Introduction

Kelner and Madry, FOCS 2009

Algorithm for dense graphs: Colbourn, Myrvold and Neufeld'96 gave an ${\cal O}(n^{2.376})$ algorithm.

Algorithm for sparse graphs: An O(mn) algorithm based on the following theorem, proved independently by Broder'89 and Aldous'90.

Theorem 1 (Theorem 1). Suppose you simulate a random walk in G = (V, E) starting from an arbitrary vertex s until all vertices has been visited. For each $v \in V \setminus \{s\}$, let e_v be the edge through which v was visited for the first time. Then $T = \{e_v\}$ is a uniformly random spanning tree of G.

Today: I will give an $O(m\sqrt{n}\log 1/\delta)$ algorithm to produce a δ -random spanning tree of G. Meaning that the probability of generating a tree T is between $\frac{1-\delta}{|\mathcal{T}(G)|}$ and $\frac{1+\delta}{|\mathcal{T}(G)|}$. I will first present an $O(m^2 \log 1/\delta/\sqrt{n})$ algorithm. Plan:

- 1. Building good decompositions
- 2. Computing the shortcutting probabilities
- 3. Bounding the expected simulation time

1 - Strong (ϕ, γ) -decompositions

Let $S \subseteq V(G)$ and D_1, \ldots, D_k be the connected components of G - S. Let $C = E(G) \setminus \bigcup E(D_i)$. For $X \subseteq V(G)$, let P(X) be the set of vertices of X that have a neighbour outside. Then (D_1, \ldots, D_k, S) is a (ϕ, γ) -decomposition if

- 1. $|C| \leq \phi |E(G)|,$
- 2. $|P(S)| \le \phi |V(G)|$.
- 3. $\forall i$ the diameter of $D_i \leq \gamma$,
- 4. $\forall i |\delta(D_i)| \leq |E(D_i)|.$

Lemma 2 (Lemma 13). For any G and any $\phi = o(1)$, a strong $(\phi, O(1/\phi))$ -decomposition of G can be computed in time $\widetilde{O}(|E(G)|)$.

Proof. • B(v, j) be the ball of radius j around v,

- R(v, j) be the sphere of radius j around v,
- $R^+(v,j) = E(B(v,j+1)) \setminus E(B(v,j)),$
- $R^{-}(v, j) = E(B(v, j)) \setminus E(B(v, j 1)),$

•
$$t = \phi/(1 - \phi)$$
.

Run the following algorithm

```
while G is nonempty do
```

```
choose an arbitrary vertex v and set j = 0
while |R(v, j+1)| > t |V(B(v, j))| OR |R+(v, j+1)| > t |E(B(v,j))|
OR |R-(v, j+1)| > t |E(B(v,j))| do
    j = j + 1
Suppose that you stop at j
Add R(v, j+1) to S and the ball B(v, j) as a new component Di
Delete S, Di and all the incident edges from G
```

- 1. For each *i*, the number edges added to *C* is at most *t* times the edges in $E(D_i)$, so $|C| \leq \phi |E(G)|$.
- 2. For each *i*, the number of vertices added to *S* is at most *t* times the vertices in $V(D_i)$, so $|P(S)| \le |S| \le \phi |V(G)|$.
- 3. For each *i*, we claim the diameter of D_i is $\leq 6(1 + \ln |E(G)|)/(\ln(1+t)) = O(\frac{\ln m}{-\ln(1-\phi)}) = O(\ln m/\phi)$. Assume not. Then for some *i*, a particular one of the conditions has been triggered more than $j/3 = 1 + \ln |E(G)|/\ln(1+t)$ times. If it was the first condition, the ball B(v, j) would have more than $(1 + t)^{j/3} \geq |E(G)|$ vertices! If it was the second (or third) one, then the ball B(v, j) would have more than $(1 + t)^{j/3-1} \geq |E(G)|$ edges!
- 4. If there is a D_i with $|\delta(D_i)|$, then add $V(D_i)$ to S. The size of C becomes at most twice, and the size of P(S) do not change.

2 - The Shortcutting Probabilities

For $v \in D_i$ and $e \in \delta(D_i)$, let $P_v(e)$ be the probability of the random walk leaving D_i through e after entering D_i through vertex D_i .

Lemma 3 (Lemma 9). Given a (ϕ, γ) -decomposition of G, we can compute multiplicative $(1+\epsilon)$ -approximations of all of the $P_v(e)$ in time $\widetilde{O}(\phi m^2 \log 1/\epsilon)$.

Proof. Fix a $D = D_i$ and $e = (u, u') \in \delta(D)$ with $u \in V(D)$. Build graph D' as follows. Add vertex u' and a dummy vertex u^* to D, then for each $(w, w') \in \delta(D) \setminus \{e\}, w \in V(D)$, add an edge (w, u^*) . Notice that for any $v \in V(D), P_v(e)$ is exactly the probability that a random walk in D' started at v will hit u' before it hits u^* .

Now, if we treat D' as an electrical circuit with unit resistance on each edge, in which we impose voltage +1 at u' and 0 at u^* , then the voltage achieved at vis equal to $P_v(e)$. We can compute a $(1 + \epsilon)$ -approximation of all such voltages in time $\widetilde{O}(|E(D')| \log 1/\epsilon)$ using the linear system solver of Spielman and Tang. (an $n \times n$ Laplacian matrix, which multiplied by the voltages vector gives the external current in each vertex by Kirchoff's node law)

The number of such e's is |C|, so the total running time is

$$\widetilde{O}\left(|C|\sum |E(D_i')|\log 1/\epsilon\right) = \widetilde{O}\left(|C|\sum |E(D_i)|\log 1/\epsilon\right) = \widetilde{O}\left((\phi m)m\log 1/\epsilon\right).$$

Lemma 4 (Lemma 10). To get a δ -random spanning tree, one may choose $\epsilon \leq \delta/mn$.

3 - Bounding the Expected Simulation Time

Lemma 5 (Fact 5). The expected number of steps that we the walk moves on edges in C is ϕmn .

Proof. Recall that the cover time of G in the original random walk is O(mn). Now, note that $|C| \leq \phi m$.

Lemma 6 (Lemma 6). The expected number of steps that the walk moves on edges of D_i before covering it is $\widetilde{O}(|E(D_i)|diam(D_i))$.

Proof. The cover time of (usual random walk in) a graph G is $\widetilde{O}(m \log ndiam(G))$. The proof is nontrivial. Here it is important that $|\delta(D_i)| \leq |E(D_i)|$.

Lemma 7 (Lemma 8). The expected simulation time is $\widetilde{O}(m\gamma + \phi mn)$.

Obtaining a Faster Algorithm

For a given i, some $v \in V(D_i)$, and $u \in S$, define $Q_v(u)$ to be the probability that u is the first vertex out of $V(D_i)$ that is reached by a random walk that starts at v.

Lemma 8 (Lemma 14). All $Q_v(u)$ can be computed in time $\widetilde{O}(\phi mn \log 1/\epsilon)$.

Proof. Fix $D = D_i$ and $u \in P(S)$. Consider a new graph D' that we obtain from $G[D \cup P(S)]$ by merging all vertices in $S \setminus \{u\}$ into one vertex u^* . Then $Q_v(u)$ is the probability that a random walk in D' starting from v will hit u before u^* . We can find all such probabilities in time $\widetilde{O}(|E(D')| \log 1/\epsilon)$ by treating the graph as an electrical network and using the linear system solver of Spielman and Teng. The running time is bounded by $\widetilde{O}(|P(S)| \sum |E(D_i)| \log 1/\epsilon) = \widetilde{O}(\phi nm \log 1/\epsilon)$.

But e_v may be undefined for some $v \in P(S)$. To solve this, we remove all edges e_v with $v \in P(S)$ defined. Then contract the connected components. We will get a graph with $\leq \phi n$ vertices. Build a random spanning tree using the algorithm of Colbourn et al. in time $O((\phi n)^{2.376})$.

The total running time is $O(m\sqrt{n}\log 1/\delta)$.