
Introduction

Kelner and Madry, FOCS 2009
Algorithm for dense graphs: Colbourn, Myrvold and Neufeld’96 gave an

O(n2.376) algorithm.
Algorithm for sparse graphs: An O(mn) algorithm based on the following

theorem, proved independently by Broder’89 and Aldous’90.

Theorem 1 (Theorem 1). Suppose you simulate a random walk in G = (V,E)
starting from an arbitrary vertex s until all vertices has been visited. For each

v ∈ V \{s}, let ev be the edge through which v was visited for the first time.

Then T = {ev} is a uniformly random spanning tree of G.

Today: I will give an O(m
√
n log 1/δ) algorithm to produce a δ-random

spanning tree of G. Meaning that the probability of generating a tree T is
between 1−δ

|T (G)| and
1+δ

|T (G)| . I will first present an O(m2 log 1/δ/
√
n) algorithm.

Plan:

1. Building good decompositions

2. Computing the shortcutting probabilities

3. Bounding the expected simulation time

1

1 - Strong (φ, γ)-decompositions

Let S ⊆ V (G) and D1, . . . , Dk be the connected components of G− S. Let
C = E(G)\ ∪ E(Di). For X ⊆ V (G), let P (X) be the set of vertices of X that
have a neighbour outside. Then (D1, . . . , Dk, S) is a (φ, γ)-decomposition if

1. |C| ≤ φ|E(G)|,
2. |P (S)| ≤ φ|V (G)|.
3. ∀i the diameter of Di ≤ γ,

4. ∀i |δ(Di)| ≤ |E(Di)|.
Lemma 2 (Lemma 13). For any G and any φ = o(1), a strong (φ, Õ (1/φ))-

decomposition of G can be computed in time Õ (|E(G)|).
Proof. • B(v, j) be the ball of radius j around v,

• R(v, j) be the sphere of radius j around v,

• R+(v, j) = E(B(v, j + 1))\E(B(v, j)),

• R−(v, j) = E(B(v, j))\E(B(v, j − 1)),

• t = φ/(1− φ).
Run the following algorithm

while G is nonempty do

choose an arbitrary vertex v and set j = 0

while |R(v, j+1)| > t |V(B(v, j))| OR |R+(v, j+1)| > t |E(B(v,j))|

OR |R-(v, j+1)| > t |E(B(v,j))| do

j = j + 1

Suppose that you stop at j

Add R(v, j+1) to S and the ball B(v, j) as a new component Di

Delete S, Di and all the incident edges from G

1. For each i, the number edges added to C is at most t times the edges in
E(Di), so |C| ≤ φ|E(G)|.

2. For each i, the number of vertices added to S is at most t times the vertices
in V (Di), so |P (S)| ≤ |S| ≤ φ|V (G)|.

3. For each i, we claim the diameter of Di is ≤ 6(1+ ln |E(G)|)/(ln(1+ t)) =
O(lnm

− ln(1−φ)) = O(lnm/φ). Assume not. Then for some i, a particular one

of the conditions has been triggered more than j/3 = 1+ln |E(G)|/ ln(1+t)
times. If it was the first condition, the ball B(v, j) would have more than
(1 + t)j/3 ≥ |E(G)| vertices! If it was the second (or third) one, then the
ball B(v, j) would have more than (1 + t)j/3−1 ≥ |E(G)| edges!

4. If there is a Di with |δ(Di)|, then add V (Di) to S. The size of C becomes
at most twice, and the size of P (S) do not change.

2

2 - The Shortcutting Probabilities

For v ∈ Di and e ∈ δ(Di), let Pv(e) be the probability of the random walk
leaving Di through e after entering Di through vertex Di.

Lemma 3 (Lemma 9). Given a (φ, γ)-decomposition of G, we can compute

multiplicative (1+ε)-approximations of all of the Pv(e) in time Õ
(
φm2 log 1/ε

)
.

Proof. Fix a D = Di and e = (u, u′) ∈ δ(D) with u ∈ V (D). Build graph
D′ as follows. Add vertex u′ and a dummy vertex u∗ to D, then for each
(w,w′) ∈ δ(D)\{e}, w ∈ V (D), add an edge (w, u∗). Notice that for any
v ∈ V (D), Pv(e) is exactly the probability that a random walk in D′ started at
v will hit u′ before it hits u∗.

Now, if we treat D′ as an electrical circuit with unit resistance on each edge,
in which we impose voltage +1 at u′ and 0 at u∗, then the voltage achieved at v
is equal to Pv(e). We can compute a (1 + ε)-approximation of all such voltages

in time Õ (|E(D′)| log 1/ε) using the linear system solver of Spielman and Tang.
(an n × n Laplacian matrix, which multiplied by the voltages vector gives the
external current in each vertex by Kirchoff’s node law)

The number of such e’s is |C|, so the total running time is

Õ
(
|C|

∑
|E(D′

i)| log 1/ε
)
= Õ

(
|C|

∑
|E(Di)| log 1/ε

)
= Õ ((φm)m log 1/ε) .

Lemma 4 (Lemma 10). To get a δ-random spanning tree, one may choose

ε ≤ δ/mn.

3

3 - Bounding the Expected Simulation Time

Lemma 5 (Fact 5). The expected number of steps that we the walk moves on

edges in C is φmn .

Proof. Recall that the cover time of G in the original random walk is O(mn).
Now, note that |C| ≤ φm.

Lemma 6 (Lemma 6). The expected number of steps that the walk moves on

edges of Di before covering it is Õ (|E(Di)|diam(Di)).

Proof. The cover time of (usual random walk in) a graphG is Õ (m logndiam(G)).
The proof is nontrivial. Here it is important that |δ(Di)| ≤ |E(Di)|.

Lemma 7 (Lemma 8). The expected simulation time is Õ (mγ + φmn).

4

Obtaining a Faster Algorithm

For a given i, some v ∈ V (Di), and u ∈ S, define Qv(u) to be the probability
that u is the first vertex out of V (Di) that is reached by a random walk that
starts at v.

Lemma 8 (Lemma 14). All Qv(u) can be computed in time Õ (φmn log 1/ε).

Proof. Fix D = Di and u ∈ P (S). Consider a new graphD′ that we obtain from
G[D ∪ P (S)] by merging all vertices in S\{u} into one vertex u∗. Then Qv(u)
is the probability that a random walk in D′ starting from v will hit u before
u∗. We can find all such probabilities in time Õ (|E(D′)| log 1/ε) by treating the
graph as an electrical network and using the linear system solver of Spielman
and Teng. The running time is bounded by Õ (|P (S)|∑ |E(Di)| log 1/ε) =

Õ (φnm log 1/ε).

But ev may be undefined for some v ∈ P (S). To solve this, we remove all
edges ev with v ∈ P (S) defined. Then contract the connected components. We
will get a graph with ≤ φn vertices. Build a random spanning tree using the
algorithm of Colbourn et al. in time O((φn)2.376).

The total running time is O(m
√
n log 1/δ).

5

