The push&pull protocol for rumour spreading

Abbas Mehrabian

Simons Institute for Theory of Computing, UC Berkeley

University of Washington 28 February 2017

Co-authors

Omer Angel

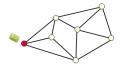
Hüseyin Acan Andrea Collevecchio

Yuval Peres

Nick Wormald

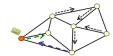
ROUND 0

ROUND 0



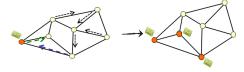
ROUND 1

In each round, every vertex calls a random neighbour



ROUND 0

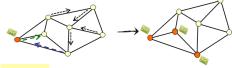
ROUND 1



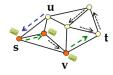
In each round, every vertex calls a random neighbour and they exchange their information

ROUND 0

ROUND 1



ROUND 2



In each round, every vertex calls a random neighbour and they exchange their information

u pulls from s v pushes to t

ROUND 0 ROUND 1

In each round, every vertex calls a random neighbour and they exchange their information

ROUND 2

u pulls from s v pushes to t

The push&pull rumour spreading protocol

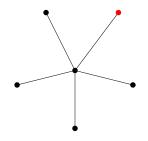
[Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods'87]

- 1. Consider a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- At each time-step 1, 2, ..., every informed vertex sends the rumour to a random neighbour (PUSH); and every uninformed vertex queries a random neighbour about the rumour (PULL).

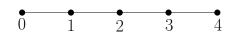
We are interested in the spread time.

Applications

- 1. Replicated databases
- 2. Broadcasting algorithms
- 3. News propagation in social networks
- 4. Spread of viruses on the Internet.



2 rounds



vertex 0 knows rumour at round 0



vertex 0 knows rumour at round 0 vertex 1 is informed at round 1

vertex 0 knows rumour at round 0

vertex 1 is informed at round 1

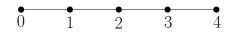
vertex 2 is informed at round

$$1 + \min\{ \text{Geo}(1/2), \text{Geo}(1/2) \} = 1 + \text{Geo}(3/4)$$

- vertex 0 knows rumour at round 0
- vertex 1 is informed at round 1
- vertex 2 is informed at round

$$1+\min\{{\rm Geo}(1/2),{\rm Geo}(1/2)\}=1+{\rm Geo}(3/4)$$

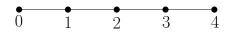
vertex 3 is informed at round 1 + Geo(3/4) + Geo(3/4)



- vertex 0 knows rumour at round 0
- vertex 1 is informed at round 1
- vertex 2 is informed at round

$$1+\min\{\text{Geo}(1/2),\text{Geo}(1/2)\}=1+\text{Geo}(3/4)$$

- vertex 3 is informed at round 1 + Geo(3/4) + Geo(3/4)
- vertex 4 is informed at round 1 + Geo(3/4) + Geo(3/4) + 1



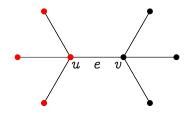
- vertex 0 knows rumour at round 0
- vertex 1 is informed at round 1
- vertex 2 is informed at round

$$1 + \min\{ \text{Geo}(1/2), \text{Geo}(1/2) \} = 1 + \text{Geo}(3/4)$$

- vertex 3 is informed at round 1 + Geo(3/4) + Geo(3/4)
- vertex 4 is informed at round 1 + Geo(3/4) + Geo(3/4) + 1

$$\mathbb{E}[\text{Spread Time}] = \frac{4}{3}n - 2$$

An example: double star

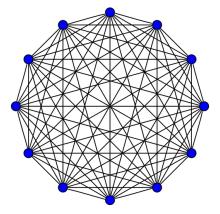


Time to pass edge
$$e=\min\{\mathrm{Geo}(1/4),\mathrm{Geo}(1/4)\}$$

$$=\min\{\mathrm{Geo}(\frac{1}{n/2}),\mathrm{Geo}(\frac{1}{n/2})\}=\mathrm{Geo}(\frac{4}{n}-\frac{4}{n^2})$$

Expected spread time $\sim n/4$

Example: a complete graph



 $\log_3 n$ rounds

[Karp, Schindelhauer, Shenker, Vöcking'00]

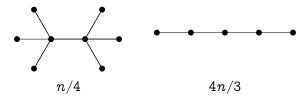
Known results

s(G) expected value of spread time (for worst starting vertex)

Graph G	s(G)
Star	2
Path	(4/3)n + O(1)
Double star	(1+o(1))n/4
Complete	$(1+o(1))\log_3 n$
	[Karp,Schindelhauer,Shenker,Vöcking'00]
$\mathcal{G}(n,p)$	$\Theta(\ln n)$
(connected)	[Feige, Peleg, Raghavan, Upfal'90]

An extremal question

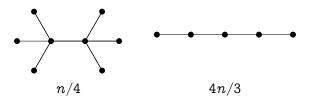
What's the maximum spread time of an n-vertex graph?



 $O(n \log n)$ upper bound by [Feige, Peleg, Raghavan, Upfal'90]

An extremal question

What's the maximum spread time of an n-vertex graph?

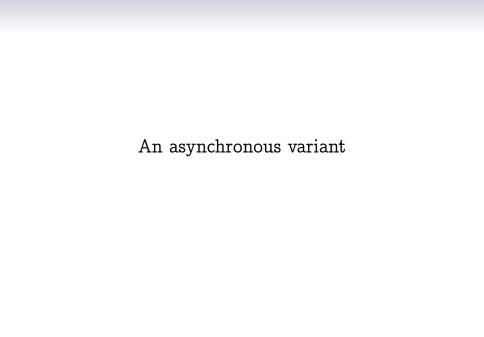


 $O(n \log n)$ upper bound by [Feige, Peleg, Raghavan, Upfal'90]

Theorem (Acan, Collevecchio, M, Wormald'15)

For any connected G on n vertices

Only pull operations are needed!



A (more realistic) variant

Definition (The asynchronous variant: Boyd, Ghosh, Prabhakar, Shah'06)

In each step, one random vertex performs one action (PUSH or PULL).

Each step takes time 1/n.

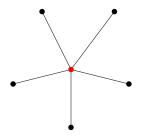
A (more realistic) variant

Definition (The asynchronous variant: Boyd, Ghosh, Prabhakar, Shah'06)

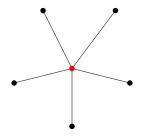
In each step, one random vertex performs one action (PUSH or PULL).

Each step takes time 1/n.

Almost equivalent definition: every vertex has an exponential clock with rate 1, at each clock ring, performs one action.



synchronous protocol: 1 round

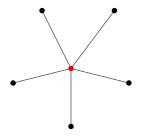


synchronous protocol: 1 round

Coupon collector: Consider a bag containing n different balls.

In each step we draw a random ball and put it back.

How many draws to see each ball at least once?



synchronous protocol: 1 round

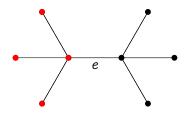
Coupon collector: Consider a bag containing n different balls. In each step we draw a random ball and put it back.

How many draws to see each ball at least once? About $n \ln n$. asynchronous protocol: $n \ln n$ steps = $\ln n$ amount of time

Example: a path

Spread time \sim sum of n-1 independent exponentials $\mathbb{E}[\text{Spread Time}] = n-5/3 \qquad (\text{versus } \frac{4}{3}n-2 \text{ for synchronous})$

An example: double star



Time to pass edge
$$e = \min\{\operatorname{Exp}(\frac{1}{n/2}),\operatorname{Exp}(\frac{1}{n/2})\} = \operatorname{Exp}(4/n)$$

Expected spread time $\sim n/4$

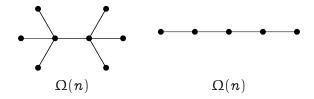
Some known results

a(G) expected value of spread time in asynchronous protocol

Graph G	s(G)	a(G)
Star	2	$\ln n + O(1)$
Path	(4/3)n + O(1)	n + O(1)
Double star	(1+o(1))n/4	(1+o(1))n/4
Complete	$(1+o(1))\log_3 n$	$\ln n + o(1)$
1	l l	l P
	[Karp,Schindelhauer,Shenker,Vöcking'00]	
Hypercube	[Karp,Schindelhauer,Shenker,Vöcking'00] $\Theta(\ln n)$	$\Theta(\ln n)$
Hypercube graph		$\Theta(\ln n)$ [Fill,Pemantle'93]
_	$\Theta(\ln n)$	` ′
graph	$\Theta(\ln n)$ [Feige, Peleg, Raghavan, Upfal'90]	[Fill,Pemantle'93]

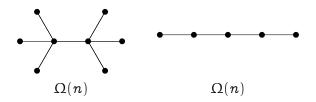
The extremal question

What's the maximum spread time of an n-vertex graph?



The extremal question

What's the maximum spread time of an n-vertex graph?



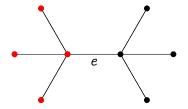
Theorem (Acan, Collevecchio, M, Wormald'15)

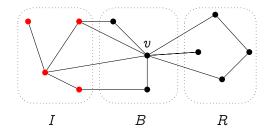
For any connected G on n vertices

$$\ln(n)/5 < a(G) < 4n$$

Only pull operations are needed!

Induction?



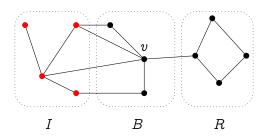


We show inductively the expected remaining time $\leq 2|B|+4|R|$



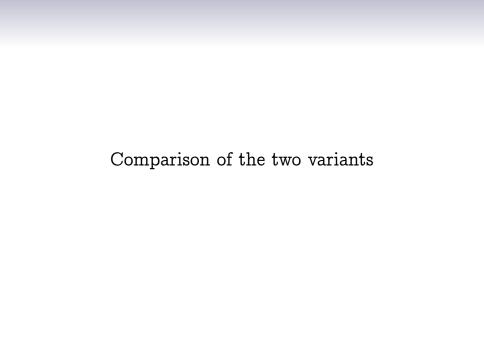
We show inductively the expected remaining time $\leq 2|B| + 4|R|$

1. If there is some boundary vertex v with $\deg_R(v) > \deg_B(v)$: it may take a lot of time to inform v, but once it is informed, $R \downarrow \downarrow$ and $B \uparrow \uparrow$

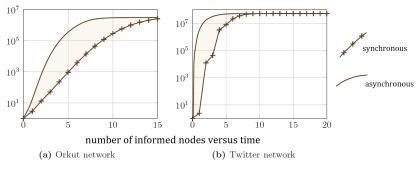


We show inductively the expected remaining time $\leq 2|B| + 4|R|$

- 1. If there is some boundary vertex v with $\deg_R(v) > \deg_B(v)$: it may take a lot of time to inform v, but once it is informed, $R \downarrow \downarrow$ and $B \uparrow \uparrow$
- 2. Otherwise, each boundary vertex has pulling rate $\geq 1/2|B|$, and the B boundary vertices work together "in parallel" and average time for one of them to pull the rumour is 2.



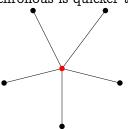
Comparison of the two protocols on the same graph: experiments



Figures from: Doerr, Fouz, and Friedrich'12.

The star

In which graph synchronous is quicker than asynchronous?

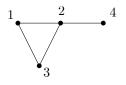


synchronous protocol: 1 round asynchronous protocol: $\ln n$ time

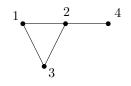
Theorem (Acan, Collevecchio, M, Wormald'15)

$$a(G) \leq O(s(G) \times \ln n).$$

Consider an arbitrary calling sequence:

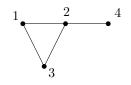


1	2	1	3	4	4	2	1	4	3
$\frac{\downarrow}{2}$	↓ 3	$\stackrel{\downarrow}{2}$	$\stackrel{\downarrow}{2}$	$\overset{4}{\underset{2}{\downarrow}}$	$\overset{\downarrow}{2}$	$\frac{\downarrow}{3}$	↓ 3	$\overset{\downarrow}{2}$	↓ 1



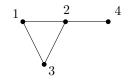
1	2	1	3	4
$\frac{\downarrow}{2}$	↓ 3	$\stackrel{\downarrow}{2}$	$\stackrel{\downarrow}{2}$	$\overset{\downarrow}{2}$

4	2	1	4	3
. ↓	ļ	ļ	↓	↓
2	$\dot{3}$	$\dot{3}$	$\dot{2}$	1



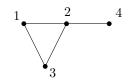
1	2	1	3	4
†	\	↓ 2	1	$\frac{\downarrow}{2}$
2	3	2	2	2

$\begin{array}{ccc} 4 & 2 \\ \downarrow & \downarrow \\ 2 & 3 \end{array}$	$\begin{matrix} 1 \\ \downarrow \\ 3 \end{matrix}$	$\begin{smallmatrix} 4\\ \downarrow\\ 2\end{smallmatrix}$	$\begin{matrix} 3 \\ \downarrow \\ 1 \end{matrix}$
--	--	---	--



1	2	1	3	4
↓ a	↓ S	Į.	↓ S	
2	3	2	2	2

$\begin{array}{ccc} 4 & 2 \\ 1 & 2 \\ 2 & 3 \end{array}$	$\frac{1}{4}$	$\mathop{\downarrow}_{2}^{4}$	$\begin{matrix} 3 \\ \downarrow \\ 1 \end{matrix}$
--	---------------	-------------------------------	--



1	2	1	3	4
$\frac{\downarrow}{2}$	↓ 3	$\frac{\downarrow}{2}$	$\overset{\downarrow}{2}$	$\overset{\downarrow}{2}$

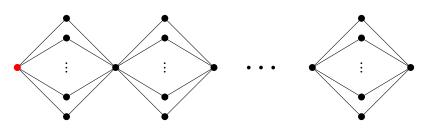
$\frac{4}{2}$	$\begin{array}{c} 2 \\ \downarrow \\ 3 \end{array}$	$\frac{1}{3}$	$\mathop{\downarrow}\limits_{2}^{4}$	$\begin{matrix} 3 \\ \downarrow \\ 1 \end{matrix}$
---------------	---	---------------	--------------------------------------	--

The string of diamonds

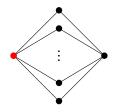
In which graph asynchronous is much quicker than synchronous?

The string of diamonds

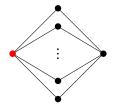
In which graph asynchronous is much quicker than synchronous?



 $logarithmic \ll polynomial$

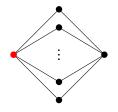


k paths of length 2



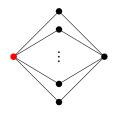
k paths of length 2

Birthday paradox: Consider a bag containing k different balls. In each step we draw a random ball and put it back. How many draws to see some ball twice?



k paths of length 2

Birthday paradox: Consider a bag containing k different balls. In each step we draw a random ball and put it back. How many draws to see some ball twice? $\sqrt{\pi k/2} \approx 1.25\sqrt{k}$



k paths of length 2

Birthday paradox: Consider a bag containing k different balls. In each step we draw a random ball and put it back.

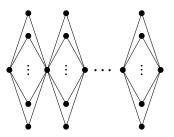
How many draws to see some ball twice? $\sqrt{\pi k/2} \approx 1.25\sqrt{k}$

Time to pass the rumour

Asynchronous: $\leq 4 \times 1.25/\sqrt{k}$

Synchronous: ≥ 2

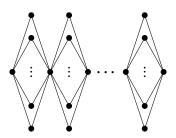
The string of diamonds, continued



 $n^{1/3}$ diamonds, each consisting of $n^{2/3}$ paths of length 2

$$a(G) \le n^{1/3} imes rac{5}{\sqrt{n^{2/3}}} + \ln n = 5 + \ln n$$

The string of diamonds, continued



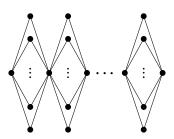
 $n^{1/3}$ diamonds, each consisting of $n^{2/3}$ paths of length 2

$$a(\mathit{G}) \leq n^{1/3} imes rac{5}{\sqrt{n^{2/3}}} + \ln n = 5 + \ln n$$

while

$$s(G) \ge 2n^{1/3}$$

The string of diamonds, continued



 $n^{1/3}$ diamonds, each consisting of $n^{2/3}$ paths of length 2

$$a(\mathit{G}) \leq n^{1/3} imes rac{5}{\sqrt{n^{2/3}}} + \ln n = 5 + \ln n$$

while

$$s(G) \ge 2n^{1/3}$$

 $\frac{s(G)}{a(G)}$ can be as large as $\widetilde{\Omega}(n^{1/3})$, but can it be larger?

Comparison of the two protocols on the same graph: our results

Theorem (Acan, Collevecchio, M, Wormald'15)

$$\frac{s(G)}{a(G)} = \widetilde{O}\left(n^{2/3}\right)$$

Comparison of the two protocols on the same graph: our results

Theorem (Acan, Collevecchio, M, Wormald'15)

$$rac{s(G)}{a(G)} = \widetilde{O}\left(n^{2/3}
ight)$$

$$\frac{s(G)}{a(G)} = O\left(n^{1/2}\right)$$

[Giakkoupis, Nazari, and Woelfel'16]

Comparison of the two protocols on the same graph: our results

Theorem (Acan, Collevecchio, M, Wormald'15)

$$\frac{s(G)}{a(G)} = \widetilde{O}\left(n^{2/3}\right)$$

$$\frac{s(G)}{a(G)} = O\left(n^{1/2}\right)$$

[Giakkoupis, Nazari, and Woelfel'16]

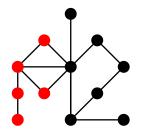
Theorem (Angel, M, Peres'17+)

We have

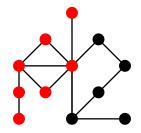
$$\frac{s(G)}{a(G)} = \widetilde{O}\left(n^{1/3}\right),$$

which is tight.

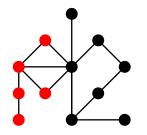
Build a coupling so that



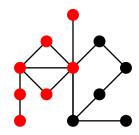
asynchronous contamination by time 1



Build a coupling so that



asynchronous contamination by time 1



If asynchronous contaminates a path of length L, need to have x > L

Lemma

In asynchronous, after n steps (by time 1), rumour does not pass along a path of length $> Cn^{1/3}$ (with high prob).

Lemma

In asynchronous, after n steps (by time 1), rumour does not pass along a path of length $> Cn^{1/3}$ (with high prob).

For fixed path $v_1 v_2 \dots v_L$, this probability is

$$0 \leq 2^L imes inom{n}{L} imes n^{-L} imes \prod_{i=1}^{L-1} \max \left\{ rac{1}{\deg(v_i)}, rac{1}{\deg(v_{i+1})}
ight\}$$

Lemma

In asynchronous, after n steps (by time 1), rumour does not pass along a path of length $> Cn^{1/3}$ (with high prob).

For fixed path $v_1 v_2 \dots v_L$, this probability is

$$0 \leq 2^L imes inom{n}{L} imes n^{-L} imes \prod_{i=1}^{L-1} \max \left\{ rac{1}{\deg(v_i)}, rac{1}{\deg(v_{i+1})}
ight\}.$$

Will show

$$\sum_{L-naths} \prod_{i=1}^{L-1} \frac{1}{\min\{\deg(v_i), \deg(v_{i+1})\}} \le (Cn/L)^{L/2}$$
 (1)

Lemma

In asynchronous, after n steps (by time 1), rumour does not pass along a path of length $> Cn^{1/3}$ (with high prob).

For fixed path $v_1 v_2 \dots v_L$, this probability is

$$0 \leq 2^L imes inom{n}{L} imes n^{-L} imes \prod_{i=1}^{L-1} \max \left\{ rac{1}{\deg(v_i)}, rac{1}{\deg(v_{i+1})}
ight\}.$$

Will show

$$\sum_{L-naths} \prod_{i=1}^{L-1} \frac{1}{\min\{\deg(v_i), \deg(v_{i+1})\}} \le (Cn/L)^{L/2}$$
 (1)

Implies the total probability is $\leq (C\sqrt{n}/L\sqrt{L})^L$. Putting $L=Cn^{1/3}$ makes this o(1).

Want to show

$$\sum_{L-\textit{paths}} \prod_{i=1}^{L-1} \frac{1}{\min\{\deg(v_i),\deg(v_{i+1})\}} \leq (\textit{Cn}/L)^{L/2}$$

Want to show

$$\sum_{L-paths} \prod_{i=1}^{L-1} \frac{1}{\min\{\deg(v_i),\deg(v_{i+1})\}} \leq (Cn/L)^{L/2}$$

Baby version: we have

$$\sum_{L-\mathit{paths}} \prod_{i=1}^{L-1} \frac{1}{\deg(v_i)} \leq n$$

Once we choose the first vertex, the 1/deg factors cancel number of choices for next vertices!

Want to show

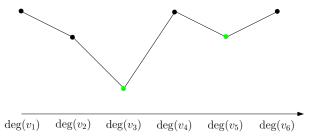
$$\sum_{L-paths} \prod_{i=1}^{L-1} \frac{1}{\min\{\deg(v_i),\deg(v_{i+1})\}} \leq (Cn/L)^{L/2}$$

Consider the local minima vertices in the sequence $\deg(v_1), \deg(v_2), \ldots, \deg(v_L)$

Want to show

$$\sum_{L-paths} \prod_{i=1}^{L-1} \frac{1}{\min\{\deg(v_i),\deg(v_{i+1})\}} \leq (Cn/L)^{L/2}$$

Consider the local minima vertices in the sequence $\deg(v_1), \deg(v_2), \ldots, \deg(v_L)$



Want to show

$$\sum_{L-paths} \prod_{i=1}^{L-1} \frac{1}{\min\{\deg(v_i),\deg(v_{i+1})\}} \leq (Cn/L)^{L/2}$$

Consider the local minima vertices in the sequence $deg(v_1), deg(v_2), \ldots, deg(v_L)$.

Once we choose these vertices, the $1/\min\{\deg,\deg\}$ factors cancel out number of choices for other vertices, so

$$\sum_{L-\textit{vaths}} \prod_{i=1}^{L-1} \frac{1}{\min\{\deg(v_i), \deg(v_{i+1})\}} \leq \sum_{s=0}^{L/2} \binom{L}{s} \cdot \binom{n}{s} \leq (Cn/L)^{L/2}$$

Lemma

In asynchronous, during [0,1], rumour does not pass along a path of length $> Cn^{1/3}$ (with high prob).

Using careful couplings,

asynchronous contamination by time 1

synchronous contamination by time $C(n \ln n)^{1/3}$

$$s(G) \le a(G) \times C(n \ln n)^{1/3}$$

Summary of our results on push&pull

Theorem (Acan, Angel, Collevecchio, M, Peres, Wormald'15,'17)

For any connected G on n vertices,

$$s(\mathit{G}) \! < 5n$$
 $\ln(n)/5 < a(\mathit{G}) \! < 4n$ $rac{1}{\ln n} < rac{s(\mathit{G})}{a(\mathit{G})} < C(n \ln n)^{1/3}$

All bounds are tight, up to constant factors.

Future directions

- 1. Connect s(G)/a(G) with other graph properties.
- 2. How to choose first vertex(es) carefully to minimize the spread time? [Kempe, J. Kleinberg, E. Tardos'03]
- 3. Number of passed messages? [Fraigniaud, Giakkoupis'10]
- 4. More than one message? [Censor-Hillel, Haeupler, Kelner, Maymounkov'12]
- 5. Variation: each node spreads for a bounded number of rounds [Akbarpour, Jackson'16].

Future directions

- 1. Connect s(G)/a(G) with other graph properties.
- 2. How to choose first vertex(es) carefully to minimize the spread time? [Kempe, J. Kleinberg, E. Tardos'03]
- 3. Number of passed messages? [Fraigniaud, Giakkoupis'10]
- 4. More than one message? [Censor-Hillel, Haeupler, Kelner, Maymounkov'12]
- Variation: each node spreads for a bounded number of rounds [Akbarpour, Jackson'16].

