
on�gurable, 
lean-ing it along a breadth-�rst-sear
h tree needs O(D=r)agents.4.2 Existen
e of a good treeWe note that if the sensor nodes are lo
ation-aware, aspanning tree with small sear
h number 
an be 
on-stru
ted. In fa
t, only three agents are required. Webrie�y dis
uss how to �nd su
h a tree here. Consider,again, the �lling of the area with r=(2p2) by r=(2p2)squares as in Lemma 1. First, we work on ea
h rowof full squares. All nodes in ea
h row 
an be linkedup as a path. We then join ea
h pair of adja
ent rowswith some edge. Finally, we 
onne
t all the nodes inea
h partial square to some node in their adja
ent fullsquare. We note that these steps 
an be done if thenodes are lo
ation-aware. One 
an verify that in thistree, three agents are enough to 
lean it.4.3 Cleaning networks with no assump-tionCleaning along a BFS tree also works on the networkwith no distribution assumption, i.e., the network isnot required to have a minimum density. The numberof agents is bounded by the depth of the tree.Lemma 4 The depth of BFS tree on any sensor net-work is O(D2=r2)



Proof: We fo
us on path from root to any leaf. It
an be proved in the same way as Lemma 10 in [20℄that for every edge e we 
an determine a diamond ofsize p36 jjejj2 whi
h is disjoint from the diamonds ofother edges (on the same path). To prove this, we
laim that, on ea
h path from root to a leaf, there areno pair of edges that 
ross ea
h other, no node 
on-tained in the lune determined by any edge in that path,and the angle between two edges in different levels
onne
ting the same node are not less than �=3. Be-
ause there are edges of length not less than r=2 inevery other levels of the path, its depth is not morethan 2�(d=2)2p36 (r=2)2 = O(D2=r2).5 Wandering agents: obliviousintruderThis se
tion des
ribe a algorithm for dete
ting intrud-ers in the 
ase of oblivious intruders. Oblivious in-truders are those whi
h 
an move in�nitely faster thanthe agents, however, they do not have any informationon the status of the set of the agents.In fa
t, if we allow the agent to �jump� randomlyto any nodes, a simple bound 
an be proven. I.e., ifmagents are pla
ed independently randomly on n nodes,the probability that the intruders es
ape the dete
tionis at most�n� 1n �m = �1� 1n�m � e�m=n:To get this failure probability for this �one-shot� de-te
tion to be smaller than a 
onstant, we need the num-ber of agents to be s 
onstant fra
tion of n. How-ever, if we allow many rounds of dete
tion, m 
ouldbe made mu
h smaller. Suppose we allow k iteration.We have that the failure probability is roughly(e�m=n)k = e�mk=n:Thus, if we require the failure probability to be lessthan Æ, the number of agents we need is O(n=k +log Æ).The problem we are left with is how to 
reate thisuniform distribution of agents whi
h 
an only movealong the network. The answer 
omes from the theoryof Markov 
hains. We 
an have m agents, ea
h ran-domly walks on the network, i.e., at any time step theagent pi
ks one of its neighbor nodes to migrate to.If they walk long enough, the distribution of the lo
a-tions of the agents 
onverges to some �xed stationarydistribution. It is well-known that on an undire
tedgraph, the probability that an agent would end up atany given node is proportional to the node's degree.In our 
ase the expe
t degree of a node is proportional
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Figure 5: Cleaning in a BFS fashionto the broad
asting range inside the area. Thus, in the
ase that D � r, the ratio between the smallest areaand the largest area is at most 1=3; this implies that af-ter the agents walk long enough, the distribution gets
lose to uniform.The expe
ted number of steps needed to gets 
loseto uniform is 
alled mixing time (see [12, 11℄, for ex-ample). Clearly, the 
over time of a graph�the ex-pe
ted time for a random walk to visit all the nodes�
an be used as an upperbound of the mixing time. Itis known that the 
over time of any graph is O(mn);thus, the agents would �nd the intruders in polynomialtime. A more sophisti
ated te
hnique based on graphexpansion 
an be used to give 
loser bounds.6 ExperimentsSe
tion 6.1 reports the experiment results for the �rsttwo 
ases. Se
tion 6.2 des
ribes the result for the in-truder dete
tion using random walks.6.1 First two algorithms: using a BFStree to sear
hWe performed experiments by pla
ing 100,200,300upto 1000 nodes on a disk of diameter 100 units. Wevaried the transmission radii to be 15,20,25 and 30units.In the �rst algorithm, we 
lean the network level-by-level on the breadth-�rst-sear
h tree as in Se
-tion 6.1. The result, whi
h is averaged over 100 trials,is shown in Figure 5. The number of agents needed isthus proportional to the number of nodes (as the radius�xed, the density grows with the number of nodes).
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Figure 6: Cleaning on a BFS treeWhen the network is 
on�gurable, we use a BFStree to guide the sear
h. Figure 6 plots the number ofagents required in ea
h 
ase. We note that the num-ber of agents required is independent of the number ofnodes.6.2 Cat
hing oblivious intruders by wan-dering agentsWe experimented with 500, 1000, and 1500 nodes,pla
ed randomly on a disk of diameter 100 units. Herethe metri
 is the number of sear
h steps, sin
e we �xedthe number of agents on the network. Figure 7 andFigure 8 show the number of steps required for var-ious transmission radii on the network of 1000 and1500 nodes, respe
tively. Some 
ases experimentedon 500-node networks were unsu

essful due to therelatively low density of nodes, 
ausing the graph tobe un
onne
ted. The numbers plotted are average of10 trials.7 Con
lusion and open problemsWe present multi-agent algorithms for dete
ting and
leaning intruders on sensor networks. Our aim is tominimize the number of agents required at any giventime.Here are some open problems.� Can we �nd an approximation algorithm to theMinimum Sear
h Number Spanning Tree prob-lem?� Can we generalize results of [1℄ to generalgraphs?
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Figure 7: Wandering agents on 1000-node networks
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Figure 8: Wandering agents on 1500-node networks� Given that the sensor nodes are not lo
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