
Quantum query complexity of
determining whether a graph is connected

Abbas Mehrabian

University of Waterloo

28 November 2013

Abbas Mehrabian Query complexity of connectivity problem 1 / 28



The connectivity problem

Design an algorithm that determines if a given graph is connected.

Example

NO YES
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Access to the input graph

Assume the vertices are numbered from 1 to n.

Each question asked from the black-box is called a query.
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Main results

Theorem

There is a quantum algorithm with query complexity O(n
√

n) for

the connectivity problem with error probability < 1/3.

Indeed, this is optimal up to constant factors.

Theorem

Every classical algorithm for the connectivity problem that has

error probability < 1/3 has query complexity Ω(n2).
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The Quantum Algorithm
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Generalization of Grover’s search algorithm

Theorem (Grover’s search algorithm)

There is a quantum algorithm that given a domain of size N and

black-box access to some function F : {1, . . . ,N} → {0, 1}, for

which it is guaranteed that there exists a solution y with F (y) = 1,

finds a solution evaluating F at O(
√

N) points.

Theorem (Generalization of Grover’s search algorithm)

There is a quantum algorithm that if there are s solutions,

X If s > 0, outputs a random solution asking an expected

number of O
(√

N/s
)

queries.

X If s = 0, the algorithm does not halt.

Note: the algorithm need not know s.

This algorithm will be called the search algorithm.
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Dealing with the never-stopping issue

We present an algorithm that given black-box access to G ,

X if G is connected, outputs YES after asking O(n
√

n) queries

on average; and

X does not halt if G is not connected.

It is not hard to turn this into an algorithm with worst-case query

complexity O(n
√

n) and error probability < 1/3.

Abbas Mehrabian Query complexity of connectivity problem 7 / 28



Dealing with the never-stopping issue

We present an algorithm that given black-box access to G ,

X if G is connected, outputs YES after asking O(n
√

n) queries

on average; and

X does not halt if G is not connected.

It is not hard to turn this into an algorithm with worst-case query

complexity O(n
√

n) and error probability < 1/3.

Abbas Mehrabian Query complexity of connectivity problem 7 / 28



The algorithm

Example
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Example
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Analysis: connected case

When there are k pieces, there are ≥ k − 1 desirable edges, and

domain size is
(n
2

)
. Hence average query complexity of the search

algorithm is O

(√(n
2

)/
(k − 1)

)
= O

(√
n2
/

k
)

.

Average query complexity of the whole algorithm is

n∑
k=2

O

(√
n2/k

)
≤ O

(
n
√

n
)
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Quantum algorithm: the theorem

Theorem

There is a quantum algorithm with query complexity O(n
√

n) for

the connectivity problem with error probability < 1/3.
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Classical lower bound
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0 0 0 0 0 0 1 0
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0 1 0 0 0 0 1 0


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Classical lower bound: the theorem

Theorem

Every classical algorithm for the connectivity problem that has

error probability < 1/3 has query complexity Ω(n2).
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Another model
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Recall: access to the input graph

Vertices are numbered from 1 to n.

This is called the matrix model.
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A different model

Vertices are numbered from 1 to n.

This is called the array model.
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Main results

Theorem

In the array model, there is a quantum algorithm with query

complexity O(n) for the connectivity problem with error probability

< 1/3.

Indeed, this is optimal up to constant factors.

Theorem

In the array model, every classical algorithm for the connectivity

problem that has error probability < 1/3 has query complexity

Ω(n2).
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Outline of the previous algorithm

Outline

1 Partition the vertex set into connected pieces.

2 Merge the pieces one by one.
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Some definitions

The degree of a vertex is its number of neighbours:

The total degree of a set of vertices S , written t(S), is the sum of

degrees of its vertices:

total degree = 8
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The key observation

total degree = 8

In general, we need O
(√

t(P)
)

queries to find an edge going out

of P.

Abbas Mehrabian Query complexity of connectivity problem 24 / 28



The key observation

total degree = 8

In general, we need O
(√

t(P)
)

queries to find an edge going out

of P.

Abbas Mehrabian Query complexity of connectivity problem 24 / 28



The algorithm

In the first phase, asking O(n) classical queries we partition the

vertices into connected pieces P1,P2, . . . ,Pk such that

t(Pi ) < |Pi |
2 ∀i .

In the second phase, we merge the pieces iteratively: in every

iteration,

1 choose a piece P with minimum total degree.

2 Use the search algorithm to find an edge going out of P.

3 merge two pieces using that edge.

It turns out that if G is connected, then the expected query

complexity of the second phase is

O
(√

t(P1) +
√

t(P2) + · · ·+
√

t(Pk)
)
≤ O(n)
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The proved theorem

Theorem

In the array model, there is a quantum algorithm with query

complexity O(n) for the connectivity problem with error probability

< 1/3.
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Classical lower bound
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Wrap-up

model matrix array

classical Θ(n2) Θ(n2)

quantum Θ(n
√

n) Θ(n)

Thank you
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