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(9.) The whole method may be illustrated by the following numerical example :—

Breadth of « Forehead” of Crabs.—-Professor W, F. R. WELDON has very kindly
given me the following statistics from among his measurements on crabs. They are
for 1000 individuals from Naples. The abscisse of the curve are the ratio of * fore-
head ” to body-length, and one unit of abscissa = '004 of body-length. No. 1 of the
abscissee corresponds to "580 — '583 of body-length. The ordinates represent the
number of individual crabs corresponding to each set of ratios of forehead to body-
length. Thus there was one crab fell into the range "580 — 583, three fell into the
range ‘584 — *587, five into the range '588 — *591, and so on. The average length
of animals measured 35 millims., and measurements were recorded to *1 millim.

——— S - |
Abscisse. Ordinates. | Abscisse. Ordinates.
— _ I .
1 1 16 74
2 3 17 84
3 5 18 86
4 2 19 96
5 7 20 85
6 10 21 75
7 13 22 47
8 19 23 43
9 20 24 24
10 25 25 19
11 40 26 9
12 31 27 5]
| 13 60 28 0
| 14 62 29 1
| 15 54




Observation: data is asymmetric.
Hypothesis: may be a mixture of two Gaussians.
Method: numerically matching the moments.




Learning mixtures of Gaussians in modern times

These days trying to fit data with mixtures of Gaussians is
popular in data science.

Modern applications: high-dimensional data
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Learning mixtures of Gaussians in modern times

These days trying to fit data with mixtures of Gaussians is
popular in data science.

Modern applications: high-dimensional data
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Why mixtures of Gaussians?
v’ fit some natural data well
v universal approximators
v’ clustering



Multivariate normal distribution:

exp (—%(w —w)TE (2 - u))

for z ¢ R¢
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O
Multivariate normal distribution:

exp (_%(fﬂ —w)Tzz - ”))
Nus(z) = (2m)4/2,/det ()

X ~Nyg: BEIX] = p € RLE[(X —p)(X — )| =% e R

for z € R




High-dimensional Gaussians

Multivariate normal distribution:

exp (—3(z — WXz — )

f € R¢
(27)4/2/det () ore

Nuz(z) =

X ~ Nz EX] = p e REE[(X — (X — )] =L e R

Mixture of k Gaussians in R%: Y %  w, N,
mixture weights satisfy w; > 0, > w; =1

Parameters of the model: (w;, p;, ;)% ,: ©(kd?) parameters
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What does it mean to learn/estimate a mixture of Gaussians
given data?
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S
Given samples zi,..., Z,, find parameters that maximize the

likelihood:
H (Z Wy u;@“’”)

=1 =1



First answer: maximum likelihood estimation

Given samples zi,..., Z,, find parameters that maximize the
likelihood:
n k
H ( ijuj,Z;'(mi)>
i=1 \j=1

v' Non-convex optimization problem, NP-hard
[Arora and Kannan 2005]

v' Widely used in practice: expectation-maximization (EM)
an iterative algorithm

v' Convergence not well understood, very sensitive to
initialization
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Given samples from some unknown mixture of Gaussians
Zle w;N (1, £;), find the parameters within e.



Second answer: parameter estimation

Given samples from some unknown mixture of Gaussians
Zf;l w; N (s, Z;), find the parameters within ¢.

v Active area of research in theoretical computer science
[Dasgupta 1999]

v" Computational complexity: polynomial in d and 1/¢
[Kalai, Moitra, Valiant 2010] [Belkin, Sinha 2010]

V' Any algorithm has sample complexity exponential in &
[Moitra, Valiant 2010]
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Third answer: density estimation

Given samples from an unknown mixture of Gaussians f,
output a density f that is close to f with high probability, 99%.

Close in L! distance:

|7 =71, = 1=

~

flz) — f(z)|dz = 2sup 4cRa

[4F =147
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Third answer: density estimation

Given samples from an unknown mixture of Gaussians f,
output a density f that is close to f with high probability, 99%.

Close in L! distance:
|f =F|, = Jee |f(2) = F(2)] do = 25up sy

fAf_fAﬂ

Bounds for parameter estimation do not translate to bounds for
density estimation: zero-mean 2-dimensional Gaussians with

5= 1 —0.99 and Ty — 1 -1
—0.99 1 -1 1

Close parameters, large L' distance.
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Density estimation

Given samples from an unknown density f from some known
family C of densities, output a density f that is close to f.

REMARKS ON SOME NONPARAMETRIC ESTIMATES OF
A DENSITY FUNCTION*

By MURRAY ROSENBLATT?

1956

University of Chicago

On the Learnability of Discrete Distributions

(EXTENDED ABSTRACT) 1 9 9 L/,

Michael Kearns Yishay Mansour Dana Ron
AT&T Bell Laboratories Tel-Aviv University Hebrew University
Ronitt Rubinfeld Robert E. Schapire Linda Sellie

Cornell University AT&T Bell Laboratories University of Chicago
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Precise question we study today

Question

Let f be an unknown mixture of k¥ Gaussians in R¢. How many
i.i.d. samples from f is needed to produce, with high
probability, a density 7 satisfying IIf —le <e?

Remarks:

1.
2.
3.

Algorithm knows &
Focus is on sample complexity

Equivalent formulation: given n samples from f € C, how
small can you make E [||f —f||1} ? Minimax risk

Unbounded for LP>! or KL

21
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Large L? distance
Large KL divergence
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Density

= 1 1 1 [T 1 |

Unfortunately, sample complexity is exponential in d.



Question

Let f be an unknown mixture of ¥ Gaussians in R?. How many
i.i.d. samples from f is needed to produce, with high
probability, a density f satisfying ||f — f||1 < €?

k = 1: sample complexity < O(d?/e?)
compute empirical mean and covariance, and use Gaussian
concentration
d = 1: sample complexity < O(k/e?)
approximate by piecewise polynomials
[Chan, Diakonikolas, Servedio, Sun 2014]
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Question

Let f be an unknown mixture of ¥ Gaussians in R?. How many
i.i.d. samples from f is needed to produce, with high
probability, a density f satisfying ||f — f||1 < €?

k = 1: sample complexity < O(d?/e?)
compute empirical mean and covariance, and use Gaussian
concentration
d = 1: sample complexity < O(k/e?)
approximate by piecewise polynomials
[Chan, Diakonikolas, Servedio, Sun 2014]

Question: sample complexity < number of parameters divided by £2?
Indeed we will show
sample complexity < kd?/e? x log?(d)log(k) = O(kd?/e?)
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Known results - 1

Definition

Given an i.i.d. sample from an unknown density f € C, output
¥ satisfying Ilf —f||1 < ¢ with high probability.

me(e) = the smallest number of required samples.

k-mix(C) = class of distributions formed by taking k-mixtures
of elements of C
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Known results - 1

Definition

Given an i.i.d. sample from an unknown density f € C, output
¥ satisfying Ilf —f||1 < ¢ with high probability.

me(e) = the smallest number of required samples.

k-mix(C) = class of distributions formed by taking k-mixtures
of elements of C

Theorem (Ashtiani, Ben-david, M2017)

For any class C, sample complezity for learning
k-miz(C) < O(me(e) x klogk/e?)

Corollary

Sample complezity for learning miztures of Gaussians
< O((d?/€?) x klogk/e?) = O(kd?log(k)/e*)
27



y(c) = {{m €RY:fi(a) > hle)): i fo € c}

1. me(e) < O(VC-dim(Y(C))/e?) [Devroye and Lugosi 2001]
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Known results - 2

Y(c) = {{x €R®: fi() > fola)) fu i € c}

1. me(e) < O(VC-dim(Y(C))/e?) [Devroye and Lugosi 2001]

2. When C = mixtures of Gaussians,
VC-dim(Y (C)) < O(k*d*) [Khovanskii 1991], [Karpinski and
Macintyre 1997], [Anthony and Bartlett 1999]

3. Gives an upper bound of O(k*d*/e?) for the sample
complexity of mixtures of Gaussians.

We will improve this to kd?/e2.
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Lower bounds
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Lower bounds?

Best known lower bound was Q(kd/e?).
[Suresh, Orlitsky, Acharya, and Jafarpour 2014]

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan’18)

Any algorithm that learns miztures of Gaussians has
sample complezity Q(kd?/e?).

Suffices to show lower bound of Q(d?/e?) for a single Gaussian.
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Lower bound proof

Suffices to show lower bound of Q(d?/e?) for a single Gaussian.

General idea: find lots of distributions that are hard to
distinguish but far in L! distance.
[LeCam 1973], [Hasminskii 1976], [Assoud 1983]
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Lower bound proof

Suffices to show lower bound of Q(d?/e?) for a single Gaussian.

General idea: find lots of distributions that are hard to
distinguish but far in L! distance.
[LeCam 1973], [Hasminskii 1976], [Assoud 1983]

Hasminskii+Fano’s inequality: find 20(4%) Gaussians with
pairwise KL-divergence < ¢? and pairwise L' distance 2 e

filz)

dz Kullback — Leibler]
AE

KL(f, || fo) = Jfl(x)log

33



Lower bound proof

Need to build 22(¢°) Gaussians with pairwise KL-divergence
< ¢? and pairwise L' distance > .

We will use zero-mean Gaussians, so just need to specify the
covariance matrices.

34



Lower bound proof

Need to build 22(¢°) Gaussians with pairwise KL-divergence
< €2 and pairwise L' distance > .

We will use zero-mean Gaussians, so just need to specify the
covariance matrices.

First construction [Ashtiani, Ben-David, Harvey, Liaw, M,
Plan’18]. Repeat 29" times: start with an identity covariance
matrix, then choose a random subspace of dimension d/9 and
slightly increase the eigenvalues corresponding to this
eigenspace: L =1+ = UUT, with U € R%*%/ orthonormal.
Then prove that with large probability, any two of these have
L' distance > .
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Lower bound proof

Need to build 22(¢°) Gaussians with pairwise KL-divergence
< ¢? and pairwise L' distance > e.

We will use zero-mean Gaussians, so just need to specify the
covariance matrices.

Second construction (combinatorial) [Devroye,M,Reddad
2018|. For d = 3, consider the following inverse covariance
matrices:

1 -5 -8\ (1 5 1 - 1 -5 &
5 1 —§|,|8 1 —8|,| 5 1 &|,[-8 1 &
5 -5 1 5 —& 1 5 5 1 5§ & 1

For general d, build 24°/10 inverse covariance matrices so that
any two of them are different in at least d2/3 coordinates

(Gilbert-Varshamov bound in coding theory).
36



Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan’18)

Any algorithm that learns miztures of Gaussians has
sample complezity Q(kd?/e?).
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Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan’18)

Any algorithm that learns miztures of Gaussians has
sample complezity Q(kd?/e?).

Next: upper bound

38



me (&) = sample complexity for learning a density from class C.

If C = miztures of k Gaussians in R¢, then
me(e) = O(kd?/e?).




Covering number argument

Lemma (Yatracos 1985)

Suppose there exist fi,...,fu € C such that for any f €C,

there exists some v with ||f — fil|1 < e. Then
me(e) = O(log(M)/€?).

Algorithm:
= {{:z: (filz) > fi(z)} for 0,7 = 1,...,m}

p = empirical distribution
Output

arg min max
j=1,..M A€Y

fj(A)—p(A)‘

Analysis: Chernoff bound + union bound

40



Suppose there exist fi,...,fu € C such that for any f €C,
there exists some 1 with ||f — f;||1 < e. Then

me(e) = O(log(M)/e?).




Covering number argument

Lemma (Yatracos 1985)

Suppose there exist fi,...,fu € C such that for any f €C,
there exists some © with ||f — fi||1 < e. Then

me(e) = O(log(M)/e?).

A bound on the covering number of a distribution class bounds

its sample complexity.

covering number= ¢-net number= packing number=

e-Kolmogorov entropy= metric entropy 42



Unfortunately, Gaussian distributions have infinite covering
number, even if the mean is bounded.

43



Gaussians are not bounded

Unfortunately, Gaussian distributions have infinite covering
number, even if the mean is bounded.

Our novel idea to solve this: Use some of the data to reduce the
search space significantly. To formalize this idea, we introduce
the notion of compression.

44



Gaussians are not bounded

Unfortunately, Gaussian distributions have infinite covering
number, even if the mean is bounded.

Our novel idea to solve this: Use some of the data to reduce the
search space significantly. To formalize this idea, we introduce
the notion of compression.
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|¥(5,8) - Nwo)| <e

One-dimensional Gaussians admit (100/¢, 2)-compression.
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Compression implies learnability

Definition (compression)

Class C admits (n(e),T(¢e))-compression if:

Vf € C, after n(e) i.i.d. samples from f are generated,
with high probability 3t(¢) of the samples and T(¢) bits
which define some f satisfying ||f —?Hl <e.

One-dimensional Gaussians admit (100/¢, 2)-compression.

Lemma (compression implies learnability)

If C admaits (n,T)-compression, me(e) = O (n + Tt’#)
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Compression implies learnability

Definition (compression)

Class C admits (n(e),T(¢e))-compression if:

Vf € C, after n(e) i.i.d. samples from f are generated,
with high probability 3t(¢) of the samples and T(¢) bits
which define some f satisfying ||f —?Hl <e.

One-dimensional Gaussians admit (100/¢, 2)-compression.

Lemma (compression implies learnability)

If C admaits (n,T)-compression, me(e) = O (n + Tt’#)
Algorithm: Exhaustive search + Yatracos’ algorithm

Running time: n*
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Proof of upper bound: compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit 5(d, d?)-compression.

2. Compressing mixtures

If C admits (n,T)-compression, then k-mix(C) admits
O(kn, kt)-compression.

3. Compression implies learnability

If C admits (n,T)-compression, me(e) = O(n + t/e2).

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan’18)

If C is miztures of k Gaussians in R¢ then
me(e) = O(kd?/e?).
53



S
d-dimensional Gaussians admit 5(d, d?)-compression.

T
Nk, vt 'Ul + 2y )

(7



d-dimensional Gaussians admit a(d, d?)-compression.

N Z) =N(wvof +vwu)).
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d-dimensional Gaussians admit a(d, d?)-compression.

N Z) =N(wvof +vwu)).
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d-dimensional Gaussians admit 5(d, d?)-compression.

N, Z) =N (o] + vy ).
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Proof of upper bound using compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit O(d, d?)-compression.

In general, use O(d) data points+bits to encode the mean, and
O(d) for each eigenvector.
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Proof of upper bound using compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit 5(d, d?)-compression.

Lemma (Litvak, Pajor, Rudelson, Tomczak-Jaegermann 2005)

If we take O(dlog d) samples from N (0, 13), their conver
hull with high probability contains %Bﬁi

By discretizing [—1,1]¢1°8(4/¢) can encode any direction using
convex combinations of the samples within error

Uses dlog d + dlog(d/e) samples+bits to encode each
eigenvector
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Main result

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan,
NeurIPS 2018)

Given O(kd?/e?) samples from an unknown mizture of k
Gausstans tn d dimensions, we can output a density that is
e-close in L' to the underlying density with high probability.
Moreover, any algorithm achieving this task requires at least
Q(kd?/e?) many samples.

improve previous upper bounds of O(kd?/e*) and O(k*d*/e?), and
the lower bound of Q(kd/e?).

Upper bound. a novel technique for distribution learning based on
compressions, high-dimensional geometry + Yatracos’ algorithm.
Lower bound. a packing argument, Fano’s inequality.

Agnostic learning. Input p-close = output is (6p + ¢)-close
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Open questions
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Open questions

. Polynomial time algorithm?

(a) does not exist in the statistical query model
[Diakonikolas, Kane, Steward 2017]

(b) exists for fixed k and spherical Gaussians
[Acharya, Jafarpour, Orlitsky, Suresh 2014]

(c) exists for d = 1, but is non-proper
[Chan, Diakonikolas, Servedio, Sun 2014]

. What if k£ is not known?

3. Sample complexity for general classes?

. Bounded sample complexity = bounded compression size?
Holds for binary classification: [Moran, Yehudayoff 2016]
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Research direction 1

What is the sample complexity for learning a class C?

v Relate this to some notion of dimension of the class?
v' Apply the compression idea to other classes?

v’ Probabilistic graphical models, e.g. the Ising model
[Devroye, M, Reddad’18]
v Distributions generated by neural networks

Picture taken from the work of Karras, Aila, Laine, and Lehtinen 2017
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Research direction 2: computational complexity

Which classes are learnable in polynomial time?

Polynomial time algorithm for mixtures of Gaussians?

Exists for mixtures of spherical Gaussians.
[Suresh, Orlitsky, Acharya, and Jafarpour 2014]
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Research direction 2: computational complexity

Which classes are learnable in polynomial time?

Polynomial time algorithm for mixtures of Gaussians?

Exists for mixtures of spherical Gaussians.
[Suresh, Orlitsky, Acharya, and Jafarpour 2014]

Research direction 3: robustness

Design learners that are robust against noisy data.

Our algorithm works in agnostic learning.

What if a small fraction of the data is corrupted in an
adversarial way?
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Research direction 4: online learning

What if data is not revealed at once, but is received in an
online manner? Can we compete against a batch algorithm that
sees all the data at once?

Research direction 5: model selection

Can we learn the class C itself from data?

What if the number of Gaussian components, &, is not known?
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Popular method in practice for density estimation

Kernel density estimation—continued

Table 4.2 Sample size required (accurate to about 3 significant
figures) to ensure that the relative mean square error at zero is less
than 0.1, when estimating a standard multivariate normal density
using a normal kernel and the window width that minimizes the
mean square error at zero

Dimensionality Regquired sample size

4
19

67

223

768
2790
10 700
43700
187 000
842 000

OO0 DE W —

—

Silverman 1998, Density estimation for Statistics and Data Analysis 68



For a family ) of subsets of X, the VC-dimension of ) is the
size of the largest set A C X, such that for any B C A there
exists some Y € Y with Y N A = B.



OR®
(9 9
()
Example (The Ising model). Each X; € {—1,+1} and

PXy =x,..., X5 = z4] ocexp( Z wz]xzmj)

yeE(G)

Let Ig = Ising models on G. Then, mz,(e) = O(|E(G)|/e?).



Interesting classes - 2

& 7 &)
‘ V= =Vl = F = ‘ EL g !
& . N i \ y
l \=/ S \ i A -
A, ] A
) N A T A
bol : i f
’ S ¥~ ; ~ | [& & IV |l 5
1 \ f! Vi
N ) N i
-~ ? “ - it i
A= = N i

[Karras, Aila, Laine, and Lehtinen 2017]
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If C admits (n,T)-compression, then k-mix(C) admits
(nklog(k), kT + k log k)-compression.

Let P = [Py + 1 P, + 3 P3, where each P; is (n,2)-compressible.



If C admits (n,T)-compression, then k-mix(C) admits
(nklog(k), kT + k log k)-compression.

Let P = [Py + 1 P, + 3 P3, where each P; is (n,2)-compressible.
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If C admits (n,T)-compression, then k-mix(C) admits
(nklog(k), kT + k log k)-compression.
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If C admits (n,T)-compression, then k-mix(C) admits
(nklog(k), kT + k log k)-compression.

Let P = 1P, + 1 P, + 1 P3, where each P; is (n,2)-compressible.



If C admits (n,T)-compression, then k-mix(C) admits
(nklog(k), kT + k log k)-compression.

Let P = 1P, + 1P, + 1 P;, where each P; is (n,2)-compressible.

Let P=1P +1P, + 1P



Suppose there exist fi, ..., fir € C such that for any f € C, there
exists some 1 with ||f — fi||1 < ¢/5. Then me(e) = O(log(M)/e?).
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Lemma (Yatracos 1985)

Suppose there exist fi, ..., fir € C such that for any f € C, there
exists some 1 with ||f — fi||1 < ¢/5. Then me(e) = O(log(M)/?2).

Let YV = {{:r (filzg) > fi(z)} for 0,7 =1,... m} and let S be an i.i.d.

sample of size 50log(M)/e? from f. For density f, let f(A IA
IS N Al ~ binomial(|S],f(A)). By Hoeffding [1963] and a union bound
over A€ Y,

|S N A

FlA) - g

err(f) == sup <e¢/5

AcY

with probability 1 — 2M? exp(—|S|e?/25) > 99%.

Thus there exists some ¢ with err(f;) < 2¢/5.

So min; err(f;) < 2¢/5, and it can be shown that the argmin here is
within L1 distance ¢ of f.
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Lemma (Yatracos 1985)

Suppose there exist fi,...,fur € C such that for any f € C, there
exists some 1 with ||f — fi||1 < £/5. Then me(e) = O(log(M)/e?).

Let Y = {{m (filz) > fi(z)} for 1,7 =1,... m} and let S be an i.i.d.

sample of size 50log(M)/e? from f. For density f, let f(A IA
Output
S N Al
mln su (A) —
j=1,....M AEI})’ 5 S|
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An application of density estimation

detecting breast cancer

v/ Training data consists of normal (non-cancerous)
X-ray images.

v’ A probability density function f : R — R is learned
from the data.

v' When a new input z is presented, a high value for
f(z) indicates a normal image, while a low value
indicates a novel input, which might be characteristic
of an abnormality.

[Tarassenko, Hayton, Cerneaz, Brady 1995: Novelty
detection for the identification of masses in mammograms]
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An example of density estimation

Generating random faces for computer games

v/ Training data consists of actual faces.

v’ A probability density function f : R — R is learned
from the data.

v' New random faces are generated using the learned
distribution.
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An example of density estimation

Generating random faces for computer games

v/ Training data consists of actual faces.

v’ A probability density function f : R — R is learned
from the data.

v' New random faces are generated using the learned
distribution.

A popular approach: generative adversarial networks
(GANs), based on deep neural networks.
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Density estimation in action

2 ) = v R
Top: generated images using generative adversarial
networks

Bottom: a small part of the training data

Picture from Karras, Aila, Laine, and Lehtinen
(NVIDIA and Aalto University), October 2017
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