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Part I: Rumour spreading













The push&pull rumour spreading protocol
[Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart,

Terry, Woods’87]

1. Consider a simple connected graph.

2. At time 0, one vertex knows a rumour.

3. At each time-step 1, 2, . . . ,
every informed vertex sends the rumour to a random
neighbour (PUSH);
and every uninformed vertex queries a random neighbour
about the rumour (PULL).

We are interested in the spread time.



Applications

1. Replicated databases

2. Broadcasting algorithms

3. News propagation in social networks

4. Spread of viruses on the Internet.



Example: a star

2 rounds



Example: path graph

0 1 2 3 4

vertex 0 knows rumour at round 0

vertex 1 is informed at round 1

vertex 2 is informed at round
1+min{Geo(1/2),Geo(1/2)} = 1+Geo(3/4)

vertex 3 is informed at round 1+Geo(3/4) +Geo(3/4)

vertex 4 is informed at round 1+Geo(3/4) +Geo(3/4) + 1

E[Spread Time] =
4
3
n − 2
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An example: double star

eu v

Time to pass edge e = min{Geo(1/4),Geo(1/4)}

= min{Geo(
1

n/2
),Geo(

1
n/2

)} = Geo(
4
n

−
4
n2 )

Expected spread time ∼ n/4



Example: a complete graph

log3 n rounds [Karp, Schindelhauer, Shenker, Vöcking’00]



Known results

s(G) expected value of spread time (for worst starting vertex)

Graph G s(G)

Star 2
Path (4/3)n + O(1)
Double star (1+ o(1))n/4
Complete (1+ o(1)) log3 n

[Karp,Schindelhauer,Shenker,Vöcking’00]

G(n , p) Θ(lnn)
(connected) [Feige, Peleg, Raghavan, Upfal’90]



An extremal question

What’s the maximum spread time of an n-vertex graph?

n/4 4n/3

O(n logn) upper bound by [Feige, Peleg, Raghavan, Upfal’90]

Theorem (Acan, Collevecchio, M, Wormald’15)

For any connected G on n vertices

s(G)< 5n

Only pull operations are needed!
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An asynchronous variant



A (more realistic) variant

Definition (The asynchronous variant: Boyd, Ghosh,
Prabhakar, Shah’06)

In each step, one random vertex performs one action
(PUSH or PULL).
Each step takes time 1/n .

Almost equivalent definition:
every vertex has an exponential clock with rate 1,
at each clock ring, performs one action.
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Example: a star

synchronous protocol: 1 round

Coupon collector: Consider a bag containing n different balls.
In each step we draw a random ball and put it back.
How many draws to see each ball at least once? About n lnn .
asynchronous protocol: n lnn steps = lnn amount of time
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Example: a star

synchronous protocol: 1 round
Coupon collector: Consider a bag containing n different balls.
In each step we draw a random ball and put it back.
How many draws to see each ball at least once? About n lnn .
asynchronous protocol: n lnn steps = lnn amount of time



Example: a path

0 1 2 3 4

Spread time ∼ sum of n − 1 independent exponentials

E[Spread Time] = n − 5/3 (versus
4
3
n − 2 for synchronous)



An example: double star

e

Time to pass edge e = min{Exp(
1

n/2
),Exp(

1
n/2

)} = Exp(4/n)

Expected spread time ∼ n/4



Some known results

a(G) expected value of spread time in asynchronous protocol

Graph G s(G) a(G)

Star 2 lnn + O(1)
Path (4/3)n + O(1) n + O(1)
Double star (1+ o(1))n/4 (1+ o(1))n/4
Complete (1+ o(1)) log3 n lnn + o(1)

[Karp,Schindelhauer,Shenker,Vöcking’00]

Hypercube Θ(lnn) Θ(lnn)
graph [Feige, Peleg, Raghavan, Upfal’90] [Fill,Pemantle’93]

G(n , p) Θ(lnn) (1+ o(1)) lnn
(connected) [Feige, Peleg, Raghavan, Upfal’90] [Panagiotou,Speidel’13]



The extremal question

What’s the maximum spread time of an n-vertex graph?

Ω(n) Ω(n)

Theorem (Acan, Collevecchio, M, Wormald’15)

For any connected G on n vertices

ln(n)/5 < a(G)< 4n

Only pull operations are needed!
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Comparison of the two variants



Comparison of the two protocols on the same graph:
experiments

Figures from: Doerr, Fouz, and Friedrich’12.
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synchronous?
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Time taken to pass through a diamond

...

k paths of length 2

Birthday paradox: Consider a bag containing k different balls.
In each step we draw a random ball and put it back.
How many draws to see some ball twice?

√
πk/2 ≈ 1.25

√
k

Time to pass the rumour
Asynchronous: ≤ 4× 1.25/

√
k

Synchronous: ≥ 2
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The string of diamonds, continued

... ... . . . ...

n1/3 diamonds, each consisting of n2/3 paths of length 2

a(G) ≤ n1/3 × 5√
n2/3

+ lnn = 5+ lnn

while
s(G) ≥ 2n1/3

s(G)
a(G) can be as large as Ω̃

(
n1/3), but can it be larger?
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Comparison of the two protocols on the same graph:
our results

Theorem (Acan, Collevecchio, M, Wormald’15)

s(G)

a(G)
= Õ

(
n2/3

)

s(G)
a(G) = O

(
n1/2) [Giakkoupis, Nazari, and Woelfel’16]

Theorem (Angel, M, Peres’17+)

We have
s(G)

a(G)
= O

(
n1/3

)
,

which is tight.
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Proof sketch for s(G) ≤ a(G)× n1/3

Build a coupling so that

asynchronous contamination synchronous contamination
by time 1 by time x

If asynchronous contaminates a path of length L,
need to have x ≥ L
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Proof sketch for s(G) ≤ a(G)× n1/3

Lemma
In asynchronous, after n steps (by time 1), rumour does not pass
along a path of length > Cn1/3 (with high prob).

For fixed path v1v2 . . . vL, this probability is

≤ 2L ×
(
n
L

)
× n−L ×

L−1∏
i=1

max
{

1
deg(vi )

,
1

deg(vi+1)

}
Will show

∑
L−paths

L−1∏
i=1

1
min{deg(vi ),deg(vi+1)}

≤ (Cn/L)L/2 (1)

Implies the total probability is ≤ (C
√

n/L
√

L)L.
Putting L = Cn1/3 makes this o(1).
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Baby version: we have
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1
deg(vi )

≤ n

Once we choose the first vertex, the 1/deg factors cancel number of
choices for next vertices!
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Proof sketch for s(G) ≤ a(G)× n1/3

Want to show

∑
L−paths

L−1∏
i=1

1
min{deg(vi ),deg(vi+1)}

≤ (Cn/L)L/2

Consider the local minima vertices in the sequence
deg(v1),deg(v2), . . . ,deg(vL).
Once we choose these vertices, the 1/min{deg,deg} factors cancel out
number of choices for other vertices, so

∑
L−paths

L−1∏
i=1

1
min{deg(vi ),deg(vi+1)}

≤
L/2∑
s=0

(
L
s

)
·
(
n
s

)
≤ (Cn/L)L/2



Proof sketch for s(G) ≤ a(G)× n1/3

Lemma
In asynchronous, during [0, 1], rumour does not pass along
a path of length > Cn1/3 (with high prob).

Using careful couplings,

asynchronous contamination synchronous contamination
by time 1 by time Cn1/3

s(G) ≤ a(G)×Cn1/3



Summary of our results on push&pull

Theorem (Acan, Angel, Collevecchio, M, Peres,
Wormald’15,’17)

For any connected G on n vertices,

s(G)< 5n

ln(n)/5 < a(G)< 4n
1

lnn
<

s(G)

a(G)
< Cn1/3

All bounds are tight, up to constant factors.



Further directions

1. Connect s(G)/a(G) with other graph properties.

2. How to choose first vertex(es) carefully to minimize the
spread time? [Kempe, J. Kleinberg, E. Tardos’03]

3. Number of passed messages? [Fraigniaud, Giakkoupis’10]

4. More than one message? [Censor-Hillel, Haeupler, Kelner,
Maymounkov’12]

5. Variation: each node spreads for a bounded number of
rounds [Akbarpour, Jackson’16].



Part II: Broader overview of my research
discrete random processes



Applications of discrete random processes



Applications of discrete random processes



Load Balancing



Load balancing

Definition (Randomized local search)

Each ball has an exponential clock of rate 1. When the clock rings,
the ball is activated.
On activation, the ball chooses a random bin and moves there if its
own load is improved by doing so.

n = number of bins, m = number of balls
O(n2) Bound on expected time to reach perfect balance [Goldberg’04]
O
(
ln(n)2 + ln(n)n2/m

)
[Ganesh et al.’12]

O(lnn + n2/m) (tight!) [Berenbrink, Kling, Liaw, M’16]
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Diameters of complex networks

Facebook graph in May 2011 had 700 million vertices, diameter 41



Diameters of complex networks

Our contribution: a technique for proving certain random
graph models have diameter at most O(logn).

Main idea: Embed a random recursive tree

Definition (random recursive tree)

Initially we have a single node; in every round a uniformly
random node gives birth to a new child.
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random node gives birth to a new child.



New results using our approach

Theorem (M’14)

These random graph models have diameter O(logn) with high
probability:

1. The (edge) copying model
[Kumar,Raghavan,Rajagopalan,Sivakumar,Tomkins,Upfal’00]

2. Aiello-Chung-Lu models [Aiello,Chung,Lu’01]

3. The Cooper-Frieze model [Cooper,Frieze’01]

4. The generalized linear preference model [Bu,Towsley’02]

5. The PageRank-based selection model
[Pandurangan,Raghavan,Upfal’02]

6. Directed scale-free graphs [Bollobás,Borgs,Chayes,Riordan’03]

7. The forest fire model [Leskovec,Kleinberg,Faloutsos’05]



VC-dimension of neural networks
a somewhat different problem



Artificial Neural networks



Artificial Neural networks

x1

x2

xk

y

w1

w2

wk

w0

y = σ(w0 + w1x1 + w2x2 + . . . + wkxk)

threshold sigmoid ReLU



How many data points is needed to learn?

Theorem (fundamental theorem of statistical learning
(Vapnik, Chervonenkis’71) )

The number of samples required for PAC learning within
error ε in a model with VC-dimension v is essentially
Θ(v/ε).

e.g. VC-dimension of polynomials of degree d is d + 1.
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VC-dimension of neural networks

v(e , `) := maximum VC-dimension of a neural network
e edges
` layers



VC-dimension of neural networks

If the activation function is piecewise polynomial,

v(e , `) ≤ Ce2 [Goldberg, Jerrum’95]

ce` ≤ v(e , `) ≤ Ce`2 [Bartlett, Maiorov, Meir’98]

Theorem (Harvey, Liaw, M’16)

If the activation function is piecewise linear,

ce` log(e/`) ≤ v(e , `) ≤ Ce` log e

GoogleNet’14: ` = 41, e = 7 million
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Further directions

1. What is the effect of depth on representation power of
neural networks?

2. Why stochastic gradient descent “works” for training neural
networks in practice although the objective function is
non-convex?
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