Detecting and cleaning intruders in sensor networks

Poonna Yospanya, Bundit Laekhanukit, Danupon Nanongkai, Jittat Fakcharoenphol
Department of Computer Engineering,
Kasetsart University,
Bangkok, 10900 Thailand.
E-mails: {poonnaleng.src,b4205092@, danuponleng.src, jtf@}ku.ac.th

Abstract

We view the problem of detecting and cleaning intrud-
ers in sensor networks using mobile agents as a ver-
sion of the graph searching problem. The goal is to
minimize the number of agents running at the same
time. Three scenarios are considered, each differs in
the relative power of the agents and the intruders. Our
main idea is to use breadth-first-search (BES) trees to
organize the search. In the case where the intruder
is most powerful, we search the graph by levels of
the nodes on the BES tree. However, in the second
case where the network is configurable, the number of
agents could be improved significantly if a good sub-
graph can be found. This motivates us to define the
Minimum Search Number Spanning Tree problem, of
which we also prove its hardness. We however show
that one can still use a BES tree to get a good result. In
the last scenario where the intruder has no information
on the status of the agents, random walks are used. In
each case, we prove upper bounds on the number of
agents and provide experiment results.

1 Introduction

The networks of small but numerous sensors with
wireless communication prove to be very useful in
remote sensing tasks (see, for example, [17, 13, 6]).
Their unique characters are the sources of many chal-
lenges [5, 7]. Very often, as in military examples,
they are placed in hostile environment, a result of both
physical factors, such as heat, wind, and radio activity,
and also logical factors, i.e., software intruders, which
are the focus of this paper.

If the sensor nodes are powerful enough, it is
possible to equip them with management software,
e.g., system diagnosing or intrusion detection sys-
tem. However, the resource, especially the mem-
ory resource, is very limited in each node. Storing
these huge, infrequently used programs might cause
the nodes to be unable to perform their main sens-
ing task due to memory shortage. Thus, this crucial

managing capability is provided through mobile soft-
ware agents. The agent is a program that can migrate
itself on the network. When residing on some sen-
sor node, it takes care of various system management
tasks. However, it also takes large amount of compu-
tational resource of the node, interrupting the node’s
primary work. Thus, simply flooding the entire net-
work with agents would stop the whole network from
functioning.

The problem addressed in this paper is how to or-
ganize a small group of agents to track down an in-
truder, which is a kind of malicious software agent!.
We discuss the problem of detecting and cleaning the
intruder. We note that one way to detect the intruder is
by actually cleaning the network. This problem is es-
sentially a well-studied problem, called graph search-
ing [3, 16], in graph theory. Furthermore, the re-
quirement that the agents only move along the edge
of the communication graph results in the contagious
version of the problem, defined by Barriere, Floc-
chini, Fraigniaud, and Santoro [1] who also give a dis-
tributed algorithm that computes the search strategy
when the graph is a tree. They leave the cases of other
families of graphs as the open problem. This paper
can be considered as an attempt to give partial answers
to the problem for communication graphs induced by
typical sensor networks.

We study three versions of the problem, each with
different agent-intruder relative power. In all cases,
the intruder is infinitely faster than the agents. The
first case is when the intruder is adversarial, and the
agents have no control over the network. The sec-
ond is when the network is dynamically configurable,
so that it is possible to “constrain” the intruder (and
agents) to move only on selected edges. In these first
two cases, the fast intruder knows the status of the net-
work and the agents, and utilizes this knowledge to
move, or evade the agents accordingly. Therefore, to
detect the intruder, one essentially has to clean the en-
tire network, and the problem of detecting and clean-

IFrom here on, we will refer to the agents doing the detecting
and cleaning tasks simply as agents, and the intruding agent as in-
truder.

ing become the same problem. The third case is when
the intruder does not know the states of the agents. It
can move very fast, but cannot plan its action based on
the agents’s choices. Only in this case, we provide an-
other detection algorithm based on random walks on
graphs.

1.1 The problem

The problem addressed in this paper is how to orga-
nize a small group of agents to track down a faster
intruder. We discuss the problem of detecting and
cleaning the intruder. We show that one way to detect
the intruder is by actually cleaning the network. This
problem is essentially a well-studied problem, called
graph searching in graph theory.

In the graph-searching problem, introduced by
Breisch [3] and by Parson [16], we consider the fol-
lowing situation. A group of agents move along the
edges of the graph to find an intruder, who moves
along the edges of the graph infinitely faster and also
has a complete knowledge of the status of the agents.
Given a graph G, the graph-searching problem is to
determine the minimum number & such that there is a
search strategy for k searchers that guarantees the cap-
ture of the intruder. The minimum number £ is called
the search number of the graph G.

The variant of the graph-searching problem we con-
sider in this paper is the contagious graph search, de-
fined by [1]. The problem can be formulated as fol-
lows.

We are given a graph G whose edges are “con-
taminated.” A group of searchers are placed on the
nodes of G. At any step, we can move a searcher
along an edge. An edge {u,v} becomes temporarily
“cleaned” if a searcher moves from u to v. However it
only remains cleaned if and only if (1) there is another
searcher at u or (2) all edges adjacent to u are cleaned.
Another requirement for the contagious graph search
is that the set of cleaned edges must form a connected
subgraph.

1.2 Related results

Megiddo, Hakimi, Garey, Johnson, and Papadim-
itriou [14] prove that determining the search number
is NP-Hard. They also give a linear time algorithm
to find the search number on trees. The problem has
many variants which are related to concepts in graph
theory (see, for examples, [10, 9, 2, 19]).

The problem has been formulated as a pursuer-
evader problem in Demirbas, Arora, and Gouda [4]
where a single faster agent tries to track a single
slower adversarial intruder. We, however, focus on
the opposite case, i.e., when the intruder is infinitely
faster, but many agents are allowed.

1.3 Organization

We give a formal description of the model and a sum-
mary of results in Section 2. This paper focuses on
three scenarios. The first case when the intruder is ad-
versarial and the agents have no control over the net-
work is described in Section 3. Section 4 deals with
the second where the network is configurable. Finally,
when the intruder is oblivious, Section 5 gives a brief
discussion on how to use random walks to find the in-
truders. The experiment results are presented in Sec-
tion 6. We conclude and list a few interesting open
problems in Section 7.

2 Preliminaries

2.1 The model
2.1.1 The network

We model the situation as follows. There are n sen-
sor nodes, each with a unique id, locating in a circular
area of diameter D. The locations of the nodes are uni-
formly distributed over the area>. Among the nodes,
a special node s is chosen to be the base station, the
only node that the intruder cannot reside. We define
the density of the nodes to be p = #2/4. This pa-
rameter is not entirely independent of D and r if we
want to ensure connectivity, as will be discussed later
on.

Each sensor node has a two-way broadcast commu-
nication capability with maximum radius r. The lo-
cations of the sensor nodes, together with the param-
eter r, induce a possible communication graph. Now
we formalize this. We let V' = {vy,vq,...,v,} de-
note the set of n sensor nodes. For each node v;,
denote its location with (z;,y;). There is an edge
(v;,v;) in the communication graph G = (V, E) iff
V(@i —z;)%> + (yi —yj)> < r. Since the distance
function is symmetric, the graph is undirected.

We do not require only the connectivity of G but
also the property that the distances between nodes in
G approximates the actual distances in the plane, i.e.,
for any pair of nodes x and y whose distance on the
plane is [, there is a path from z to y in G with ©(I/r)
edges. The lowerbound clearly holds. The following
lemma states the sufficient condition for p that ensure
this property with high probability.

Lemmal If p = Q(r?logD/r), or equivalently
n = Q((D/r)?log(D/r)), the distances in the graph
approximate the actual distances of the nodes in the
plane.

2This is not a strict requirement. We only need to be able to
bound the expected number of nodes in a given area.

Proof: Cover the circular area with non-overlapping
(r/2v/2) by (r/2+/2) squares whose diagonals are of
length r. This can be done with O((D/r)?) squares.
Now consider only the squares which lie entirely in
the area; call them full squares. The rest are called
partial squares. If there is at least one sensor node in
each of the full squares, the graph is clearly connected.
Furthermore, for any pair of nodes = and y whose dis-
tance is [, every full square intersecting a line segment
from x to y contains at least one sensor; this implies
that there is a path of length at most O(l/r) connect-
ing z and y.

We now think of a random process of placing sen-
sors into all the squares. We claim that the probability
that we pick full squares is at least a constant. There
are O(D2/((r/2v/2) - (r/2V2))) = O((D/r)?) ful
squares. We want to figure out the expected number of
nodes to cover these squares. This is a coupon collec-
tor problem, and we have what we need, on expecta-
tion, Q((D/r)?log(D/r)). The lemma thus follows.
1

We believe that this assumption is not an artificial
one. Normally, sensor nodes are placed so that they
can perform a sensing task. To be able to cover the
entire area, the designer must ensure the coverage.
The lowerbound on the density p if the coverage is
required can be proved as well (see [8, 18]). For the
study on the connectivity and coverage for sensor net-
works, see [15, 21].

2.1.2 Relative power of the network and the in-
truders

The intruder is a software agent that can migrate itself
and (possibly) do harms on the network. In this paper,
we allow the intruder to move infinitely faster than the
agents.

We have three scenarios.

o Adversarial intruder, general network. In this
scenario, not only the intruder is infinitely faster,
it is also adversarial, i.e., it knows completely all
the state of the network. It has the information
on where the agents are and how they move.

e Adversarial intruder, configurable network. In
this second scenario, we make the network more
powerful. Each node can configure itself from
which node it can communicate with. The prob-
lem turns out to be a network design problem,
i.e., to find a subgraph having a good search strat-

cgy.

e Oblivious intruder. In the final scenario, we re-
move almost all power of the intruder. It can
move as fast as the previous scenario, but it
knows nothing about the agents.

Except for the last scenario, we also allow the in-
truder to duplicate itself, i.e., there can be more than
one intruder at the same time.

2.2 The result

We show the following.

e In Section 3, we show that in the first scenario
a simple algorithm using breadth-first search can
clean the network using O(rn/D) agents. We
also prove that the number of agents is optimal
for this case (up to a constant factor).

e Section 4 shows a simple search strategy on a
spanning tree. This can be applied in the sec-
ond scenario where the network is configurable.
We show that a breadth-first-search tree can be
used and prove that the number of agents needed
is O(D/r), independent of the number of sensor
nodes.

e Finally, if the intruder has limited power, i.e., the
case that the intruder does not know the status
of the agents, we describe in Section 5 how to
detect the intruder by random walks, the same
approach that has been used in [4]. The analysis
of that work uses the cover time of the random
walk, because its goal is for a single agent to see
the trace of the intruders once. We, however, do
not require the intruder to leave any trace on the
network. The property that we use is the near-
uniform distribution of the agents, resulted from
the memory loss property of a random walk.

We also provide experiment results for these algo-
rithms.

3 BFS clean-up: adversarial in-
truder, general network

In this case, the intruder is most powerful. To clean
the network, one needs to quarantine the intruder. We
perform this task in a breadth-first-search fashion. The
algorithm proceeds in iterations. In the first iteration,
the agent, initially at s, migrates® itself to all neigh-
bors of s. Next iteration, each agent migrates to its
uncleaned neighbors. The process continues until all
nodes are cleaned (See Figure 1 for illustration).

We need to give a technical detail on how an agent
migrates. When an agent at node v migrates to all
nodes in set S, it first duplicates itself to nodes in S,
activates them, and deletes itself from v. It must guar-
antee that the copies in S are running before deleting
itself to prevent the intruder from migrating back to v.

3We allow a single agent to migrate to more than one nodes by
means of duplication.

Figure 1: How the search progresses in BFS levels.

Theorem 1 The above algorithm cleans the network,
and the expected number of agents running simultane-
ously is O(rn/ D).

Proof: We note that each level of a BFS tree is a node
cut of the graph. Specifically, there is no edge adja-
cent to nodes at level ¢ and nodes at level ¢ + 2. This
observation implies the correctness.

We consider now the number of agents. On iteration
i, the agents resides only in the nodes whose distances
from s are between (i — 1)r and ir. The area of this
strip of width r is at most (27ir) - r. The maximum
is obtained when ¢ = O(D//r), the maximum number
of iterations. This gives the upperbound of O(Dr)
on the area. Hence, the expected number of agents is

O(Dr - p) = O(rn/D). 1

It can also be proved that the bound of O(rn/D) is
the best one could hope for in this case.

Lemma 2 No deterministic algorithm performs bet-
ter than O(rn/ D).

Proof: Again cover the circular area with squares
whose diagonals are of length r. At any step ¢ of
an algorithm, we define the square to be cleaned if
all of its nodes are cleaned. For any algorithm that
performs better than O(rn/D), each new cleaned
square needs agents for all of its nodes. The num-
ber of new squares must be bounded by O(D/r) in
order to maintain the expected number of agents at
O(Z-r?.p) = O(rn/D). Hence, there exists the step
t such that the number of cleaned squares is within
[(D/r)2/2) = O(D/r), (D/r)2/2] C O((D/r)?).
We called the cleaned square risky if it is adjacent
to the uncleaned square. There must be an agent re-
siding at each node of the risky squares. We will
show that if there are k cleaned squares, the num-
ber of risky squares is Q(v/k). Given a fixed num-
ber of cleaned squares, we can obtain a configuration
that contains least number of risky squares when the

Figure 2: Configuration with smallest proportion of
risky squares to peripheral squares. Peripheral squares
are shown in gray, with lighter ones being risky
squares.

cleaned squares form a connected shape and are ad-
jacent to the boundary of the network area. Let the
peripheral squares be the squares on the border of
the shape, i.e., all the risky squares and the cleaned
squares adjacent to the network boundary. The num-
ber of risky squares can be proved to be at least
proportional to the number of the peripheral squares
(the proportion is minimum at (1), when the risky
squares form a cord of the circular area, as illustrated
in Figure 2). Let s denote the number of cleaned
squares, and s is not more than half of the number
of all squares, the minimum number of peripheral
squares is bounded to Q(+/s) by forming circle-like
shape. Our argument thus follows.

Now we prove the theorem. At some step of the al-
gorithm, there are ©((D/r)?) cleaned squares, which
require Q(+/(D/r)?) = Q(D/r) agents. It follows
that the expected number of agents is Q(rn/D). 1

4 Cleaning along a tree: ad-
versarial intruder, configurable
network

In this section, we introduce a problem on graphs
called Minimum Search Number Spanning Tree, and
show that it is NP-Hard in general graph. Although
in this paper we neither solve the problem nor find an
approximation algorithm for the problem, we prove
that a simple BES tree gives a provable bound on the
number of agents in Section 4.1 We also show the ex-
istence of a good tree under the density assumption, in
Section 4.2.

Given a graph G = (V, E),the Minimum Search
Number Spanning Tree problem is to find a spanning
tree of G that minimizes the contagious search num-
ber. The following proposition states that the problem
is NP-Hard in general graphs.

Proposition 1 The Minimum Search Number Span-
ning Tree is NP-Hard in general graphs.

Figure 3: Agents remains at shaded nodes whild doing
a depth-first search along the tree.

Proof: We prove the hardness by a reduction to the
Hamiltonian Path problem. Given a graph GG, we want
to find a spanning tree that minimizes the contagious
search number. Note that only one agent is needed to
clean a path. Therefore, if G contains a Hamiltonian
path, that path must be the tree with minimum search
number. Now, if one can solve the Minimum Search
Number Spanning Tree, one can determine if a graph
contains a Hamiltonian path. This completes our re-
duction. |

4.1 Cleaning along a BFS tree

In this case, we have some control over how the nodes
communicate. More specifically, we can enforce all
the communications to take place only on the edges
of a communication subgraph H of G. The goal is
to find the subgraph that admits a good search strat-
egy. We focus only in the case that the subgraph is a
tree. This case has been studied by Barriére ez al. [1]
who show that given a communication tree, one can
find the optimal contagious search strategy in linear
time. However, to find the best tree seems to be dif-
ficult because the best possible tree is a Hamiltonian
path, which is NP-Hard in general graphs.

In this paper, we cannot find the best tree or a tree
which approximates it. However, we settle for a prov-
able bound. The following lemma gives an upper-
bound on the number of agents needed in a tree with
some structure. A node in a tree is called a branching
node if its degree is greater than two.

Lemma 3 Consider a tree T rooted at s. Let m be
the maximum number of branching nodes along any
path from s to any nodes in the tree. There is a search
strategy which uses m agents.

Proof: (sketch) Consider running a depth-first search
on the tree starting from s. At any branching node v,

OR

Figure 4: Tllustration of lune and diamond

when we move further to visit its children we leave a
copy of the agent with v (see Figure 3). This agent
is deleted when the search backtracks. Clearly, there
are at most m agents at any time. Furthermore, it
is straight forward to show that any node remains
cleaned after the search leaves it. |

We have a simple corollary.

Corollary 1 A tree of depth d requires at most d
agents.

Note that Lemma 1 implies that the depth of a
breadth-first-search tree is O(D /r). We have the fol-
lowing theorem.

Theorem 2 When the network is configurable, clean-
ing it along a breadth-first-search tree needs O(D /r)
agents.

4.2 Existence of a good tree

We note that if the sensor nodes are location-aware, a
spanning tree with small search number can be con-
structed. In fact, only three agents are required. We
briefly discuss how to find such a tree here. Consider,
again, the filling of the area with /(2v/2) by r/(2v/2)
squares as in Lemma 1. First, we work on each row
of full squares. All nodes in each row can be linked
up as a path. We then join each pair of adjacent rows
with some edge. Finally, we connect all the nodes in
each partial square to some node in their adjacent full
square. We note that these steps can be done if the
nodes are location-aware. One can verify that in this
tree, three agents are enough to clean it.

4.3 Cleaning networks with no assump-
tion

Cleaning along a BES tree also works on the network
with no distribution assumption, i.e., the network is
not required to have a minimum density. The number
of agents is bounded by the depth of the tree.

Lemma 4 The depth of BFS tree on any sensor net-
work is O(D? /r?)

Proof: We focus on path from root to any leaf. It
can be proved in the same way as Lemma 10 in [20]
that for every edge e we can determine a diamond of
size %He“2 which is disjoint from the diamonds of
other edges (on the same path). To prove this, we
claim that, on each path from root to a leaf, there are
no pair of edges that cross each other, no node con-
tained in the lune determined by any edge in that path,
and the angle between two edges in different levels
connecting the same node are not less than 7/3. Be-
cause there are edges of length not less than /2 in
every other levels of the path, its depth is not more
than 2Z(/2° _ O(D?/r?). 1

X3 (r/2)2

5 Wandering agents: oblivious

intruder

This section describe a algorithm for detecting intrud-
ers in the case of oblivious intruders. Oblivious in-
truders are those which can move infinitely faster than
the agents, however, they do not have any information
on the status of the set of the agents.

In fact, if we allow the agent to “jump” randomly
to any nodes, a simple bound can be proven. Le., if m
agents are placed independently randomly on n nodes,
the probability that the intruders escape the detection
is at most

() (2) e
n n

To get this failure probability for this “one-shot” de-
tection to be smaller than a constant, we need the num-
ber of agents to be s constant fraction of n. How-
ever, if we allow many rounds of detection, m could
be made much smaller. Suppose we allow k iteration.
We have that the failure probability is roughly

(efm/n)k — efmk/n-

Thus, if we require the failure probability to be less
than §, the number of agents we need is O(n/k +
log d).

The problem we are left with is how to create this
uniform distribution of agents which can only move
along the network. The answer comes from the theory
of Markov chains. We can have m agents, each ran-
domly walks on the network, i.e., at any time step the
agent picks one of its neighbor nodes to migrate to.
If they walk long enough, the distribution of the loca-
tions of the agents converges to some fixed stationary
distribution. It is well-known that on an undirected
graph, the probability that an agent would end up at
any given node is proportional to the node’s degree.
In our case the expect degree of a node is proportional

90i

=15
so0{| 20
—-— =30 o
7004 -

600-{ s

5004 -

of agents
\
\

400 -

300

200+

1004 <2

—--r=25 -

T T T T T T T T T T T T T T T T T
100 200 300 400 500 600 700 800 900
#of nodes

Figure 5: Cleaning in a BFS fashion

to the broadcasting range inside the area. Thus, in the
case that D > r, the ratio between the smallest area
and the largest area is at most 1/3; this implies that af-
ter the agents walk long enough, the distribution gets
close to uniform.

The expected number of steps needed to gets close
to uniform is called mixing time (see [12, 11], for ex-
ample). Clearly, the cover time of a graph—the ex-
pected time for a random walk to visit all the nodes—
can be used as an upperbound of the mixing time. It
is known that the cover time of any graph is O(mn);
thus, the agents would find the intruders in polynomial
time. A more sophisticated technique based on graph
expansion can be used to give closer bounds.

6 Experiments

Section 6.1 reports the experiment results for the first
two cases. Section 6.2 describes the result for the in-
truder detection using random walks.

6.1 First two algorithms: using a BFS
tree to search

We performed experiments by placing 100,200,300
upto 1000 nodes on a disk of diameter 100 units. We
varied the transmission radii to be 15,20,25 and 30
units.

In the first algorithm, we clean the network level-
by-level on the breadth-first-search tree as in Sec-
tion 6.1. The result, which is averaged over 100 trials,
is shown in Figure 5. The number of agents needed is
thus proportional to the number of nodes (as the radius
fixed, the density grows with the number of nodes).

10

00

— r=15

of agents

T T
500
of nodes

Figure 6: Cleaning on a BES tree

When the network is configurable, we use a BFS
tree to guide the search. Figure 6 plots the number of
agents required in each case. We note that the num-
ber of agents required is independent of the number of
nodes.

6.2 Catching oblivious intruders by wan-
dering agents

We experimented with 500, 1000, and 1500 nodes,
placed randomly on a disk of diameter 100 units. Here
the metric is the number of search steps, since we fixed
the number of agents on the network. Figure 7 and
Figure 8 show the number of steps required for var-
ious transmission radii on the network of 1000 and
1500 nodes, respectively. Some cases experimented
on 500-node networks were unsuccessful due to the
relatively low density of nodes, causing the graph to
be unconnected. The numbers plotted are average of
10 trials.

7 Conclusion and open problems

We present multi-agent algorithms for detecting and
cleaning intruders on sensor networks. Our aim is to
minimize the number of agents required at any given
time.

Here are some open problems.

e Can we find an approximation algorithm to the
Minimum Search Number Spanning Tree prob-
lem?

e Can we generalize results of [1] to general
graphs?

450

400

350

300

of steps

% of agents

Figure 7: Wandering agents on 1000-node networks

of steps
N
S
S

% of agents

Figure 8: Wandering agents on 1500-node networks

e Given that the sensor nodes are not location-
aware, can we find a better tree?

References

[1] Lali Barriere, Paola Flocchini, Pierre Fraigniaud,
and Nicola Santoro. Capture of an intruder by
mobile agents. In Proceedings of the fourteenth
annual ACM symposium on Parallel algorithms
and architectures, pages 200-209. ACM Press,
2002.

[2] D. Bienstock and Paul Seymour. Monotonicity

in graph searching. J. Algorithms, 12(2):239-

245, 1991.

[3] R.Breisch. An intuitive approach to speleotopol-
ogy. Southwestern Cavers, VI(5):72-78, 1967.

(4]

(5]

(6]

(71

[8]

[91

[10]

(1]

[12]

[13]

M. Demirbas, A. Arora, and M. Gouda. A
pursuer-evader game for sensor networks. In
Proceedings of the Sixth Symposium on Self-
Stabilizing Systems, 2003.

Deborah Estrin, Ramesh Govindan, John Heide-
mann, and Satish Kumar. Next century chal-
lenges: scalable coordination in sensor net-
works. In Proceedings of the 5th annual
ACM/IEEE international conference on Mo-
bile computing and networking, pages 263-270.
ACM Press, 1999,

Philo Juang, Hidekazu Oki, Yong Wang, Mar-
garet Martonosi, Li Shiuan Peh, and Daniel
Rubenstein. Energy-efficient computing for
wildlife tracking: design tradeoffs and early ex-
periences with zebranet. In Proceedings of the
10th international conference on Architectural
support for programming languages and oper-
ating systems, pages 96—107. ACM Press, 2002.

J. M. Kahn, R. H. Katz, and K. S. J. Pis-
ter. Next century challenges: mobile network-
ing for “smart dust”. In Proceedings of the 5th
annual ACM/IEEE international conference on
Mobile computing and networking, pages 271—
278. ACM Press, 1999.

Bhaskar Krishnamachari, Stephen Wicker, Ra-
mon Bejar, and Marc Pearlman. Communica-
tions, Information and Network Security, chapter
Critical Density Thresholds in Distributed Wire-
less Networks. Kluwer Publishers, 2002.

Andrea S. LaPaugh. Recontamination does not
help to search a graph. J. ACM, 40(2):224-245,
1993.

Christos H. Papadimitriou Lefteris M. Kirousis.
Searching and pebbling. Theor. Comput. Sci,
4(3):205-218, 1986.

Laszl6 LLovdsz. Random walks on graphs: A sur-
vey. Combinatorics, Paul Erdos is Eighty, Vol.2,
pages 353-398, 1996.

Laszl6 Lovasz and Peter Winkler. Mixing of ran-
dom walks and other diffusions on a graph. Sur-
vey in Combinatorics, 218:119-154, 1995. Lon-
don Math. Soc. Lecture Notes Series.

Alan Mainwaring, David Culler, Joseph Polas-
tre, Robert Szewczyk, and John Anderson. Wire-
less sensor networks for habitat monitoring. In
Proceedings of the 1st ACM international work-
shop on Wireless sensor networks and applica-
tions, pages 88-97. ACM Press, 2002.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

N. Megiddo, S. L.. Hakimi, M. R. Garey, D. S.
Johnson, and C. H. Papadimitriou. The complex-
ity of searching a graph. J. ACM, 35(1):18—44,
1988.

S. Meguerdichian, F. Koushanfar, M. Potkonjak,
and M. Srivastava. Coverage problems in wire-
less ad-hoc sensor networks. In Proceedings of
IEEE Infocom, pages 1380-1387,2001.

T. Parson. Theory and Applications of Graphs,
chapter Pursuit-evasion in a graph, pages 426—
441. Lecture notes in mathematics. Springer-
Verlag, 1076.

G. J. Pottie and W. J. Kaiser. Wireless integrated
network sensors. Commun. ACM, 43(5):51-58,
2000.

E.M. Royer, PM. Melliar-Smith, and L.E.
Moser. An analysis of the optimum node den-
sity for ad hoc mobile networks. In Proc. Inter-

national Conference on Communications, pages
857-861, 2001.

P. D. Seymour and Robin Thomas. Graph
searching and a min-max theorem for tree-width.
J. Comb. Theory Ser. B, 58(1):22-33, 1993.

P. Wan, G. Cilinescu, X. Li, and O. Frieder.
Minimum-energy broadcasting in static ad hoc
wireless networks, 2002.

H. Zhang and J. C. Hou. Maintaining sensing
coverage and connectivity in large sensor net-
works. Technical Report UTUCDCS-R-2003-
2351, UIUC, 2003.

