Learning mixtures of Gaussians

Abbas Mehrabian

McGill University
IVADO Postdoctoral Fellow

25 July 2019
III. Contributions to the Mathematical Theory of Evolution. By Karl Pearson, University College, London.

Communicated by Professor Henrict, F.R.

Received October 18,-Read November 16, 1893.
[Plates 1-5.]

Contents.

Page.
I.-On the Dissection of Asymmetrical Frequency-Curves. General Theory, §§ 1-8. 71-85

Example: Professor Weldox's measurements of the "Forehead" of Crabs. §§ 9-10

85-90
(9.) The whole method may be illustrated by the following numerical example :Breadth of "Forehead" of Crabs.--Professor W. F. R. Weldon has very kindly given me the following statistics from among his measurements on crabs. They are for 1000 individuals from Naples. The abscissæ of the curve are the ratio of "forehead " to body-length, and one unit of abscissa $=\cdot 004$ of body-length. No. 1 of the abscissæ corresponds to $\cdot 580-583$ of body-length. The ordinates represent the number of individual crabs corresponding to each set of ratios of forehead to bodylength. Thus there was one crab fell into the range $\cdot 580-\cdot 583$, three fell into the range $\cdot 584-\cdot 587$, five into the range $\cdot 588-591$, and so on. The average length of animals measured 35 millims., and measurements were recorded to $\cdot 1$ millim.

Abscisse.	Ordinates.	Abscissw.	Ordinates.
1	1	16	74
2	3	17	84
3	5	18	86
4	2	19	96
5	7	20	85
6	10	21	75
7	13	22	47
8	19	23	43
9	20	24	24
10	25	25	19
11	40	26	9
12	31	27	5
13	60	28	0
14	62	29	1
15	54		

Observation: data is asymmetric. Hypothesis: may be a mixture of two Gaussians. Method: numerically matching the moments.

Learning mixtures of Gaussians in modern times

These days trying to fit data with mixtures of Gaussians is popular in data science.

Modern applications: high-dimensional data

[Richardson and Weiss, Neurips 2018]

Learning mixtures of Gaussians in modern times

These days trying to fit data with mixtures of Gaussians is popular in data science.

Modern applications: high-dimensional data

[Richardson and Weiss, Neurips 2018]

Why mixtures of Gaussians?
\checkmark fit some natural data well
\checkmark universal approximators
\checkmark clustering

High-dimensional Gaussians

Multivariate normal distribution:

$$
\begin{gathered}
\mathcal{N}_{\mu, \Sigma}(x)=\frac{\exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)}{(2 \pi)^{d / 2} \sqrt{\operatorname{det}(\Sigma)}} \text { for } x \in \mathbb{R}^{d} \\
X \sim \mathcal{N}_{\mu, \Sigma}: \mathbb{E}[X]=\mu \in \mathbb{R}^{d}, \mathbb{E}\left[(X-\mu)(X-\mu)^{\top}\right]=\Sigma \in \mathbb{R}^{d \times d}
\end{gathered}
$$

High-dimensional Gaussians

Multivariate normal distribution:

$$
\begin{gathered}
\mathcal{N}_{\mu, \Sigma}(x)=\frac{\exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)}{(2 \pi)^{d / 2} \sqrt{\operatorname{det}(\Sigma)}} \quad \text { for } x \in \mathbb{R}^{d} \\
X \sim \mathcal{N}_{\mu, \Sigma}: \mathbb{E}[X]=\mu \in \mathbb{R}^{d}, \mathbb{E}\left[(X-\mu)(X-\mu)^{\top}\right]=\Sigma \in \mathbb{R}^{d \times d}
\end{gathered}
$$

High-dimensional Gaussians

Multivariate normal distribution:

$$
\mathcal{N}_{\mu, \Sigma}(x)=\frac{\exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)}{(2 \pi)^{d / 2} \sqrt{\operatorname{det}(\Sigma)}} \quad \text { for } x \in \mathbb{R}^{d}
$$

$X \sim \mathcal{N}_{\mu, \Sigma}: \mathbb{E}[X]=\mu \in \mathbb{R}^{d}, \mathbb{E}\left[(X-\mu)(X-\mu)^{\top}\right]=\Sigma \in \mathbb{R}^{d \times d}$
Mixture of k Gaussians in $\mathbb{R}^{d}: \sum_{i=1}^{k} w_{i} \mathcal{N}_{\mu_{i}, \Sigma_{i}}$
mixture weights satisfy $w_{i} \geq 0, \sum w_{i}=1$
Parameters of the model: $\left(w_{i}, \mu_{i}, \Sigma_{i}\right)_{i=1}^{k}: \Theta\left(k d^{2}\right)$ parameters

What does it mean to learn/estimate a mixture of Gaussians given data?

First answer: maximum likelihood estimation

Given samples x_{1}, \ldots, x_{n}, find parameters that maximize the likelihood:

$$
\prod_{i=1}^{n}\left(\sum_{j=1}^{k} w_{j} \mathcal{N}_{\mu_{j}, \Sigma_{j}}\left(x_{i}\right)\right)
$$

First answer: maximum likelihood estimation

Given samples x_{1}, \ldots, x_{n}, find parameters that maximize the likelihood:

$$
\prod_{i=1}^{n}\left(\sum_{j=1}^{k} w_{j} \mathcal{N}_{\mu_{j}, \Sigma_{j}}\left(x_{i}\right)\right)
$$

\checkmark Non-convex optimization problem, NP-hard [Arora and Kannan 2005]
\checkmark Widely used in practice: expectation-maximization (EM) an iterative algorithm
\checkmark Convergence not well understood, very sensitive to initialization

Second answer: parameter estimation

Given samples from some unknown mixture of Gaussians $\sum_{i=1}^{k} w_{i} \mathcal{N}\left(\mu_{i}, \Sigma_{i}\right)$, find the parameters within ε.

Second answer: parameter estimation

Given samples from some unknown mixture of Gaussians $\sum_{i=1}^{k} w_{i} \mathcal{N}\left(\mu_{i}, \Sigma_{i}\right)$, find the parameters within ε.
\checkmark Active area of research in theoretical computer science [Dasgupta 1999]
\checkmark Computational complexity: polynomial in d and $1 / \varepsilon$ [Kalai, Moitra, Valiant 2010] [Belkin, Sinha 2010]
\checkmark Any algorithm has sample complexity exponential in k [Moitra, Valiant 2010]

Third answer: density estimation

Given samples from an unknown mixture of Gaussians f, output a density \widehat{f} that is close to f with high probability, 99%.

Close in L^{1} distance:

$$
\|f-\widehat{f}\|_{1}=\int_{\mathbb{R}^{d}}|f(x)-\widehat{f}(x)| \mathrm{d} x=2 \sup _{A \subseteq \mathbb{R}^{d}}\left|\int_{A} f-\int_{A} \widehat{f}\right|
$$

Third answer: density estimation

Given samples from an unknown mixture of Gaussians f, output a density \widehat{f} that is close to f with high probability, 99%.

Close in L^{1} distance:

$$
\|f-\widehat{f}\|_{1}=\int_{\mathbb{R}^{d}}|f(x)-\widehat{f}(x)| \mathrm{d} x=2 \sup _{A \subseteq \mathbb{R}^{d}}\left|\int_{A} f-\int_{A} \widehat{f}\right|
$$

Bounds for parameter estimation do not translate to bounds for density estimation: zero-mean 2-dimensional Gaussians with

$$
\Sigma_{1}=\left(\begin{array}{cc}
1 & -0.99 \\
-0.99 & 1
\end{array}\right) \text { and } \Sigma_{2}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

Close parameters, large L^{1} distance.

Density estimation

Given samples from an unknown density f from some known family C of densities, output a density \widehat{f} that is close to f.

REMARKS ON SOME NONPARAMETRIC ESTIMATES OF A DENSITY FUNCTION ${ }^{1}$

By Murray Rosenblatt ${ }^{2}$
University of Chicago

On the Learnability of Discrete Distributions

	(extended abstract)	1904
Michael Kearns	Yishay Mansour	Dana Ron
AT\&T Bell Laboratories	Tel-Aviv University	Hebrew University
Ronitt Rubinfeld	Robert E. Schapire	Linda Sellie
Cornell University	AT\&T Bell Laboratories	University of Chicago

Precise question we study today

Question

Let f be an unknown mixture of k Gaussians in \mathbb{R}^{d}. How many i.i.d. samples from f is needed to produce, with high probability, a density \widehat{f} satisfying $\|f-\widehat{f}\|_{1} \leq \varepsilon$?

Remarks:

1. Algorithm knows k
2. Focus is on sample complexity
3. Equivalent formulation: given n samples from $f \in \mathcal{C}$, how small can you make $\mathbb{E}\left[\|f-\widehat{f}\|_{1}\right]$? Minimax risk
4. Unbounded for $L^{p>1}$ or KL

Large L^{2} distance
Large KL divergence

Popular method in practice for density estimation

Kernel density estimation

Unfortunately, sample complexity is exponential in d.

Question

Let f be an unknown mixture of k Gaussians in \mathbb{R}^{d}. How many i.i.d. samples from f is needed to produce, with high probability, a density \widehat{f} satisfying $\|f-\widehat{f}\|_{1} \leq \varepsilon$?
$k=1$: sample complexity $\leq O\left(d^{2} / \varepsilon^{2}\right)$
compute empirical mean and covariance, and use Gaussian concentration
$d=1$: sample complexity $\leq O\left(k / \varepsilon^{2}\right)$
approximate by piecewise polynomials
[Chan, Diakonikolas, Servedio, Sun 2014]

Question

Let f be an unknown mixture of k Gaussians in \mathbb{R}^{d}. How many i.i.d. samples from f is needed to produce, with high probability, a density \widehat{f} satisfying $\|f-\widehat{f}\|_{1} \leq \varepsilon$?
$k=1$: sample complexity $\leq O\left(d^{2} / \varepsilon^{2}\right)$
compute empirical mean and covariance, and use Gaussian concentration
$d=1$: sample complexity $\leq O\left(k / \varepsilon^{2}\right)$
approximate by piecewise polynomials
[Chan, Diakonikolas, Servedio, Sun 2014]
Question: sample complexity \leq number of parameters divided by ε^{2} ? Indeed we will show sample complexity $\leq k d^{2} / \varepsilon^{2} \times \log ^{2}(d) \log (k)=\widetilde{O}\left(k d^{2} / \varepsilon^{2}\right)$

Known results - 1

Definition

Given an i.i.d. sample from an unknown density $f \in \mathcal{C}$, output \widehat{f} satisfying $\|f-\widehat{f}\|_{1} \leq \varepsilon$ with high probability. $m_{\mathcal{C}}(\varepsilon)=$ the smallest number of required samples.
k-mix $(\mathcal{C})=$ class of distributions formed by taking k-mixtures of elements of C

Known results - 1

Definition

Given an i.i.d. sample from an unknown density $f \in \mathcal{C}$, output \widehat{f} satisfying $\|f-\widehat{f}\|_{1} \leq \varepsilon$ with high probability.
$m_{C}(\varepsilon)=$ the smallest number of required samples.
k-mix $(C)=$ class of distributions formed by taking k-mixtures of elements of \mathcal{C}

Theorem (Ashtiani, Ben-david, M2017)

For any class C, sample complexity for learning $k-\operatorname{mix}(C) \leq O\left(m_{C}(\varepsilon) \times k \log k / \varepsilon^{2}\right)$

Corollary

Sample complexity for learning mixtures of Gaussians $\leq O\left(\left(d^{2} / \varepsilon^{2}\right) \times k \log k / \varepsilon^{2}\right)=O\left(k d^{2} \log (k) / \varepsilon^{4}\right)$

Known results - 2

$$
Y(\mathcal{C})=\left\{\left\{x \in \mathbb{R}^{d}: f_{1}(x)>f_{2}(x)\right\}: f_{1}, f_{2} \in \mathcal{C}\right\}
$$

1. $m_{C}(\varepsilon) \leq O\left(\mathrm{VC}-\operatorname{dim}(Y(\mathcal{C})) / \varepsilon^{2}\right)$ [Devroye and Lugosi 2001]

Known results - 2

$$
Y(\mathcal{C})=\left\{\left\{x \in \mathbb{R}^{d}: f_{1}(x)>f_{2}(x)\right\}: f_{1}, f_{2} \in \mathcal{C}\right\}
$$

1. $m_{C}(\varepsilon) \leq O\left(\mathrm{VC}-\operatorname{dim}(Y(\mathcal{C})) / \varepsilon^{2}\right)$ [Devroye and Lugosi 2001]
2. When $\mathcal{C}=$ mixtures of Gaussians, VC-dim $(Y(\mathcal{C})) \leq O\left(k^{4} d^{4}\right)$ [Khovanskii 1991], [Karpinski and Macintyre 1997], [Anthony and Bartlett 1999]
3. Gives an upper bound of $O\left(k^{4} d^{4} / \varepsilon^{2}\right)$ for the sample complexity of mixtures of Gaussians.

We will improve this to $k d^{2} / \varepsilon^{2}$.

Lower bounds

Lower bounds?

Best known lower bound was $\Omega\left(k d / \varepsilon^{2}\right)$. [Suresh, Orlitsky, Acharya, and Jafarpour 2014]
Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)
Any algorithm that learns mixtures of Gaussians has sample complexity $\Omega\left(k d^{2} / \varepsilon^{2}\right)$.

Suffices to show lower bound of $\Omega\left(d^{2} / \varepsilon^{2}\right)$ for a single Gaussian.

Lower bound proof

Suffices to show lower bound of $\Omega\left(d^{2} / \varepsilon^{2}\right)$ for a single Gaussian.

General idea: find lots of distributions that are hard to distinguish but far in L^{1} distance.
[LeCam 1973], [Hasminskii 1976], [Assoud 1983]

Lower bound proof

Suffices to show lower bound of $\Omega\left(d^{2} / \varepsilon^{2}\right)$ for a single Gaussian.

General idea: find lots of distributions that are hard to distinguish but far in L^{1} distance.
[LeCam 1973], [Hasminskii 1976], [Assoud 1983]
Hasminskii+Fano's inequality: find $2^{\Omega\left(d^{2}\right)}$ Gaussians with pairwise KL-divergence $\lesssim \varepsilon^{2}$ and pairwise L^{1} distance $\gtrsim \varepsilon$.

$$
\mathrm{KL}\left(f_{1} \| f_{2}\right):=\int f_{1}(x) \log \frac{f_{1}(x)}{f_{2}(x)} \mathrm{d} x \quad[\text { Kullback }- \text { Leibler }]
$$

Lower bound proof

Need to build $2^{\Omega\left(d^{2}\right)}$ Gaussians with pairwise KL-divergence $\lesssim \varepsilon^{2}$ and pairwise L^{1} distance $\gtrsim \varepsilon$.

We will use zero-mean Gaussians, so just need to specify the covariance matrices.

Lower bound proof

Need to build $2^{\Omega\left(d^{2}\right)}$ Gaussians with pairwise KL-divergence $\lesssim \varepsilon^{2}$ and pairwise L^{1} distance $\gtrsim \varepsilon$.

We will use zero-mean Gaussians, so just need to specify the covariance matrices.

First construction [Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18]. Repeat $2^{d^{2}}$ times: start with an identity covariance matrix, then choose a random subspace of dimension $d / 9$ and slightly increase the eigenvalues corresponding to this eigenspace: $\Sigma=I+\frac{\varepsilon}{\sqrt{d}} U U^{\top}$, with $U \in \mathbb{R}^{d \times d / 9}$ orthonormal. Then prove that with large probability, any two of these have L^{1} distance $>\varepsilon$.

Lower bound proof

Need to build $2^{\Omega\left(d^{2}\right)}$ Gaussians with pairwise KL-divergence $\lesssim \varepsilon^{2}$ and pairwise L^{1} distance $\gtrsim \varepsilon$.

We will use zero-mean Gaussians, so just need to specify the covariance matrices.
Second construction (combinatorial) [Devroye,M,Reddad 2018]. For $d=3$, consider the following inverse covariance matrices:

$$
\left(\begin{array}{ccc}
1 & -\delta & -\delta \\
-\delta & 1 & -\delta \\
-\delta & -\delta & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & \delta & \delta \\
\delta & 1 & -\delta \\
\delta & -\delta & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & \delta & -\delta \\
\delta & 1 & \delta \\
-\delta & \delta & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & -\delta & \delta \\
-\delta & 1 & \delta \\
\delta & \delta & 1
\end{array}\right)
$$

For general d, build $2^{d^{2} / 10}$ inverse covariance matrices so that any two of them are different in at least $d^{2} / 3$ coordinates (Gilbert-Varshamov bound in coding theory).

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)

Any algorithm that learns mixtures of Gaussians has sample complexity $\Omega\left(k d^{2} / \varepsilon^{2}\right)$.

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)

Any algorithm that learns mixtures of Gaussians has sample complexity $\Omega\left(k d^{2} / \varepsilon^{2}\right)$.

Next: upper bound

Our upper bound

$m_{C}(\varepsilon)=$ sample complexity for learning a density from class \mathcal{C}.
Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)
If $\mathcal{C}=$ mixtures of k Gaussians in \mathbb{R}^{d}, then $m_{C}(\varepsilon)=\widetilde{O}\left(k d^{2} / \varepsilon^{2}\right)$.

Covering number argument

Lemma (Yatracos 1985)

Suppose there exist $f_{1}, \ldots, f_{M} \in \mathcal{C}$ such that for any $f \in \mathcal{C}$, there exists some i with $\left\|f-f_{i}\right\|_{1} \leq \varepsilon$. Then $m_{C}(\varepsilon)=O\left(\log (M) / \varepsilon^{2}\right)$.

Algorithm:
$Y:=\left\{\left\{x: f_{i}(x)>f_{j}(x)\right\}\right.$ for $\left.i, j=1, \ldots, m\right\}$
$p:=$ empirical distribution
Output

$$
\underset{j=1, \ldots, M}{\arg \min } \max _{A \in Y}\left|f_{j}(A)-p(A)\right|
$$

Analysis: Chernoff bound + union bound

Covering number argument

Lemma (Yatracos 1985)
Suppose there exist $f_{1}, \ldots, f_{M} \in \mathcal{C}$ such that for any $f \in \mathcal{C}$, there exists some i with $\left\|f-f_{i}\right\|_{1} \leq \varepsilon$. Then $m_{C}(\varepsilon)=O\left(\log (M) / \varepsilon^{2}\right)$.

Covering number argument

Lemma (Yatracos 1985)

Suppose there exist $f_{1}, \ldots, f_{M} \in \mathcal{C}$ such that for any $f \in \mathcal{C}$, there exists some i with $\left\|f-f_{i}\right\|_{1} \leq \varepsilon$. Then $m_{C}(\varepsilon)=O\left(\log (M) / \varepsilon^{2}\right)$.

A bound on the covering number of a distribution class bounds its sample complexity.
covering number $=\varepsilon$-net number= packing number= ε-Kolmogorov entropy $=$ metric entropy

Gaussians are not bounded

Unfortunately, Gaussian distributions have infinite covering number, even if the mean is bounded.

Gaussians are not bounded

Unfortunately, Gaussian distributions have infinite covering number, even if the mean is bounded.

Our novel idea to solve this: Use some of the data to reduce the search space significantly. To formalize this idea, we introduce the notion of compression.

Gaussians are not bounded

Unfortunately, Gaussian distributions have infinite covering number, even if the mean is bounded.

Our novel idea to solve this: Use some of the data to reduce the search space significantly. To formalize this idea, we introduce the notion of compression.

One-dimensional Gaussians admit (100/E, 2)-compression.

Compression implies learnability

Definition (compression)

Class \mathcal{C} admits $(n(\varepsilon), \tau(\varepsilon))$-compression if: $\forall f \in \mathcal{C}$, after $n(\varepsilon)$ i.i.d. samples from f are generated, with high probability $\exists \tau(\varepsilon)$ of the samples and $\tau(\varepsilon)$ bits which define some \widehat{f} satisfying $\|f-\widehat{f}\|_{1} \leq \varepsilon$.

One-dimensional Gaussians admit ($100 / \varepsilon, 2$)-compression.
Lemma (compression implies learnability)
If \mathcal{C} admits (n, τ)-compression, $m_{\mathcal{C}}(\varepsilon)=O\left(n+\frac{\tau \log n}{\varepsilon^{2}}\right)$.

Compression implies learnability

Definition (compression)

Class \mathcal{C} admits $(n(\varepsilon), \tau(\varepsilon))$-compression if: $\forall f \in \mathcal{C}$, after $n(\varepsilon)$ i.i.d. samples from f are generated, with high probability $\exists \tau(\varepsilon)$ of the samples and $\tau(\varepsilon)$ bits which define some \widehat{f} satisfying $\|f-\widehat{f}\|_{1} \leq \varepsilon$.

One-dimensional Gaussians admit ($100 / \varepsilon, 2$)-compression.
Lemma (compression implies learnability)
If \mathcal{C} admits (n, τ)-compression, $m_{\mathcal{C}}(\varepsilon)=O\left(n+\frac{\tau \log n}{\varepsilon^{2}}\right)$.
Algorithm: Exhaustive search + Yatracos' algorithm
Running time: n^{τ}

Proof of upper bound: compression

1. Compressing d-dimensional Gaussians

 d-dimensional Gaussians admit $\widetilde{O}\left(d, d^{2}\right)$-compression.2. Compressing mixtures

If \mathcal{C} admits (n, τ)-compression, then k-mix (\mathcal{C}) admits $\widetilde{O}(k n, k \tau)$-compression.
3. Compression implies learnability

If \mathcal{C} admits (n, τ)-compression, $m_{\mathcal{C}}(\varepsilon)=\widetilde{O}\left(n+\tau / \varepsilon^{2}\right)$.
Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)
If C is mixtures of k Gaussians in \mathbb{R}^{d} then $m_{\mathcal{C}}(\varepsilon)=\widetilde{O}\left(k d^{2} / \varepsilon^{2}\right)$.

Proof of upper bound using compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit $\widetilde{O}\left(d, d^{2}\right)$-compression.

$$
\mathcal{N}(\mu, \Sigma)=\mathcal{N}\left(\mu, v_{1} v_{1}^{\top}+v_{2} v_{2}^{\top}\right)
$$

Proof of upper bound using compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit $\widetilde{O}\left(d, d^{2}\right)$-compression.

$$
\mathcal{N}(\mu, \Sigma)=\mathcal{N}\left(\mu, v_{1} v_{1}^{\top}+v_{2} v_{2}^{\top}\right)
$$

Proof of upper bound using compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit $\widetilde{O}\left(d, d^{2}\right)$-compression.

$$
\mathcal{N}(\mu, \Sigma)=\mathcal{N}\left(\mu, v_{1} v_{1}^{\top}+v_{2} v_{2}^{\top}\right)
$$

Proof of upper bound using compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit $\widetilde{O}\left(d, d^{2}\right)$-compression.

$$
\mathcal{N}(\mu, \Sigma)=\mathcal{N}\left(\mu, v_{1} v_{1}^{\top}+v_{2} v_{2}^{\top}\right) .
$$

Proof of upper bound using compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit $\widetilde{O}\left(d, d^{2}\right)$-compression.
In general, use $\widetilde{O}(d)$ data points+bits to encode the mean, and $\widetilde{O}(d)$ for each eigenvector.

Proof of upper bound using compression

1. Compressing d-dimensional Gaussians

 d-dimensional Gaussians admit $\widetilde{O}\left(d, d^{2}\right)$-compression.Lemma (Litvak, Pajor, Rudelson, Tomczak-Jaegermann 2005)
If we take $O(d \log d)$ samples from $\mathcal{N}\left(0, I_{d}\right)$, their convex hull with high probability contains $\frac{1}{20} B_{2}^{d}$

By discretizing $[-1,1]^{d \log (d / \varepsilon)}$, can encode any direction using convex combinations of the samples within error ε Uses $d \log d+d \log (d / \varepsilon)$ samples+bits to encode each eigenvector

Main result

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan, NeurIPS 2018)

Given $\tilde{O}\left(k d^{2} / \varepsilon^{2}\right)$ samples from an unknown mixture of k Gaussians in d dimensions, we can output a density that is ε-close in L^{1} to the underlying density with high probability. Moreover, any algorithm achieving this task requires at least $\Omega\left(k d^{2} / \varepsilon^{2}\right)$ many samples.
improve previous upper bounds of $\tilde{O}\left(k d^{2} / \varepsilon^{4}\right)$ and $O\left(k^{4} d^{4} / \varepsilon^{2}\right)$, and the lower bound of $\Omega\left(k d / \varepsilon^{2}\right)$.
Upper bound. a novel technique for distribution learning based on compressions, high-dimensional geometry + Yatracos' algorithm.
Lower bound. a packing argument, Fano's inequality. Agnostic learning. Input ρ-close \Rightarrow output is $(6 \rho+\varepsilon)$-close

Open questions

Open questions

1. Polynomial time algorithm?
(a) does not exist in the statistical query model
[Diakonikolas, Kane, Steward 2017]
(b) exists for fixed k and spherical Gaussians
[Acharya, Jafarpour, Orlitsky, Suresh 2014]
(c) exists for $d=1$, but is non-proper [Chan, Diakonikolas, Servedio, Sun 2014]
2. What if k is not known?
3. Sample complexity for general classes?
4. Bounded sample complexity \Rightarrow bounded compression size? Holds for binary classification: [Moran, Yehudayoff 2016]

Thanks to my co-authors

Research direction 1

What is the sample complexity for learning a class C ?
\checkmark Relate this to some notion of dimension of the class?
\checkmark Apply the compression idea to other classes?
\checkmark Probabilistic graphical models, e.g. the Ising model [Devroye, M, Reddad'18]
\checkmark Distributions generated by neural networks

Picture taken from the work of Karras, Aila, Laine, and Lehtinen 2017

Research direction 2: computational complexity

Which classes are learnable in polynomial time?
Polynomial time algorithm for mixtures of Gaussians?

Exists for mixtures of spherical Gaussians.
[Suresh, Orlitsky, Acharya, and Jafarpour 2014]

Research direction 2: computational complexity

Which classes are learnable in polynomial time?
Polynomial time algorithm for mixtures of Gaussians?

Exists for mixtures of spherical Gaussians.
[Suresh, Orlitsky, Acharya, and Jafarpour 2014]

Research direction 3: robustness

Design learners that are robust against noisy data.
Our algorithm works in agnostic learning.
What if a small fraction of the data is corrupted in an adversarial way?

Research direction 4: online learning

What if data is not revealed at once, but is received in an online manner? Can we compete against a batch algorithm that sees all the data at once?

Research direction 5: model selection

Can we learn the class \mathcal{C} itself from data?
What if the number of Gaussian components, k, is not known?

Popular method in practice for density estimation

 Kernel density estimation-continuedTable 4.2 Sample size required (accurate to about 3 significant figures) to ensure that the relative mean square error at zero is less than 0.1 , when estimating a standard multivariate normal density using a normal kernel and the window width that minimizes the mean square error at zero

Dimensionality	Required sample size
1	4
2	19
3	67
4	223
5	768
6	2790
7	10700
8	43700
9	187000
10	842000

VC-dimension

For a family \mathcal{Y} of subsets of X, the VC -dimension of \mathcal{Y} is the size of the largest set $A \subseteq X$, such that for any $B \subseteq A$ there exists some $Y \in \mathcal{Y}$ with $Y \cap A=B$.

Interesting classes - 1

Probabilistic graphical models

Example (The Ising model). Each $X_{i} \in\{-1,+1\}$ and

$$
\mathbb{P}\left[X_{1}=x_{1}, \ldots, X_{d}=x_{d}\right] \propto \exp \left(\sum_{i j \in E(G)} w_{i, j} x_{i} x_{j}\right)
$$

Theorem (Devroye, M, Reddad'18)
Let $\mathcal{I}_{G}=$ Ising models on G. Then, $m_{\mathcal{I}_{G}}(\varepsilon)=\Theta\left(|E(G)| / \varepsilon^{2}\right)$.

Interesting classes - 2

[Karras, Aila, Laine, and Lehtinen 2017]

Proof of mixture lemma

Compressing mixtures

If \mathcal{C} admits (n, τ)-compression, then k-mix (\mathcal{C}) admits $(n k \log (k), k \tau+k \log k)$-compression.

Let $\mathbf{P}=\frac{1}{3} P_{1}+\frac{1}{3} P_{2}+\frac{1}{3} P_{3}$, where each P_{i} is $(n, 2)$-compressible.

Proof of mixture lemma

Compressing mixtures

If \mathcal{C} admits (n, τ)-compression, then k-mix (\mathcal{C}) admits $(n k \log (k), k \tau+k \log k)$-compression.

Let $\mathbf{P}=\frac{1}{3} P_{1}+\frac{1}{3} P_{2}+\frac{1}{3} P_{3}$, where each P_{i} is ($n, 2$)-compressible.

Proof of mixture lemma

Compressing mixtures

If \mathcal{C} admits (n, τ)-compression, then k-mix (\mathcal{C}) admits $(n k \log (k), k \tau+k \log k)$-compression.

Let $\mathbf{P}=\frac{1}{3} P_{1}+\frac{1}{3} P_{2}+\frac{1}{3} P_{3}$, where each P_{i} is ($n, 2$)-compressible.

Proof of mixture lemma

Compressing mixtures

If \mathcal{C} admits (n, τ)-compression, then k-mix (\mathcal{C}) admits $(n k \log (k), k \tau+k \log k)$-compression.

Let $\mathbf{P}=\frac{1}{3} P_{1}+\frac{1}{3} P_{2}+\frac{1}{3} P_{3}$, where each P_{i} is ($n, 2$)-compressible.

Proof of mixture lemma

Compressing mixtures

If C admits (n, τ)-compression, then k-mix (C) admits $(n k \log (k), k \tau+k \log k)$-compression.

Let $\mathbf{P}=\frac{1}{3} P_{1}+\frac{1}{3} P_{2}+\frac{1}{3} P_{3}$, where each P_{i} is $(n, 2)$-compressible.

Proof of mixture lemma

Compressing mixtures

If C admits (n, τ)-compression, then k-mix (C) admits $(n k \log (k), k \tau+k \log k)$-compression.

Let $\mathbf{P}=\frac{1}{3} P_{1}+\frac{1}{3} P_{2}+\frac{1}{3} P_{3}$, where each P_{i} is $(n, 2)$-compressible.

Let $\widehat{\mathbf{P}}=\frac{1}{3} \widehat{P_{1}}+\frac{1}{3} \widehat{P_{2}}+\frac{1}{3} \widehat{P_{3}}$

Lemma (Yatracos 1985)

Suppose there exist $f_{1}, \ldots, f_{M} \in \mathcal{C}$ such that for any $f \in \mathcal{C}$, there exists some i with $\left\|f-f_{i}\right\|_{1} \leq \varepsilon / 5$. Then $m_{\mathcal{C}}(\varepsilon)=O\left(\log (M) / \varepsilon^{2}\right)$.

Lemma (Yatracos 1985)

Suppose there exist $f_{1}, \ldots, f_{M} \in \mathcal{C}$ such that for any $f \in \mathcal{C}$, there exists some i with $\left\|f-f_{i}\right\|_{1} \leq \varepsilon / 5$. Then $m_{\mathcal{C}}(\varepsilon)=O\left(\log (M) / \varepsilon^{2}\right)$. Let $Y:=\left\{\left\{x: f_{i}(x)>f_{j}(x)\right\}\right.$ for $\left.i, j=1, \ldots, m\right\}$ and let S be an i.i.d. sample of size $50 \log (M) / \varepsilon^{2}$ from f. For density f, let $f(A):=\int_{A} f$. $|S \cap A| \sim \operatorname{binomial}(|S|, f(A))$. By Hoeffding [1963] and a union bound over $A \in Y$,

$$
\operatorname{err}(f):=\sup _{A \in Y}\left|f(A)-\frac{|S \cap A|}{|S|}\right| \leq \varepsilon / 5
$$

with probability $1-2 M^{2} \exp \left(-|S| \varepsilon^{2} / 25\right) \geq 99 \%$.
Thus there exists some i with $\operatorname{err}\left(f_{i}\right) \leq 2 \varepsilon / 5$.
So $\min _{j} \operatorname{err}\left(f_{j}\right) \leq 2 \varepsilon / 5$, and it can be shown that the argmin here is within L1 distance ε of f.

Lemma (Yatracos 1985)

Suppose there exist $f_{1}, \ldots, f_{M} \in \mathcal{C}$ such that for any $f \in \mathcal{C}$, there exists some i with $\left\|f-f_{i}\right\|_{1} \leq \varepsilon / 5$. Then $m_{\mathcal{C}}(\varepsilon)=O\left(\log (M) / \varepsilon^{2}\right)$. Let $Y:=\left\{\left\{x: f_{i}(x)>f_{j}(x)\right\}\right.$ for $\left.i, j=1, \ldots, m\right\}$ and let S be an i.i.d. sample of size $50 \log (M) / \varepsilon^{2}$ from f. For density f, let $f(A):=\int_{A} f$. Output

$$
\min _{j=1, \ldots, M} \sup _{A \in Y}\left|f_{j}(A)-\frac{|S \cap A|}{|S|}\right|
$$

An application of density estimation detecting breast cancer

\checkmark Training data consists of normal (non-cancerous) X-ray images.
\checkmark A probability density function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is learned from the data.
\checkmark When a new input x is presented, a high value for $f(x)$ indicates a normal image, while a low value indicates a novel input, which might be characteristic of an abnormality.
[Tarassenko, Hayton, Cerneaz, Brady 1995: Novelty detection for the identification of masses in mammograms]

An example of density estimation
 Generating random faces for computer games

\checkmark Training data consists of actual faces.
\checkmark A probability density function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is learned from the data.
\checkmark New random faces are generated using the learned distribution.

An example of density estimation
 Generating random faces for computer games

\checkmark Training data consists of actual faces.
\checkmark A probability density function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is learned from the data.
\checkmark New random faces are generated using the learned distribution.

A popular approach: generative adversarial networks (GANs), based on deep neural networks.

Density estimation in action

Top: generated images using generative adversarial networks
Bottom: a small part of the training data
Picture from Karras, Aila, Laine, and Lehtinen (NVIDIA and Aalto University), October 2017

