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Load balancing

Want to re-allocate the balls into bins in order to achieve perfect
balance quickly.

X Desirable: distributed protocol

X Bin-controlled vs. ball-controlled (selfish) protocols

X Synchronous vs. asynchronous protocols

X Desirable: no global knowledge

X Desirable: simplicity

X Randomization often helps!
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Informal protocol description

Randomized local search: Each ball acts independently; at random
times, it chooses a random bin and moves there if its own load is
improved by doing so. [Paul Goldberg’04]

Simple, distributed, asynchronous, randomized, ball-controlled
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Comparison with other ball-controlled protocols

n = number of bins, m = number of balls

X Synchronous protocol, balls know m/n: O(ln ln m + ln n)
Even-Dar and Mansour’05

X Synchronous protocol, no global knowledge: O(ln ln m + n4)

Berenbrink, Friedetzky, Goldberg, Goldberg, Hu, Martin’07

X Synchronous protocol, no global knowledge: O(ln m + n · ln n)
Berenbrink, Friedetzky, Hajirasuliha, Hu’12

X Randomized local search (asynchronous, no global knowledge)
O(n2) Goldberg’04

O
(
ln(n)2 + ln(n) · n2/m

)
Ganesh,Lilienthal,Manjunath,Proutiere,Simatos’12

We show the balancing time is indeed O(ln n + n2/m)
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Formal protocol description

Randomized local search:

1 Each ball has an exponential clock of rate 1. When the clock
rings, the ball is activated.

2 On activation, the ball chooses a random bin and moves there if
its own load is improved by doing so.

Let X1, . . . ,Xm be independent exponentials with rate 1, and let Z be
their minimum.

X Z is exponential with rate m, so EZ = 1/m.

X Pr (Z = X1) = Pr (Z = X2) = · · · = 1/m

If you start looking at the process at any time, the waiting time for the
next ball to be activated is exponential and has mean 1/m, and the
next activated ball is a uniformly random ball.
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Formal protocol description

Randomized local search:

1 Each ball has an exponential clock of rate 1. When the clock
rings, the ball is activated.

2 On activation, the ball chooses a random bin and moves there if
its own load is improved by doing so.

Theorem (Berenbrink, Kling, Liaw and M’16+)

Consider a system of n bins and m balls in an arbitrary initial
configuration. Let T be the time to reach a perfectly balanced
configuration. We have ET ≤ O(ln n + n2/m) and with probability at
least 1− 1/n, we have T ≤ O(ln n + ln n · n2/m).

Tight modulo constants in the big Oh



Tightness of our bound: ET ≤ O(ln n + n2/m)

At least m −m/n balls from bin 1 need to be activated:

1
m

+
1

m − 1
+ · · ·+ 1

m
n + 1

= Hm − Hm/n ≈ ln m − ln(m/n) = ln n

This shows ET ≥ ln n.
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Tightness of our bound: ET ≤ O(ln n + n2/m)

Some ball in bin 1 needs to be activated and choose bin 5.

expected waiting time for some ball in bin 1 to be activated = 1
m
n +1

expected number of attempts to choose the correct bin = n This

shows ET ≥ n
m
n +1 ≥ n2/2m
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Proof of main result

expected balancing time of any initial configuration

≤ O(ln n + n2/m)



A key lemma

Balancing time of left configuration
st
≤ Balancing time of right configuration

∅ := m/n
Discrepancy of a configuration = maximum difference between load
of a bin and the average load = max{`max −∅,∅− `min}.
Perfect balance ≡ discrepancy zero

Lemma (The key lemma)

For any t ≥ 0, consider the configuration `(t) resulting from our
protocol at time t. Let ˜̀(t) denote the configuration resulting from our
protocol at time t under the presence of an adversary who performs
an arbitrary number of destructive moves at arbitrary times. Then

disc(`(t))
st
≤ disc(˜̀(t)).
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A key lemma

∅ = m/n
Discrepancy of a configuration = maximum difference between load
of a bin and the average load = max{`max −∅,∅− `min}.
Perfect balance ≡ discrepancy zero

Lemma (The key lemma)

For any t ≥ 0, consider the configuration `(t) resulting from our
protocol at time t. Let ˜̀(t) denote the configuration resulting from our
protocol at time t under the presence of an adversary who performs
an arbitrary number of destructive moves at arbitrary times. Then

disc(`(t))
st
≤ disc(˜̀(t)).

Helps in two ways: (1) we may do some destructive moves to make
“well-shaped” configurations that are simpler to analyse.
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A key lemma

∅ = m/n
Discrepancy of a configuration = maximum difference between load
of a bin and the average load = max{`max − m

n ,
m
n − `min}.

Perfect balance ≡ discrepancy zero

Lemma (The key lemma)

For any t ≥ 0, consider the configuration `(t) resulting from our
protocol at time t. Let ˜̀(t) denote the configuration resulting from our
protocol at time t under the presence of an adversary who performs
an arbitrary number of destructive moves at arbitrary times. Then

disc(`(t))
st
≤ disc(˜̀(t)).

Helps in two ways: (2) we may “ignore” certain (at the moment
unwanted) moves made by the protocol



Analysis outline

X Initial discrepancy is m −∅, want to reduce to 0

X In the zeroth phase, discrepancy is reduced to ∅
What happens: m −∅ balls leave bin 1
Running time of zeroth phase ≤ O(ln n)

X In the first phase, discrepancy is reduced to O(ln n)
What happens: in each subphase, all loads get much closer to ∅
simultaneously
Running time of first phase ≤ O(ln n)

X In the second phase, discrepancy is reduced to 0
What happens: in each step, we get just one ball closer to
perfect balance
Running time of second phase ≤ O(n2/m)

X Total running time ≤ O(ln n + n2/m)



First phase

Lemma
For any x ≥ 4 ln n, the expected time to reduce discrepancy from x to√

4x ln n is ≤ ln
(∅+x
∅−x

)

We have

ln(∅+ x)− ln(∅− x) = ln
(
1 +

2x
∅− x

)
≤ 2x

∅− x
≤ 4x/∅

Straightforward calculations give

4x
∅

+
4
√

4x ln n
∅

+ . . . ≤ 16 ln n
∅

(
x +
√

x +

√√
x + . . .

)
≤ O (x · ln n/∅) = O(ln n)

is the expected time to bring discrepancy down to O(ln n), hence
completing the first phase.
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First phase

(Chernoff bound)

Let X be a sum of independent 0,1-random variables. For any
ε ∈ [0,1] we have

Pr (|X − EX | > εEX ) < 2e−ε
2EX/3

In particular, if EX ≥ 4 ln n,

Pr
(
|X − EX | >

√
4 ln n · EX

)
< n−2
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First phase

Lemma
For any x ≥ 4 ln n, the expected time to reduce discrepancy from x to√

4x ln n is ≤ ln
(∅+x
∅−x

)
Let t := ln(∅+ x)− ln(∅− x) and consider time interval [0, t ].
Activation probability of a ball = 1− exp(−t) =: p.

Consider a heavy bin.
Each of its balls is activated with probability p, and moves to a light bin with
probability 1/2.
So the number of balls it loses is a sum of independent {0, 1}-random
variables and has mean = (∅+ x)× p/2 = x .
By Chernoff, with probability ≥ 1− n−2 this bin loses between
[x −

√
4x ln n, x +

√
4x ln n] balls, and so will have between ∅−

√
4x · ln n

and ∅+
√

4x · ln n balls at time t .
A similar reasoning works for a light bin.
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Second phase

Lemma

Assuming discrepancy is O(ln n), the average time to reduce the
number of overloaded balls to n is ≤ O

(
n(ln n)2/m

)
.

Lemma
Assuming the number of overloaded balls is n, the average time to
reduce the discrepancy to 1 is ≤ O

(
n2/m

)
.

Lemma
Assuming the discrepancy is 1, the average time to reduce
discrepancy to 0 is ≤ O

(
n2/m

)
.



Second phase

Lemma
Assuming the discrepancy is 1, the average time to reduce
discrepancy to 0 is ≤ O

(
n2/m

)
.

There are A bins of load > ∅, and so there are also A bins of load < ∅.
If A ≥ 1 there are (∅+ 1) · A balls that, when activated, find an underloaded
bin with probability A/n.
The expected time for such a move to happen is 1

A·(∅+1) ·
1

A/n ≤
n

∅·A2

The expected total time to balance out is less than
∞∑

A=1

n
∅ · A2 =

π2

6
× n

∅
= O(n2/m)
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So we have

expected balancing time of any initial configuration

≤ O(ln n + n2/m)

We now briefly consider the case where bins have different speeds...



Non-uniform-speed setting

Load of a bin = number of balls divided by bin’s speed

Let s denote the speeds vector, let p ∈ [0,1]n be a probability
distribution, and let q ∈ [0,1]n be arbitrary.

GRLS(m,n,s,p,q)
(code executed by an activated ball in bin i)
sample random bin i ′ according to p
with probability qi′ do the following:

`cur ← current load of bin i
`new ← load of bin i ′ in case the ball moved to bin i ′

if `new ≤ `cur: move to bin i ′

T (RLS(m,n,s))
st
≤T

(
GRLS

(
m,n,s,

1
n
,

s
smax

))
d≡ nsmax

S
· T
(

GRLS
(

m,n,s,
s
S
,1
))

st
≤ nsmax

S
T (RLS(m,n,1))
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Non-uniform-speeds setting

Theorem (Berenbrink, Kling, Liaw and M’16+)

Consider a system of n bins (with speeds) and m identical balls in an
arbitrary initial configuration. Assume that the minimum speed is 1,
and let smax and S denote the maximum speed and the sum of
speeds, respectively. Let T be the time to reach a perfectly balanced
configuration. We have

ET = O (ln(S) · nsmax/S + smaxS · n/m)

and with probability ≥ 1− 1/n we have
T = O (ln(S) · nsmax/S + ln(n) · smaxS · n/m).

If bins are identical, smax = 1 and S = n, so ET = O
(
ln n + n2/m

)
.


