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After t steps,
v/ a random triangulated plane graph
v’ n =t + 3 vertices
v' 3t + 3 edges
v 2t + 1 faces
called a Random Apollonian Network (RAN).
Zhou, Yan, Wang’05: generating power-law planar graphs.
Theorem (Frieze and Tsourakakis’12)

For any fized k, the fraction of vertices with degree k 1s
concentrated around k3.

Abbas (UBC-CS) Random Apollonian Networks 5 October 15 / 66



The Diameter of a Graph

Diameter = 3
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N
Diameters of RANs

Theorem (Albenque and Marckert’08; Frieze and Tsourakakis’12)
With high probability (asymptotically almost surely),

0.54logn < diameter < 7.1logn
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Theorem (Ebrahimzadeh, Farczadi, Gao, M, Sato, Wormald, Zung’13)
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N
Diameters of RANs

Theorem (Albenque and Marckert’08; Frieze and Tsourakakis’12)
With high probability (asymptotically almost surely),

0.54logn < diameter < 7.1logn

Theorem (Ebrahimzadeh, Farczadi, Gao, M, Sato, Wormald, Zung’13)

diameter

— ¢ ~ 1.668 in probability
logn

A similar result was proved independently by
Cooper, Frieze, Uehara’l3 and Kolossvary, Komjaty, Vagd'13.
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-
Longest paths in RANs

L, = length of a longest path (self-avoiding walk)
Frieze and Tsourakakis’12 Is £, = Q(n) whp?
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-
Longest paths in RANs

Ly, = length of a longest path (self-avoiding walk)
Frieze and Tsourakakis'12 Is £, = Q(n) whp?
EFGMSWZ’13 No! whp we have £, < ne~loglogn
Cooper and Frieze’Marl4 whp we have £, < ne Viegn

Collevecchio, M, Wormald’Aprl4 whp we have
»Cn < n0.99999996 < ne—slogn

Theorem (EFGMSWZ’13)
We have

and
E [En] -0 (n0.88)
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A-tree of a RAN

Abbas (UBC-CS) Random Apollonian Networks 5 October 19 / 66


















In each step, a random leaf gives birth to three children.
This is called a random (recursive) ternary tree.



Proof outline for

length of the longest paths < n0-9999999
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-
Upper Bound for Longest Path

The Main Idea

Claim: A path cannot contain internal vertices of all 9 faces.
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A

If we colour those nodes of A-tree which a path goes inside, each
coloured node can have at most 8 black grandchildren.
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A

If we colour those nodes of A-tree which a path goes inside, each
coloured node can have at most 8 black grandchildren.
New goal: bound the total number of coloured nodes in a random

ternary tree.
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-
Simplified goal

Simplified goal: any binary subtree of a random n-vertex ternary tree
has size < n9-9999
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Simplified goal: any binary subtree of a random n-vertex ternary tree

has size < n999% (with probability — 1 as n — co).

size of binary subtree = 2"1 —1 <2 x (3")l°8:2 < 2 x n0-64
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Simplified goal: any binary subtree of a random n-vertex ternary tree
has size < n99%% (with probability — 1 as n — o).
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Simplified goal: any binary subtree of a random n-vertex ternary tree

has size < n%99% (with probability — 1 as n — o).

size of binary tree = n — o(n)
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|
The strategy

subtree size < 2 x 3"/2

size of any binary subtree
< 2% 3h/2 + 2h/2 % 2 % 3h/2 <0 (310g3 2><h/2+h/2) <0 (30.82h) < 7,083
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Analyzing subtree sizes
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Analyzing subtree sizes
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Analyzing subtree sizes

Growth rule: Start with one blue two green. In each step, choose a uniformly
random leaf, and increase number of leaves of that colour by 2.
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Analyzing subtree sizes

Growth rule: Start with one blue two green. In each step, choose a uniformly
random leaf, and increase number of leaves of that colour by 2.
This is exactly an Eggenberger-Polya (1923) urn!

i in distribution
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Analyzing subtree sizes

Growth rule: Start with one blue two green. In each step, choose a uniformly
random leaf, and increase number of leaves of that colour by 2.
This is exactly an Eggenberger-Polya (1923) urn!

blue vertices in distribution

] Beta(1/2,1)
n—oo

v
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Analyzing subtree sizes

RN
/I\

Growth rule: Start with one blue two green. In each step, choose a uniformly
random leaf, and increase number of leaves of that colour by 2.

blue vertices in distribution

Beta(1/2, 1)
n—1 n—oo0

Draws from an E-P urn are exchangeable, so by de Finetti’s theorem,

blue vertices ~ Binomial(n — 1, Beta(1/2,1))
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analyzing subtree sizes

Suppose 31, 2 ~ Beta(1/2,1) independent.
Size of subtree rooted at b ~ Bin(n — 1, 31)
Size of subtree rooted at ¢ ~ Bin(size of b, 33)
~ Bin(Bin(n — 1, B1), B2) < Bin(n, B1p2)
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-
wrap up

goal:any binary subtree of random n-vertex ternary tree has size < n0-99%°

subtree size < Bin(n, 5152 ... B4)
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wrap up

0.9999

goal:any binary subtree of random n-vertex ternary tree has size < n

subtree size < Bin(n, 5152 ... B4)

For suitable d, each red subtree size is sharply concentrated around n/3¢.
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wrap up

0.9999

goal:any binary subtree of random n-vertex ternary tree has size < n

subtree size < Bin(n, 5152 ... B4)

For suitable d, each red subtree size is sharply concentrated around n/3¢.
Apply union bound over 3¢ nodes gives uniform bound for all red subtrees
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-
wrap up

goal:any binary subtree of random n-vertex ternary tree has size < n0-99%°

subtree size < Bin(n, 5152 ... B4)

For suitable d, each red subtree size is sharply concentrated around n/3¢.
Apply union bound over 3¢ nodes gives uniform bound for all red subtrees
Size of any binary subtree < 2 x 3¢ 4+ 2¢ x uniform bound < n0-99986
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Proof Outline for

—difcfge,fer — ¢ ~ 1.668 in probability
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N
Radius

(¢/2)1logn

Radius : max distance between a vertex and the boundary

Lemma
If radius /logn — c/2 in probability,
then diameter/logn — c in probability.
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distance in graph < distance in tree



distance in graph < distance in tree
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Crucial Observation

Q

v

Distance of a vertex to the boundary (in graph) equals
number of type-1 nodes on path of the corresponding node to the root (in
tree)
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Crucial Observation

Q

v

Distance of a vertex to the boundary (in graph) equals

number of type-1 nodes on path of the corresponding node to the root (in
tree)

New goal: bound the largest number of type-1 nodes in any root-to-leaf path
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Simplified problem

Consider binary trees for simplicity:

a type-1 node has two type-2 children,

a type-2 node has on type-1 child and one type-2 child.

In every step a random leaf gives birth. After n steps,

what’s the largest number of type-1 nodes in any root-to-leaf path?!
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The theorem of Broutin and Devroye

Abbas (UBC-CS) Random Apollonian Networks 5 October 54 / 66



Infinite binary tree:
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Theorem (Broutin and Devroye’06)
Assume:
v All birth times have the same distribution.

v One-level offsprings of distinct vertices are mutually
independent.
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Infinite binary tree:

B

B1 ~ Bg N~y Bﬁ and Bl 1 B3,B4,B5,BG etc.
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Theorem (Broutin and Devroye’06)
Assume:
v All birth times have the same distribution.

v' One-level offsprings of distinct vertices are mutually
independent.
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Theorem (Broutin and Devroye’06)

Assume:
v All birth times have the same distribution.

v' One-level offsprings of distinct vertices are mutually
independent.

Then, height of tree at time t is whp asymptotic to pt,
p := unique solution to

sup{A/p — log(E [exp(AE)])} =log2.
A<0
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Random apollonian networks (cont’d)

Back to random Apollonian networks...
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Simplified problem

A type-1 node has two type-2 children,

a type-2 node has on type-1 child and one type-2 child.
In every step a random leaf gives birth. After n steps,

what’s the largest number of type-1 nodes in any root-to-leaf path?!
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Random apollonian networks (cont’d)

Use exponential birth times !
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Random apollonian networks (cont’d)

B4 B4 Bs BS
e O 0G0 O

Use exponential birth times !
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Random apollonian networks (cont’d)
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Random apollonian networks (cont’d)
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Random apollonian networks (cont’d)

Cy 1 NCa
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Random apollonian networks (cont’d)

v' For every fixed cut-off threshold k, we stochastically sandwich
1-height of our typed tree between heights of B&D-friendly trees.

v As k — oo, lower and upper bounds converge to (c¢/2)logn.

Theorem (EFGMSWZ’13)

Y := unique solution to
z(z —1)f'(z) = f(z)log f(z), z<€(0,1/2),

c:=(1—y1)/logf(y) ~ 1.668

Then for every fized ¢ > 0,

P[(1—¢)clogn < diameter of a RAN < (1+¢)clogn] — 1

v

Abbas (UBC-CS) Random Apollonian Networks 5 October 63 / 66






BEggenberger-Pélya Urn

Theorem (Eggenberger and Pélya 1923)

Start: g green, r red balls.
In each step:

v' pick a random ball and return it to the urn;
v’ add s balls of the same colour.

After n draws:

gn: green balls

t,: number of balls
For any o € [0,1]

. op | 9n _ Tlg+r)/s) (% eaq 4
Jﬂﬁop[n“‘] = Mg/s)(r/s) L”’ S

=P [Beta(g/s,r/s) < o
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Random apollonian networks (cont’d)

Broutin-Devroye’s Theorem

Theorem (Broutin and Devroye 2006)
E .= a positive random variable
b := a positive integer
T = an infinite b-ary tree.
Label the edges of T, randomly,
© The label of every edge 1s distributed like E.

@ For vertices u and v, edges going down from u and v are
independent.
H; .= height of the subtree containing nodes
whose sum of labels on theiwr path to root < t.
Then % — p wn probability
p := unique solution to

sup{A/p — log(E [exp(AE)]) : A< 0} =logb.
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