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Algorithm for dense graphs: Colbourn, Myrvold and Neufeld’96 gave an
O(n?376) algorithm.

Algorithm for sparse graphs: An O(mn) algorithm based on the following
theorem, proved independently by Broder’89 and Aldous’90.

Theorem 1 (Theorem 1). Suppose you simulate a random walk in G = (V, E)
starting from an arbitrary vertexr s until all vertices has been visited. For each
v € V\{s}, let e, be the edge through which v was visited for the first time.
Then T = {e,} is a uniformly random spanning tree of G.

Today: I will give an O(m+/nlogl/d) algorithm to produce a §-random
spanning tree of G. Meaning that the probability of generating a tree 7' is
betvlzelzen ‘71_(2‘;” and |71’?_C§)\' I will first present an O(m?log1/§/+/n) algorithm.

an:

1. Building good decompositions
2. Computing the shortcutting probabilities

3. Bounding the expected simulation time



1 - Strong (¢,y)-decompositions

Let S C V(G) and Dy, ..., Dy be the connected components of G — S. Let
C = E(G)\UE(D;). For X CV(G), let P(X) be the set of vertices of X that
have a neighbour outside. Then (D, ..., Dk, S) is a (¢, y)-decomposition if

L O] < ¢|B(G)],

2. [P(S)| < 4[V(G)].

3. Vi the diameter of D; < 7,

4. Vi |6(Dy)| < |E(Dy)]-
Lemma 2 (Lemma 13). For any G and any ¢ = o(1), a strong (6,0 (1/9))-
decomposition of G can be computed in time O (|E(G)|).
Proof. e B(v,j) be the ball of radius j around v,

e R(v,j) be the sphere of radius j around v,
o R¥(v,j) = E(B(v,j + D\E(B(v,)),
o R~(v,5) = (B, )\E(B(v,j - 1))

. t=6/(1-0).
Run the following algorithm

while G is nonempty do
choose an arbitrary vertex v and set j = 0
while |R(v, j+1)| > t |V(B(v, j))| OR [R+(v, j+1)| > t |E(B(v,j)) ]|
OR [R-(v, j+1)| > t |E(B(v,j))| do
j=3+1
Suppose that you stop at j
Add R(v, j+1) to S and the ball B(v, j) as a new component Di
Delete S, Di and all the incident edges from G

1. For each i, the number edges added to C' is at most ¢ times the edges in
E(D;), so |C] < ¢|E(G)].

2. For each 7, the number of vertices added to S is at most ¢ times the vertices
in V(D;), so [P(S)| < |5] < ¢|[V(G)].

3. For each ¢, we claim the diameter of D; is < 6(1+1In|E(G)|)/(In(1+1)) =
O(%) = O(lnm/¢). Assume not. Then for some ¢, a particular one
of the conditions has been triggered more than j/3 = 1+In |E(G)|/ In(1+t)
times. If it was the first condition, the ball B(v, j) would have more than
(1+1)7/3 > |E(G)| vertices! If it was the second (or third) one, then the

ball B(v,j) would have more than (1 +¢)7/3=1 > |E(G)| edges!

4. If there is a D; with |6(D;)|, then add V(D;) to S. The size of C becomes
at most twice, and the size of P(S) do not change.

O



2 - The Shortcutting Probabilities
For v € D; and e € §(D;), let P,(e) be the probability of the random walk
leaving D; through e after entering D; through vertex D;.

Lemma 3 (Lemma 9). Given a (¢,7)-decomposition of G, we can compute
multiplicative (1+ €)-approzimations of all of the P,(e) in time O (¢m?log1/e).

Proof. Fix a D = D; and e = (u,u') € (D) with v € V(D). Build graph
D’ as follows. Add vertex v/ and a dummy vertex u* to D, then for each
(w,w") € §(D)\{e}, w € V(D), add an edge (w,u*). Notice that for any
v € V(D), P,(e) is exactly the probability that a random walk in D’ started at
v will hit «’ before it hits u*.

Now, if we treat D’ as an electrical circuit with unit resistance on each edge,
in which we impose voltage +1 at v’ and 0 at v*, then the voltage achieved at v
is equal to P,(e). We can compute a (1 + €)-approximation of all such voltages
in time O (|E(D')|log1/¢) using the linear system solver of Spiclman and Tang.
(an n x n Laplacian matrix, which multiplied by the voltages vector gives the
external current in each vertex by Kirchoff’s node law)

The number of such e’s is |C|, so the total running time is

0 (113 1E(D)og1/e) = O (1€ |E(Di)|log1/€) = O ((¢m)mlog1/e).
o

Lemma 4 (Lemma 10). To get a d-random spanning tree, one may choose
e < Jd/mn.



3 - Bounding the Expected Simulation Time

Lemma 5 (Fact 5). The expected number of steps that we the walk moves on
edges in C is ¢mn .

Proof. Recall that the cover time of G in the original random walk is O(mn).
Now, note that |C| < ¢m. O

Lemma 6 (Lemma 6). The expected number of steps that the walk moves on
edges of D; before covering it is O (|E(D;)|diam(D;)).

Proof. The cover time of (usual random walk in) a graph G is O (m log ndiam/(G)).
The proof is nontrivial. Here it is important that |§(D;)| < |E(D;)|. O

Lemma 7 (Lemma 8). The expected simulation time is O (m~y + ¢mn).



Obtaining a Faster Algorithm

For a given ¢, some v € V(D;), and u € S, define Q,(u) to be the probability
that u is the first vertex out of V(D;) that is reached by a random walk that
starts at v.

Lemma 8 (Lemma 14). All Q,(u) can be computed in time O (¢mnlog1/e).

Proof. Fix D = D; and u € P(S). Consider a new graph D’ that we obtain from
G[D U P(S)] by merging all vertices in S\{u} into one vertex u*. Then Q,(u)
is the probability that a random walk in D’ starting from v will hit u before
u*. We can find all such probabilities in time O (|E(D’)|log 1/¢) by treating the
graph as an electrical network and using the linear system solver of Spielman
and Teng. The running time is bounded by O (|P(S)|>_|E(D;)|logl/e) =
O (¢nmlog1/e). O

But e, may be undefined for some v € P(S). To solve this, we remove all
edges e, with v € P(S) defined. Then contract the connected components. We
will get a graph with < ¢n vertices. Build a random spanning tree using the
algorithm of Colbourn et al. in time O((¢n)?376).

The total running time is O(m+/nlog1/6).



