On a DAG Partitioning Problem

Abbas Mehrabian amehrabi@uwaterloo.ca joint work with Soroush Alamdari

University of Waterloo

Workshop on Web Algorithms, Dalhousie University June 23rd, 2012

Problem Statement

Leskovec, Backstrom, Kleinberg 2009

Given a directed acyclic graph G with arc weights,

Delete a set of arcs of minimum total weight so that each of the resulting connected components has exactly one sink.

Example

● ← _ _ ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の々で

Multiway Cut Problem

< D > < D

Multiway Cut Problem

NP-hardness

Leskovec et al. proved that DAG Partitioning is NP-hard. Multiway Cut with k terminals \Rightarrow DAG Partitioning with k sinks.

(D) (A) (A) (A)

Approximation Algorithms?

Theorem (Călinescu, Karloff, Rabani 1998)

Multiway cut with k terminals is $\left(\frac{3}{2} - \frac{1}{k}\right)$ -approximable.

Theorem (Alamdari, M 2012)

For any fixed $\epsilon > 0$ there is no polynomial $(n^{1-\epsilon})$ -approximation algorithm for DAG Partitioning problem if $P \neq NP$.

Hardness result holds for DAGs with two sinks, unit weights, max outdegree 3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Approximation Algorithms?

Theorem (Călinescu, Karloff, Rabani 1998)

Multiway cut with k terminals is $\left(\frac{3}{2} - \frac{1}{k}\right)$ -approximable.

Theorem (Alamdari, M 2012)

For any fixed $\epsilon > 0$ there is no polynomial $(n^{1-\epsilon})$ -approximation algorithm for DAG Partitioning problem if $P \neq NP$.

Hardness result holds for DAGs with two sinks, unit weights, max outdegree 3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A Positive Result

Theorem (Alamdari, M 2012)

The DAG Partitioning problem can be solved optimally on a DAG with bounded pathwidth.

イロト イポト イヨト イヨト

Two Definitions

- Unique sink property
- O The sink of a vertex

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

General Structure

The Key Claim

Claim

The 3-SAT instance is satisfiable \Leftrightarrow

DAG Partitioning has a solution that does not delete any blue arcs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

The Godget for a Variable

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ ―臣 ― 釣�(

The Gadget for a Variable

The Godget for a Variable

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ ―臣 ― 釣�(

< A3 > < 3

Avoiding Heavy Edges and Large Out-degrees

- 💶 two sinks
- I blue (heavy) edges
- Iarge out-degrees

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Definition of pathwidth

Definition

The family $\{W_i : 1 \le i \le m\}$ of subsets of V(G) is a path decomposition of G if it satisfies:

(i)
$$\cup_{1 \leq i \leq m} W_i = V(G)$$
.

(ii) $\forall uv \in E(G), \exists a \text{ bag containing } u \text{ and } v.$

(iii) Every $v \in V(G)$ is contained in a consecutive set of bags.

Width of the path decomposition is $\max\{|W_i|\}$.

Given a path decomposition of width k, there is an algorithm with running time $2^{O(k^2)}n$.

・ロン ・四と ・ヨン ・ヨン

Definition of pathwidth

Definition

The family $\{W_i : 1 \le i \le m\}$ of subsets of V(G) is a path decomposition of G if it satisfies:

(i)
$$\cup_{1 \leq i \leq m} W_i = V(G)$$
.

(ii) $\forall uv \in E(G), \exists a \text{ bag containing } u \text{ and } v.$

(iii) Every $v \in V(G)$ is contained in a consecutive set of bags.

Width of the path decomposition is $\max\{|W_i|\}$.

Given a path decomposition of width k, there is an algorithm with running time $2^{O(k^2)}n$.

・ロト ・聞ト ・ヨト ・ヨト

The Subproblems

Alter the path decomposition so that every child is only slightly different with its parent.

The subproblems are of the form (H, X, P, F, D).

The Subproblems

Alter the path decomposition so that every child is only slightly different with its parent. The subproblems are of the form (H, X, P, F, D).

The Running Time

The subproblems are of the form (H, X, P, F, D).

 $H O(k^{2}n)$ X 1 $P 2^{k^{2}}$ $F 2^{k}$ $D 2^{k^{2}}$

 $2^{O(k^2)}n$ subproblems, each update in time $O(k^3)$.

イロン イヨン イヨン イヨン

æ

The Running Time

The subproblems are of the form (H, X, P, F, D). $H O(k^2 n)$ $X \ 1$ $P \ 2^{k^2}$ $F \ 2^k$ $D \ 2^{k^2}$

 $2^{O(k^2)}n$ subproblems, each update in time $O(k^3)$.

æ

What About Treewidth?

OPEN. What about bounded-treewidth graphs!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

Thank you Slide

Thanks for your attention :-)

Abbas On a DAG Partitioning Problem

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣