

Quantum query complexity of determining whether a graph is connected

Abbas Mehrabian
University of Waterloo

28 November 2013

The connectivity problem

Design an algorithm that determines if a given graph is connected.

The connectivity problem

Design an algorithm that determines if a given graph is connected.

The connectivity problem

Design an algorithm that determines if a given graph is connected.

Access to the input graph

Assume the vertices are numbered from 1 to n.

Access to the input graph

Assume the vertices are numbered from 1 to n.

Each question asked from the black-box is called a query.

Main results

There is a quantum algorithm with query complexity $O(n\sqrt{n})$ for the connectivity problem with error probability < 1/3.

Indeed, this is optimal up to constant factors.

Main results

Theorem

There is a quantum algorithm with query complexity $O(n\sqrt{n})$ for the connectivity problem with error probability < 1/3.

Indeed, this is optimal up to constant factors.

Theorem

Every classical algorithm for the connectivity problem that has error probability < 1/3 has query complexity $\Omega(n^2)$.

The Quantum Algorithm

Generalization of Grover's search algorithm

Theorem (Grover's search algorithm)

There is a quantum algorithm that given a domain of size N and black-box access to some function $F:\{1,\ldots,N\} \to \{0,1\}$, for which it is guaranteed that there exists a solution y with F(y)=1, finds a solution evaluating F at $O(\sqrt{N})$ points.

Generalization of Grover's search algorithm

Theorem (Grover's search algorithm)

There is a quantum algorithm that given a domain of size N and black-box access to some function $F:\{1,\ldots,N\} \to \{0,1\}$, for which it is guaranteed that there exists a solution y with F(y)=1, finds a solution evaluating F at $O(\sqrt{N})$ points.

Theorem (Generalization of Grover's search algorithm)

There is a quantum algorithm that if there are s solutions,

- ✓ If s > 0, outputs a random solution asking an expected number of $O\left(\sqrt{N/s}\right)$ queries.
- ✓ If s = 0, the algorithm does not halt.

Note: the algorithm need not know s.

Generalization of Grover's search algorithm

Theorem (Grover's search algorithm)

There is a quantum algorithm that given a domain of size N and black-box access to some function $F:\{1,\ldots,N\} \to \{0,1\}$, for which it is guaranteed that there exists a solution y with F(y)=1, finds a solution evaluating F at $O(\sqrt{N})$ points.

Theorem (Generalization of Grover's search algorithm)

There is a quantum algorithm that if there are s solutions,

- ✓ If s > 0, outputs a random solution asking an expected number of $O\left(\sqrt{N/s}\right)$ queries.
- ✓ If s = 0, the algorithm does not halt.

Note: the algorithm need not know s.

This algorithm will be called the search algorithm.

Dealing with the never-stopping issue

We present an algorithm that given black-box access to G,

- \checkmark if G is connected, outputs YES after asking $O(n\sqrt{n})$ queries on average; and
- \checkmark does not halt if G is not connected.

Dealing with the never-stopping issue

We present an algorithm that given black-box access to G,

- ✓ if *G* is connected, outputs YES after asking $O(n\sqrt{n})$ queries on average; and
- \checkmark does not halt if G is not connected.

It is not hard to turn this into an algorithm with worst-case query complexity $O(n\sqrt{n})$ and error probability < 1/3.

Analysis: connected case

Analysis: connected case

When there are k pieces, there are $\geq k-1$ desirable edges, and domain size is $\binom{n}{2}$. Hence average query complexity of the search algorithm is $O\left(\sqrt{\binom{n}{2}\Big/(k-1)}\right) = O\left(\sqrt{n^2/k}\right)$.

Analysis: connected case

When there are k pieces, there are $\geq k-1$ desirable edges, and domain size is $\binom{n}{2}$. Hence average query complexity of the search algorithm is $O\left(\sqrt{\binom{n}{2} \Big/ (k-1)}\right) = O\left(\sqrt{n^2/k}\right)$. Average query complexity of the whole algorithm is

$$\sum_{k=2}^{n} O\left(\sqrt{n^2/k}\right) \le O\left(n\sqrt{n}\right)$$

Quantum algorithm: the theorem

Theorem

There is a quantum algorithm with query complexity $O(n\sqrt{n})$ for the connectivity problem with error probability < 1/3.

Classical lower bound

Classical lower bound

0	1	0	0	0	0	0	0
1	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	0	0	1	0	0
	U	U	U	U	_	U	U
0	-	0	0		0	1	0
1	-		0				

Γ	0	1	0	0	0	0	0	0
	1	0	1	0	0	0	0	1
	0	1	0	1	0	0	0	0
	0	0	1	0	0	0	0	0
	0	0	0	0	0	1	0	0
	0	0	0	0	1	0	1	0
	0	0	0	0	0	1	0	1
	0	1	0	0	0	0	1	0

Classical lower bound: the theorem

Theorem

Every classical algorithm for the connectivity problem that has error probability < 1/3 has query complexity $\Omega(n^2)$.

Another model

Recall: access to the input graph

Vertices are numbered from 1 to n.

This is called the matrix model.

A different model

Vertices are numbered from 1 to n.

A different model

Vertices are numbered from 1 to n.

This is called the array model.

Main results

Theorem

In the array model, there is a quantum algorithm with query complexity O(n) for the connectivity problem with error probability < 1/3.

Indeed, this is optimal up to constant factors.

Main results

Theorem

In the array model, there is a quantum algorithm with query complexity O(n) for the connectivity problem with error probability < 1/3.

Indeed, this is optimal up to constant factors.

Theorem

In the array model, every classical algorithm for the connectivity problem that has error probability < 1/3 has query complexity $\Omega(n^2)$.

Outline of the previous algorithm

Outline

- 1 Partition the vertex set into connected pieces.
- 2 Merge the pieces one by one.

Some definitions

The degree of a vertex is its number of neighbours:

Some definitions

The degree of a vertex is its number of neighbours:

The total degree of a set of vertices S, written t(S), is the sum of degrees of its vertices:

The key observation

total degree = 8

The key observation

In general, we need $O\left(\sqrt{t(P)}\right)$ queries to find an edge going out of P.

The algorithm

In the first phase, asking O(n) classical queries we partition the vertices into connected pieces P_1, P_2, \ldots, P_k such that $t(P_i) < |P_i|^2 \quad \forall i$.

The algorithm

In the first phase, asking O(n) classical queries we partition the vertices into connected pieces P_1, P_2, \ldots, P_k such that $t(P_i) < |P_i|^2 \quad \forall i$.

In the second phase, we merge the pieces iteratively: in every iteration,

- 1 choose a piece P with minimum total degree.
- ② Use the search algorithm to find an edge going out of P.
- 3 merge two pieces using that edge.

The algorithm

In the first phase, asking O(n) classical queries we partition the vertices into connected pieces P_1, P_2, \ldots, P_k such that $t(P_i) < |P_i|^2 \quad \forall i$.

In the second phase, we merge the pieces iteratively: in every iteration,

- 1 choose a piece P with minimum total degree.
- ② Use the search algorithm to find an edge going out of P.
- 3 merge two pieces using that edge.

It turns out that if G is connected, then the expected query complexity of the second phase is

$$O\left(\sqrt{t(P_1)} + \sqrt{t(P_2)} + \dots + \sqrt{t(P_k)}\right) \le O(n)$$

The proved theorem

In the array model, there is a quantum algorithm with query complexity O(n) for the connectivity problem with error probability < 1/3.

Classical lower bound

Classical lower bound

1	2	4	7	
2	1	3	4	
3	4	2	5	
4	3	1	2	
5	3	8	6	d
6	5	7	8	
7	8	1	6 5	
8	7	6	5	

Wrap-up

model	matrix	array
classical	$\Theta(n^2)$	$\Theta(n^2)$
quantum	$\Theta(n\sqrt{n})$	$\Theta(n)$

Wrap-up

model	matrix	array
classical	$\Theta(n^2)$	$\Theta(n^2)$
quantum	$\Theta(n\sqrt{n})$	$\Theta(n)$

Thank you

