Approximating the Number of Perfect Matchings in Bipartite Graphs

Abbas Mehrabian amehrabi@uwaterloo.ca

University of Waterloo

April 6, 2010

イロト イポト イヨト イヨト

What is The Problem?

Problem

Given a bipartite graph G with two parts of equal size, how many perfect matchings does G have?

$\mathbf{Example}$

The following graph has two perfect matchings:

Abbas Number of Perfect Matchings in Bipartite Graphs

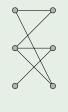
What is The Problem?

Problem

Given a bipartite graph G with two parts of equal size, how many perfect matchings does G have?

Example

The following graph has two perfect matchings:



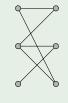
What is The Problem?

Problem

Given a bipartite graph G with two parts of equal size, how many perfect matchings does G have?

Example

The following graph has two perfect matchings:



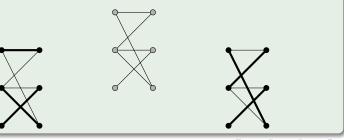
What is The Problem?

Problem

Given a bipartite graph G with two parts of equal size, how many perfect matchings does G have?

Example

The following graph has two perfect matchings:



Computational Complexity of The Problem

- Deciding if the graph has a perfect matching is in *P* (via reduction to max-flow).
- Counting the number of perfect matchings is #*P*-complete.
 - Hence there is no polynomial-time exact algorithm (unless P = NP).
- But we can hope for polynomial-time approximation algorithms!
 - We will see a polynomial-time randomized approximation algorithm for dense graphs.

イロン イヨン イヨン イヨン

Computational Complexity of The Problem

- Deciding if the graph has a perfect matching is in *P* (via reduction to max-flow).
- Counting the number of perfect matchings is #P-complete.
 - Hence there is no polynomial-time exact algorithm (unless P = NP).
- But we can hope for polynomial-time approximation algorithms!
 - We will see a polynomial-time randomized approximation algorithm for dense graphs.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

Computational Complexity of The Problem

- Deciding if the graph has a perfect matching is in *P* (via reduction to max-flow).
- Counting the number of perfect matchings is #P-complete.
 - Hence there is no polynomial-time exact algorithm (unless P = NP).
- But we can hope for polynomial-time approximation algorithms!
 - We will see a polynomial-time randomized approximation algorithm for dense graphs.

イロト イポト イヨト イヨト

Preliminaries Sampling means approximating The sampling Rest of the ratios

Some Notation

G a bipartite graph with two parts of size ndense G is dense if all vertices have degree at least n/2. k-matching a matching having k edges $M_k(G)$ the set of k-matchings of G $m_k(G)$ the number of k-matchings of Ge.g. $m_1(G) = |E(G)|$ poly(x, y) the set of polynomially-bounded functions in x, ye.g. x^2y^3 , $2x + \log y + 5 \in poly(x, y)$

Preliminaries Sampling means approximating The sampling Rest of the ratios

Ratio of Approximation

Definition

For numbers $a, \hat{a}, \epsilon > 0$, let's say \hat{a} approximates a within ratio $1 + \epsilon$ if the following holds:

$$rac{a}{1+\epsilon} < \widehat{a} < a imes (1+\epsilon).$$

We abbreviate this as: $\hat{a} \simeq a$ within ratio $(1 + \epsilon)$.

Why use this (unusual) definition?

If \hat{a}_1 approximates a_1 within ratio $1 + \epsilon_1$ and \hat{a}_2 approximates a_2 within ratio $1 + \epsilon_2$ then: $\hat{a}_1 \hat{a}_2$ approximates $a_1 a_2$ within ratio $(1 + \epsilon_1)(1 + \epsilon_2)$. \hat{a}_1/\hat{a}_2 approximates a_1/a_2 within ratio $(1 + \epsilon_1)(1 + \epsilon_2)$.

The Algorithm Notes Estimating the Permanent

Preliminaries The sampling

Ratio of Approximation

Definition

For numbers $a, \hat{a}, \epsilon > 0$, let's say \hat{a} approximates a within ratio $1 + \epsilon$ if the following holds:

$$rac{a}{1+\epsilon} < \widehat{a} < a imes (1+\epsilon).$$

We abbreviate this as: $\hat{a} \simeq a$ within ratio $(1 + \epsilon)$.

Why use this (unusual) definition?

If \hat{a}_1 approximates a_1 within ratio $1 + \epsilon_1$ and

 \hat{a}_2 approximates a_2 within ratio $1 + \epsilon_2$ then:

Preliminaries Sampling means approximating The sampling Rest of the ratios

Ratio of Approximation

Definition

For numbers $a, \hat{a}, \epsilon > 0$, let's say \hat{a} approximates a within ratio $1 + \epsilon$ if the following holds:

$$rac{a}{1+\epsilon} < \widehat{a} < a imes (1+\epsilon).$$

We abbreviate this as: $\hat{a} \simeq a$ within ratio $(1 + \epsilon)$.

Why use this (unusual) definition?

If \widehat{a}_1 approximates a_1 within ratio $1 + \epsilon_1$ and

 \widehat{a}_2 approximates a_2 within ratio $1 + \epsilon_2$ then:

 $\widehat{a}_1 \widehat{a}_2$ approximates $a_1 a_2$ within ratio $(1 + \epsilon_1)(1 + \epsilon_2)$.

 $\widehat{a}_1/\widehat{a}_2$ approximates a_1/a_2 within ratio $(1+\epsilon_1)(1+\epsilon_2)$

Preliminaries Sampling means approximating The sampling Rest of the ratios

Ratio of Approximation

Definition

For numbers $a, \hat{a}, \epsilon > 0$, let's say \hat{a} approximates a within ratio $1 + \epsilon$ if the following holds:

$$rac{a}{1+\epsilon} < \widehat{a} < a imes (1+\epsilon).$$

We abbreviate this as: $\hat{a} \simeq a$ within ratio $(1 + \epsilon)$.

Why use this (unusual) definition?

If \hat{a}_1 approximates a_1 within ratio $1 + \epsilon_1$ and \hat{a}_2 approximates a_2 within ratio $1 + \epsilon_2$ then: $\hat{a}_1 \hat{a}_2$ approximates $a_1 a_2$ within ratio $(1 + \epsilon_1)(1 + \epsilon_2)$. \hat{a}_1/\hat{a}_2 approximates a_1/a_2 within ratio $(1 + \epsilon_1)(1 + \epsilon_2)$.

Fully Polynomial Time Randomized Approximation Scheme

Definition

A fully polynomial time randomized approximation scheme (fpras) is a randomized algorithm that:

inputs: a dense bipartite graph G and a number $\epsilon > 0$

outputs: a number $\widehat{m}_n(G)$ that approximates $m_n(G)$ within ratio $1 + \epsilon$ with probability more than 3/4:

$$Pr\left[rac{m_n(G)}{1+\epsilon} < \widehat{m}_n(G) < m_n(G) imes (1+\epsilon)
ight] > 3/4.$$

run-time: is in $poly(n, e^{-1})$.

Probability can be increased to $1-\delta$ by repeating $O(\lg \delta)$ times.

Fully Polynomial Time Randomized Approximation Scheme

Definition

A fully polynomial time randomized approximation scheme (fpras) is a randomized algorithm that:

inputs: a dense bipartite graph G and a number $\epsilon > 0$

outputs: a number $\widehat{m}_n(G)$ that approximates $m_n(G)$ within ratio $1 + \epsilon$ with probability more than 3/4:

$$Pr\left[rac{m_n(G)}{1+\epsilon} < \widehat{m}_n(G) < m_n(G) imes (1+\epsilon)
ight] > 3/4.$$

run-time: is in $poly(n, e^{-1})$.

Probability can be increased to $1-\delta$ by repeating $O(\lg \delta)$ times.

Fully Polynomial Time Randomized Approximation Scheme

Definition

A fully polynomial time randomized approximation scheme (fpras) is a randomized algorithm that:

inputs: a dense bipartite graph G and a number $\epsilon > 0$

outputs: a number $\widehat{m}_n(G)$ that approximates $m_n(G)$ within ratio $1 + \epsilon$ with probability more than 3/4:

$$Pr\left[rac{m_n(G)}{1+\epsilon} < \widehat{m}_n(G) < m_n(G) imes (1+\epsilon)
ight] > 3/4.$$

run-time: is in $poly(n, e^{-1})$.

Probability can be increased to $1 - \delta$ by repeating $O(\lg \delta)$ times.

Fully Polynomial Time Randomized Approximation Scheme

Definition

A fully polynomial time randomized approximation scheme (fpras) is a randomized algorithm that:

inputs: a dense bipartite graph G and a number $\epsilon > 0$

outputs: a number $\widehat{m}_n(G)$ that approximates $m_n(G)$ within ratio $1 + \epsilon$ with probability more than 3/4:

$$Pr\left[rac{m_n(G)}{1+\epsilon} < \widehat{m}_n(G) < m_n(G) imes (1+\epsilon)
ight] > 3/4.$$

run-time: is in $poly(n, e^{-1})$.

Probability can be increased to $1-\delta$ by repeating $O(\lg \delta)$ times.

The First Idea

We have:

$$m_n = rac{m_n}{m_{n-1}} imes rac{m_{n-1}}{m_{n-2}} imes \cdots imes rac{m_2}{m_1} imes m_1.$$

Focus on first ratio $\frac{m_n}{m_{n-1}}$ for now.

イロン イヨン イヨン イヨン

臣

The First Idea

We have:

$$m_n = rac{m_n}{m_{n-1}} imes rac{m_{n-1}}{m_{n-2}} imes \cdots imes rac{m_2}{m_1} imes m_1.$$

Focus on first ratio $\frac{m_n}{m_{n-1}}$ for now.

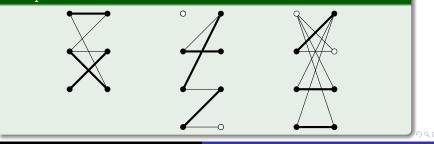
イロト イヨト イヨト イヨト

æ

 $lm(G) = |LM(G)| = m_n(G) + m_{n-1}(G).$

Example

Abbas Number of Perfect Matchings in Bipartite Graphs



Definition

A large matching of G is a matching of size n or n-1, $LM(G) = M_n(G) \cup M_{n-1}(G)$, $lm(G) = |LM(G)| = m_n(G) + m_{n-1}(G)$.

The Sampling Method

- Take X samples uniformly at random from LM.
- 2 Suppose that X_n of them have size n, and X_{n-1} of them have size n-1.
- (3) Then X_n/X_{n-1} is an estimate for m_n/m_{n-1} .

Question: How many samples are needed?

Definition

A large matching of G is a matching of size n or n-1, $LM(G) = M_n(G) \cup M_{n-1}(G)$, $lm(G) = |LM(G)| = m_n(G) + m_{n-1}(G)$.

The Sampling Method

- Take X samples uniformly at random from LM.
- Suppose that X_n of them have size n, and X_{n-1} of them have size n 1.
- **③** Then X_n/X_{n-1} is an estimate for m_n/m_{n-1} .

Question: How many samples are needed?

Definition

A large matching of G is a matching of size n or n-1, $LM(G) = M_n(G) \cup M_{n-1}(G)$, $lm(G) = |LM(G)| = m_n(G) + m_{n-1}(G)$.

The Sampling Method

- Take X samples uniformly at random from LM.
- Suppose that X_n of them have size n, and X_{n-1} of them have size n 1.
- **③** Then X_n/X_{n-1} is an estimate for m_n/m_{n-1} .

Question: How many samples are needed?

How Many Samples Are Needed?

The sampling lemma

Lemma (The Sampling Lemma)

Let $U \subseteq S$ and p = |U|/|S|. The number of samples needed to approximate p within ratio $1 + \epsilon$ with probability at least $1 - \delta$ is

$$rac{675\ln(2/\delta)}{p\,\epsilon^2}\in \operatorname{poly}\left(p^{-1},\epsilon^{-1},\log(\delta^{-1})
ight).$$

Proof.

Use Chernoff bounds.

・ロン ・回と ・ヨン ・ヨン

How Many Samples Are Needed?

Corollary

Let $p = \min\{m_n/lm, m_{n-1}/lm\}$. We can approximate m_n/m_{n-1} within ratio $1 + \epsilon$ with probability $1 - \delta$ by taking poly $(p^{-1}, \epsilon^{-1}, \log(\delta^{-1}))$ samples from LM.

Proof.

1 Take
$$X = \frac{10^4 \ln(4/\delta)}{p \epsilon^2}$$
 samples. Define X_n, X_{n-1} as before.

② Then $X_n/X \simeq m_n/lm$ within ratio $(1 + \epsilon/3)$ with prob. $1 - \delta/2$, $X_{n-1}/X \simeq m_{n-1}/lm$ within ratio $(1 + \epsilon/3)$ with prob. $1 - \delta/2$, so

$$rac{X_n}{X_{n-1}} = rac{X_n/X}{X_{n-1}/X} \simeq rac{m_n/lm}{m_{n-1}/lm} = rac{m_n}{m_{n-1}}$$

within ratio $(1 + \epsilon/3)^2 < 1 + \epsilon$ with prob. $(1 - \delta/2)^2 > 1 - \delta$. \Box

How Many Samples Are Needed?

Corollary

Let $p = \min\{m_n/lm, m_{n-1}/lm\}$. We can approximate m_n/m_{n-1} within ratio $1 + \epsilon$ with probability $1 - \delta$ by taking poly $(p^{-1}, \epsilon^{-1}, \log(\delta^{-1}))$ samples from LM.

Proof.

1 Take
$$X = \frac{10^4 \ln(4/\delta)}{p \epsilon^2}$$
 samples. Define X_n, X_{n-1} as before.

2 Then $X_n/X \simeq m_n/lm$ within ratio $(1 + \epsilon/3)$ with prob. $1 - \delta/2$, $X_{n-1}/X \simeq m_{n-1}/lm$ within ratio $(1 + \epsilon/3)$ with prob. $1 - \delta/2$,so

$$rac{X_n}{X_{n-1}} = rac{X_n/X}{X_{n-1}/X} \simeq rac{m_n/lm}{m_{n-1}/lm} = rac{m_n}{m_{n-1}}$$

ithin ratio $(1 + \epsilon/3)^2 < 1 + \epsilon$ with prob. $(1 - \delta/2)^2 > 1 - \delta$.

How Many Samples Are Needed?

Corollary

Let $p = \min\{m_n/lm, m_{n-1}/lm\}$. We can approximate m_n/m_{n-1} within ratio $1 + \epsilon$ with probability $1 - \delta$ by taking poly $(p^{-1}, \epsilon^{-1}, \log(\delta^{-1}))$ samples from LM.

Proof.

1 Take
$$X = \frac{10^4 \ln(4/\delta)}{p \epsilon^2}$$
 samples. Define X_n, X_{n-1} as before.

2 Then $X_n/X \simeq m_n/lm$ within ratio $(1 + \epsilon/3)$ with prob. $1 - \delta/2$, $X_{n-1}/X \simeq m_{n-1}/lm$ within ratio $(1 + \epsilon/3)$ with prob. $1 - \delta/2$, so

$$\frac{X_n}{X_{n-1}} = \frac{X_n/X}{X_{n-1}/X} \simeq \frac{m_n/lm}{m_{n-1}/lm} = \frac{m_n}{m_{n-1}}$$
within ratio $(1 + \epsilon/3)^2 < 1 + \epsilon$ with prob. $(1 - \delta/2)^2 > 1 - \delta$.

How Many Samples Are Needed?

Corollary

Let $p = \min\{m_n/lm, m_{n-1}/lm\}$. We can approximate m_n/m_{n-1} within ratio $1 + \epsilon$ with probability $1 - \delta$ by taking poly $(p^{-1}, \epsilon^{-1}, \log(\delta^{-1}))$ samples from LM.

Proof.

1 Take
$$X = \frac{10^4 \ln(4/\delta)}{p \epsilon^2}$$
 samples. Define X_n, X_{n-1} as before.

2 Then $X_n/X \simeq m_n/lm$ within ratio $(1 + \epsilon/3)$ with prob. $1 - \delta/2$, $X_{n-1}/X \simeq m_{n-1}/lm$ within ratio $(1 + \epsilon/3)$ with prob. $1 - \delta/2$, so

$$rac{X_n}{X_{n-1}} = rac{X_n/X}{X_{n-1}/X} \simeq rac{m_n/lm}{m_{n-1}/lm} = rac{m_n}{m_{n-1}}$$

within ratio $(1 + \epsilon/3)^2 < 1 + \epsilon$ with prob. $(1 - \delta/2)^2 > 1 - \delta$. \Box

A Technical Lemma

Lemma (The Technical Lemma)

If G is dense then we have

$$1/n^2 \leq rac{m_n}{m_{n-1}} \leq n^2.$$

Corollary

If we can sample from the large matchings in polynomial time then we can approximate $\frac{1}{m}$

Proof (of Corollary).

Recall that $lm=m_n+m_{n-1}$. So $p=\min\{m_n/lm,m_{n-1}/lm\}>n^{-3},$ i.e. p^{-1} is polynomially bounded in n.

A Technical Lemma

Lemma (The Technical Lemma)

If G is dense then we have

$$1/n^2 \leq rac{m_n}{m_{n-1}} \leq n^2.$$

Corollary

If we can sample from the large matchings in polynomial time then we can approximate $\frac{m_n}{m_{n-1}}$.

Proof (of Corollary).

Recall that $lm=m_n+m_{n-1}.$ So $p=\min\{m_n/lm,m_{n-1}/lm\}>n^{-3},$ i.e. p^{-1} is polynomially bounded in n.

A Technical Lemma

Lemma (The Technical Lemma)

If G is dense then we have

$$1/n^2 \leq rac{m_n}{m_{n-1}} \leq n^2.$$

Corollary

If we can sample from the large matchings in polynomial time then we can approximate $\frac{m_n}{m_{n-1}}$.

Proof (of Corollary).

Recall that
$$lm=m_n+m_{n-1}$$
. So $p=\min\{m_n/lm,m_{n-1}/lm\}>n^{-3},$ i.e. p^{-1} is polynomially bounded in n .

Proof of the Technical Lemma

Lemma (The Technical Lemma (generalized))

If G is dense then for all $2 \le k \le n$ we have

$$1/n^2 \leq rac{m_k}{m_{k-1}} \leq n^2.$$

Proof (Upper Bound).

Any k-matching can be built by adding an edge to some (k - 1)-matching.
 Each (k - 1)-matching has (n - k + 1) unmatched vertices in each part, thus at most (n - k + 1)² edges can be added to build a k-matching.

Therefore,
$$m_k \leq (n-k+1)^2 m_{k-1}$$
.

Proof of the Technical Lemma

Lemma (The Technical Lemma (generalized))

If G is dense then for all $2 \le k \le n$ we have

$$1/n^2 \leq rac{m_k}{m_{k-1}} \leq n^2.$$

Proof (Upper Bound).

- Any k-matching can be built by adding an edge to some (k - 1)-matching.
- 2 Each (k 1)-matching has (n k + 1) unmatched vertices in each part, thus at most (n - k + 1)² edges can be added to build a k-matching.
- 3) Therefore, $m_k \leq (n-k+1)^2 m_{k-1}$

Proof of the Technical Lemma

Lemma (The Technical Lemma (generalized))

If G is dense then for all $2 \le k \le n$ we have

$$1/n^2 \leq rac{m_k}{m_{k-1}} \leq n^2.$$

Proof (Upper Bound).

- Any k-matching can be built by adding an edge to some (k - 1)-matching.
- 2 Each (k-1)-matching has (n-k+1) unmatched vertices in each part, thus at most $(n-k+1)^2$ edges can be added to build a k-matching.
 -) Therefore, $m_k \leq (n-k+1)^2 m_{k-1}$.

Proof of the Technical Lemma

Lemma (The Technical Lemma (generalized))

If G is dense then for all $2 \le k \le n$ we have

$$1/n^2 \leq rac{m_k}{m_{k-1}} \leq n^2.$$

Proof (Upper Bound).

- Any k-matching can be built by adding an edge to some (k - 1)-matching.
- 2 Each (k-1)-matching has (n-k+1) unmatched vertices in each part, thus at most $(n-k+1)^2$ edges can be added to build a k-matching.

) Therefore,
$$m_k \leq (n-k+1)^2 m_{k-1}$$
.

Preliminaries Sampling means approximating The sampling Rest of the ratios

Proof of the Technical Lemma

lower bound

Definition

De-augmenting a matching: removing two edges from the matching and adding a cross-edge.

There are $\leq 2{k \choose 2} = k^2 - k$ ways to de-augment a k-matching.

イロト イヨト イヨト イヨト

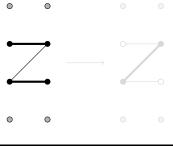
Preliminaries Sampling means approximating The sampling Rest of the ratios

Proof of the Technical Lemma

lower bound

Definition

De-augmenting a matching: removing two edges from the matching and adding a cross-edge.



There are $\leq 2\binom{k}{2} = k^2 - k$ ways to de-augment a k-matching.

イロト イヨト イヨト イヨト

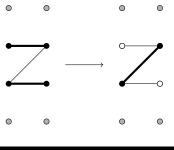
Preliminaries Sampling means approximating The sampling Rest of the ratios

Proof of the Technical Lemma

lower bound

Definition

De-augmenting a matching: removing two edges from the matching and adding a cross-edge.



There are $\leq 2\binom{k}{2} = k^2 - k$ ways to de-augment a k-matching.

イロト イボト イラト イラト

Preliminaries Sampling means approximating The sampling Rest of the ratios

Proof of the Technical Lemma

lower bound

Definition

De-augmenting a matching: removing two edges from the matching and adding a cross-edge.



There are $\leq 2\binom{k}{2} = k^2 - k$ ways to de-augment a k-matching.

イロト イボト イラト イラト

Preliminaries Sampling means approximating The sampling Rest of the ratios

Proof of the Technical Lemma

lower bound

Remark.

If a (k-1)-matching has an alternating path of length 3, then it can be built by de-augmenting some k-matching.

Proof.

Abbas Number of Perfect Matchings in Bipartite Graphs

Introduction Preliminar The Algorithm Sampling r Notes The sampli Estimating the Permanent Rest of the

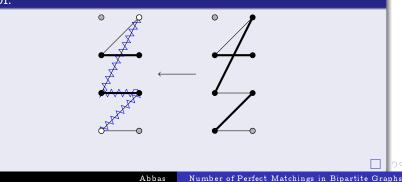
Preliminaries Sampling means approximating The sampling Rest of the ratios

Proof of the Technical Lemma

lower bound

Remark.

If a (k-1)-matching has an alternating path of length 3, then it can be built by de-augmenting some k-matching.



Introduction Preliminaries The Algorithm Sampling me: Notes The sampling Estimating the Permanent Rest of the re

Preliminaries Sampling means approximating The sampling Rest of the ratios

Proof of the Technical Lemma

lower bound

Claim.

If G is dense and $2 \le k \le n$, then any (k-1)-matching

has an alternating path of length at most 3.

Proof of the Technical Lemma

lower bound

Claim.

If G is dense and $2 \le k \le n$, then any (k-1)-matching has an alternating path of length at most 3.

Proof.			
	0	0 <i>u</i>	
	0	0	
	0	0	
	0	0	
			୨ବ
	Abbas	Number of Perfect Matchings in Bipartite Gra	phs

Introduction Preliminaries The Algorithm Sampling me Estimating the Permanent Rest of the r

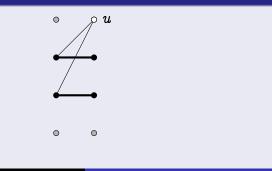
Preliminaries Sampling means approximating The sampling Rest of the ratios

Proof of the Technical Lemma

lower bound

Claim.

If G is dense and $2 \le k \le n$, then any (k-1)-matching has an alternating path of length at most 3.



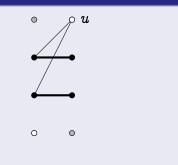
Preliminaries Sampling means approximating The sampling Rest of the ratios

Proof of the Technical Lemma

lower bound

Claim.

If G is dense and $2 \le k \le n$, then any (k-1)-matching has an alternating path of length at most 3.



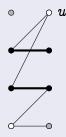
Preliminaries Sampling means approximating The sampling Rest of the ratios

Proof of the Technical Lemma

lower bound

Claim.

If G is dense and $2 \le k \le n$, then any (k-1)-matching has an alternating path of length at most 3.



Introduction Preliminar The Algorithm Sampling Notes The sampl Estimating the Permanent Rest of th

Preliminaries Sampling means approximating The sampling Rest of the ratios

Proof of the Technical Lemma

lower bound

Claim.

If G is dense and $2 \le k \le n$, then any (k-1)-matching has an alternating path of length at most 3.

Proof of the Technical Lemma

Lemma (The Technical Lemma (generalized))

If G is dense then for all $2 \le k \le n$ we have

$$1/n^2 \leq rac{m_k}{m_{k-1}} \leq n^2.$$

- ① Any (k-1)-matching can be built by one of these operations:
 - removing an edge from some k-matching.
 - de-augmenting some k-matching.
- 2) There are k ways to remove an edge from a k-matching.
- 3 There are $k^2 k$ ways to de-augment a k-matching.
- ④ Therefore, $m_{k-1} \leq k^2 m_k$.

Proof of the Technical Lemma

Lemma (The Technical Lemma (generalized))

If G is dense then for all $2 \leq k \leq n$ we have

$$1/n^2 \leq rac{m_k}{m_{k-1}} \leq n^2.$$

- **(**) Any (k-1)-matching can be built by one of these operations:
 - removing an edge from some k-matching.
 - de-augmenting some k-matching.
- 2) There are k ways to remove an edge from a k-matching.
- 3 There are $k^2 k$ ways to de-augment a k-matching.
- ④ Therefore, $m_{k-1} \leq k^2 m_k$.

Proof of the Technical Lemma

Lemma (The Technical Lemma (generalized))

If G is dense then for all $2 \le k \le n$ we have

$$1/n^2 \leq rac{m_k}{m_{k-1}} \leq n^2.$$

- **(**) Any (k-1)-matching can be built by one of these operations:
 - removing an edge from some k-matching.
 - de-augmenting some k-matching.
- 2 There are k ways to remove an edge from a k-matching.
- Interval 3 There are $k^2 k$ ways to de-augment a k-matching.
-) Therefore, $m_{k-1} \leq k^{\,2} m_k$.

Proof of the Technical Lemma

Lemma (The Technical Lemma (generalized))

If G is dense then for all $2 \leq k \leq n$ we have

$$1/n^2 \leq rac{m_k}{m_{k-1}} \leq n^2.$$

Proof (lower bound).

- **(**) Any (k-1)-matching can be built by one of these operations:
 - removing an edge from some k-matching.
 - de-augmenting some k-matching.
- 2 There are k ways to remove an edge from a k-matching.
- **③** There are $k^2 k$ ways to de-augment a k-matching.

) Therefore, $m_{k-1} \leq k^{\,2} m_k$.

Proof of the Technical Lemma

Lemma (The Technical Lemma (generalized))

If G is dense then for all $2 \le k \le n$ we have

$$1/n^2 \leq rac{m_k}{m_{k-1}} \leq n^2.$$

- **(**) Any (k-1)-matching can be built by one of these operations:
 - removing an edge from some k-matching.
 - de-augmenting some k-matching.
- 2 There are k ways to remove an edge from a k-matching.
- **③** There are $k^2 k$ ways to de-augment a k-matching.

④ Therefore,
$$m_{k-1} \leq k^2 m_k$$
.

Recall: The Technical Lemma

Lemma (The Technical Lemma)

If G is dense then we have

$$1/n^2 \leq rac{m_n}{m_{n-1}} \leq n^2.$$

Corollary

If we can sample from the large matchings in polynomial time then we can approximate $\frac{m_n}{m_{n-1}}$.

Now, let's focus on the sampling.

Recall: The Technical Lemma

Lemma (The Technical Lemma)

If G is dense then we have

$$1/n^2 \leq rac{m_n}{m_{n-1}} \leq n^2.$$

Corollary

If we can sample from the large matchings in polynomial time then we can approximate $\frac{m_n}{m_{n-1}}$.

Now, let's focus on the sampling.

Preliminaries Sampling means approximating The sampling Rest of the ratios

Elementary Operations on Matchings

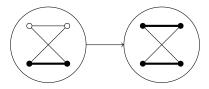
・ロト ・回ト ・ヨト

< E

Preliminaries Sampling means approximating The sampling Rest of the ratios

Elementary Operations on Matchings

Definition	
insert	
rotate	



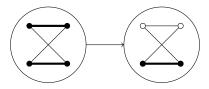
・ロト ・回ト ・ヨト

< E

Preliminaries Sampling means approximating The sampling Rest of the ratios

Elementary Operations on Matchings

Definition	
insert	
delete	
rotate	



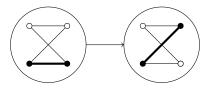
・ロト ・日ト・・ヨト

Э

Preliminaries Sampling means approximating The sampling Rest of the ratios

Elementary Operations on Matchings

Definition	
insert	
delete	
rotate	



・ロト ・日ト・・ヨト

Э

Preliminaries Sampling means approximating The sampling Rest of the ratios

Sampling From the Large Matchings

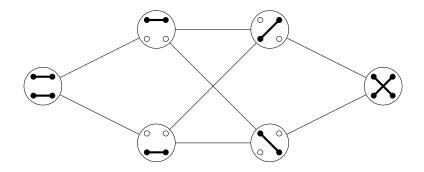
Example

Suppose that we are trying to sample from the set of large matchings of the following graph:

イロト イポト イヨト イヨ

Sampling From the Large Matchings

The random walk

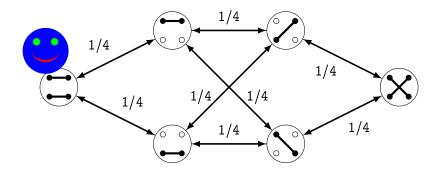


・ロト ・日ト・ ・ヨト

< E

Sampling From the Large Matchings

The random walk

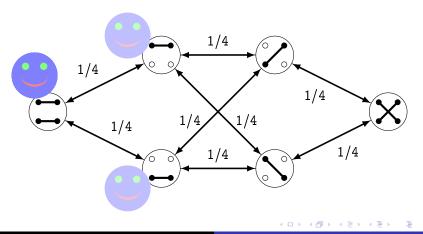


イロト イヨト イヨト イヨ

Sampling From the Large Matchings

The random walk

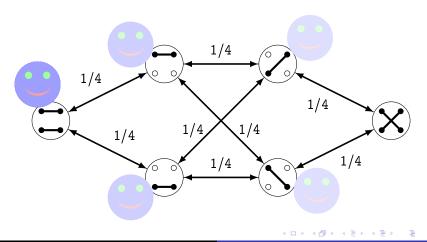
after first step ...



Sampling From the Large Matchings

The random walk

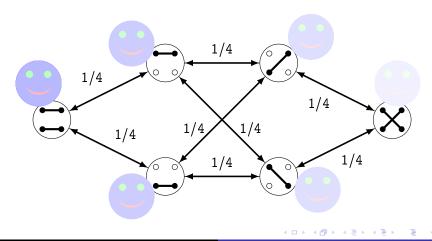
after second step ...



Sampling From the Large Matchings

The random walk

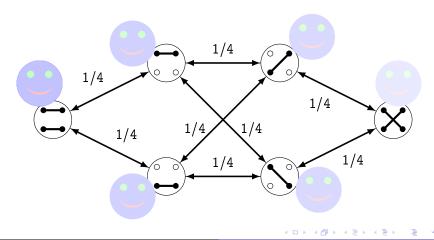
after third step ...



Sampling From the Large Matchings

The random walk

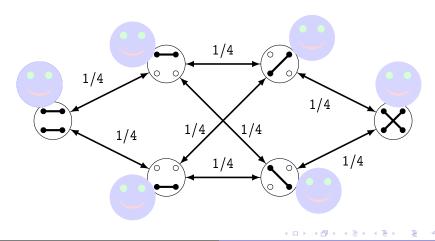
after fourth step ...



Sampling From the Large Matchings

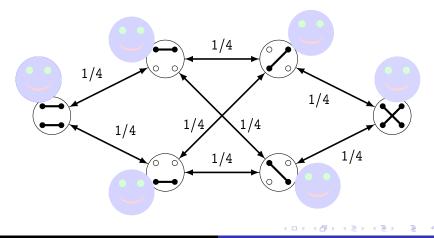
The random walk

after tenth step ...



Sampling From the Large Matchings

How many steps are needed to achieve a uniform sample?



Preliminaries Sampling means approximating The sampling Rest of the ratios

How Many Steps Are Needed?

Lemma (The Rapid Convergence Lemma)

Let G be a dense graph. If we take $24n^7$ steps in the random walk associated with G, then the final large matching is an almost uniform sample from LM(G).

Corollary

For a dense G and positive numbers ϵ, δ , it is possible to approximate $\frac{m_n}{m_{n-1}}$ within ratio $(1 + \epsilon)$ with probability $1 - \delta$ in time poly $(n, \epsilon^{-1}, \log(\delta^{-1}))$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

Preliminaries Sampling means approximating The sampling Rest of the ratios

How Many Steps Are Needed?

Lemma (The Rapid Convergence Lemma)

Let G be a dense graph. If we take $24n^7$ steps in the random walk associated with G, then the final large matching is an almost uniform sample from LM(G).

Corollary

For a dense G and positive numbers ϵ, δ , it is possible to approximate $\frac{m_n}{m_{n-1}}$ within ratio $(1 + \epsilon)$ with probability $1 - \delta$ in time poly $(n, \epsilon^{-1}, \log(\delta^{-1}))$.

(日) (四) (王) (王) (王) (王)

What Next?

Corollary

For a dense G and positive numbers ϵ, δ , it is possible to approximate $\frac{m_n}{m_{n-1}}$ within ratio $(1 + \epsilon)$ with probability $1 - \delta$ in time poly $(n, \epsilon^{-1}, \log(\delta^{-1}))$.

Recall.

We have:

$$m_n = rac{m_n}{m_{n-1}} imes rac{m_{n-1}}{m_{n-2}} imes \cdots imes rac{m_2}{m_1} imes m_1.$$

We are done with $\frac{m_n}{m_{n-1}}$. Let us consider rest of the ratios now!

・ロン ・回 と ・ヨン ・ヨン … ヨ

What Next?

Corollary

For a dense G and positive numbers ϵ, δ , it is possible to approximate $\frac{m_n}{m_{n-1}}$ within ratio $(1 + \epsilon)$ with probability $1 - \delta$ in time poly $(n, \epsilon^{-1}, \log(\delta^{-1}))$.

Recall.

We have:

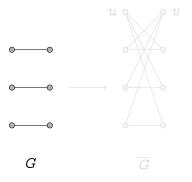
$$m_n = rac{m_n}{m_{n-1}} imes rac{m_{n-1}}{m_{n-2}} imes \cdots imes rac{m_2}{m_1} imes m_1.$$

We are done with $\frac{m_n}{m_{n-1}}$. Let us consider rest of the ratios now!

・ロト ・回ト ・ヨト ・ヨト … ヨ

The Auxiliary Graph \overline{G}

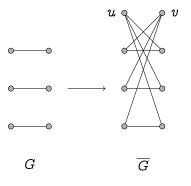
We know how to approximate m_3/m_2 . Suppose we want to approximate m_2/m_1 :



< ∃ >

The Auxiliary Graph \overline{G}

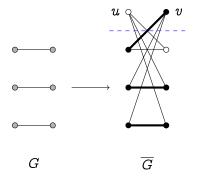
We know how to approximate m_3/m_2 . Suppose we want to approximate m_2/m_1 :



4 王

The Auxiliary Graph \overline{G}

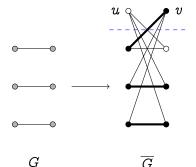
We know how to approximate m_3/m_2 . Suppose we want to approximate m_2/m_1 :



There are four types of large matchings of \overline{G}

The Auxiliary Graph \overline{G}

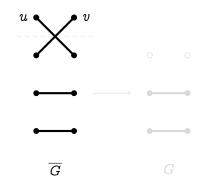
We know how to approximate m_3/m_2 . Suppose we want to approximate m_2/m_1 :



There are four types of large matchings of \overline{G} .

Large Matchings of the Auxiliary Graph

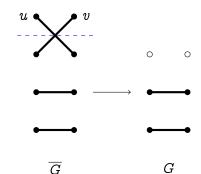
First type: a 4-matching



There are $m_2(G)$ matchings of this type.

Large Matchings of the Auxiliary Graph

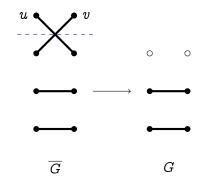
First type: a 4-matching



There are $m_2(G)$ matchings of this type.

Large Matchings of the Auxiliary Graph

First type: a 4-matching

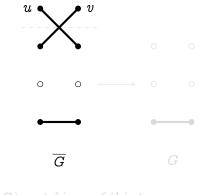


There are $m_2(G)$ matchings of this type.

(D) (A) (A) (A)

Large Matchings of the Auxiliary Graph

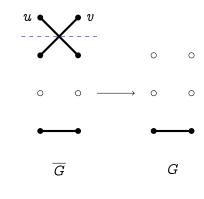
Second type: a 3-matching that covers both of u and v



There are $4m_1(G)$ matchings of this type.

Large Matchings of the Auxiliary Graph

Second type: a 3-matching that covers both of u and v

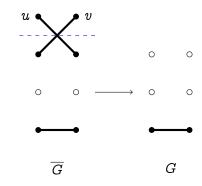


There are $4m_1(G)$ matchings of this type.

イロト イボト イラト イラト

Large Matchings of the Auxiliary Graph

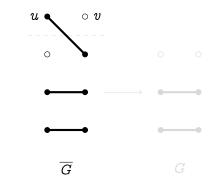
Second type: a 3-matching that covers both of u and v



There are $4m_1(G)$ matchings of this type.

Large Matchings of the Auxiliary Graph

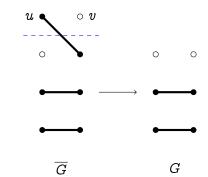
Third type: a 3-matching that covers one of u and v



There are $2m_2(G)$ matchings of this type.

Large Matchings of the Auxiliary Graph

Third type: a 3-matching that covers one of u and v

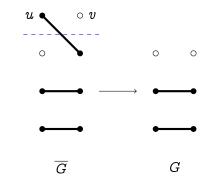


There are $2m_2(G)$ matchings of this type.

(D) (A) (A) (A)

Large Matchings of the Auxiliary Graph

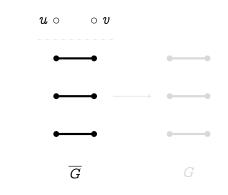
Third type: a 3-matching that covers one of u and v



There are $2m_2(G)$ matchings of this type.

Large Matchings of the Auxiliary Graph

Fourth type: a 3-matching that covers none of u and v

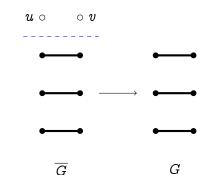


There are $m_3(G)$ matchings of this type.

(D) (A) (A) (A)

Large Matchings of the Auxiliary Graph

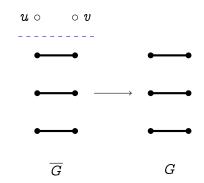
Fourth type: a 3-matching that covers none of u and v



There are $m_3(G)$ matchings of this type.

Large Matchings of the Auxiliary Graph

Fourth type: a 3-matching that covers none of u and v



There are $m_3(G)$ matchings of this type.

(D) (A) (A) (A)

Rest of the Ratios

Therefore, the set $LM(\overline{G})$ can be partitioned into four sets T_1, T_2, T_3, T_4 , where $|T_1| = m_2, |T_2| = 4m_1, |T_3| = 2m_2, |T_4| = m_3.$

To approximate $\,m_2/m_1$

- 1 Take X samples from $LM(\overline{G})$.
- 2 Let X_i be the number of samples of type i, for i = 1, ..., 4.
- O Then $\frac{X_1+X_3}{X_2}$ is an approximation for $\frac{3m_2}{4m_1}$.
- Using Sampling Lemma and Technical Lemma, it can be proved that just poly (n, ε⁻¹, log(δ⁻¹)) samples are needed to approximate m₂/m₁ within ratio (1 + ε) with probability (1 - δ).

Rest of the Ratios

Therefore, the set $LM(\overline{G})$ can be partitioned into four sets T_1, T_2, T_3, T_4 , where $|T_1| = m_2, |T_2| = 4m_1, |T_3| = 2m_2, |T_4| = m_3.$

To approximate m_2/m_1

- 1 Take X samples from $LM(\overline{G})$.
- ② Let X_i be the number of samples of type i, for $i=1,\ldots,4.$
- 3 Then $\frac{X_1+X_3}{X_2}$ is an approximation for $\frac{3m_2}{4m_1}$.
- Using Sampling Lemma and Technical Lemma, it can be proved that just poly (n, ε⁻¹, log(δ⁻¹)) samples are needed to approximate m₂/m₁ within ratio (1 + ε) with probability (1 - δ).

Rest of the Ratios

Therefore, the set $LM(\overline{G})$ can be partitioned into four sets T_1, T_2, T_3, T_4 , where $|T_1| = m_2, |T_2| = 4m_1, |T_3| = 2m_2, |T_4| = m_3.$

To approximate m_2/m_1

1 Take X samples from $LM(\overline{G})$.

2) Let X_i be the number of samples of type i, for $i=1,\ldots,4$.

3 Then $\frac{X_1+X_3}{X_2}$ is an approximation for $\frac{3m_2}{4m_1}$.

Using Sampling Lemma and Technical Lemma, it can be proved that just poly (n, ε⁻¹, log(δ⁻¹)) samples are needed to approximate m₂/m₁ within ratio (1 + ε) with probability (1 - δ).

Rest of the Ratios

Therefore, the set $LM(\overline{G})$ can be partitioned into four sets T_1, T_2, T_3, T_4 , where $|T_1| = m_2, |T_2| = 4m_1, |T_3| = 2m_2, |T_4| = m_3.$

To approximate m_2/m_1

1 Take X samples from $LM(\overline{G})$.

- 2 Let X_i be the number of samples of type i, for i = 1, ..., 4.
- 3 Then $\frac{X_1+X_3}{X_2}$ is an approximation for $\frac{3m_2}{4m_1}$.

Using Sampling Lemma and Technical Lemma, it can be proved that just poly (n, ε⁻¹, log(δ⁻¹)) samples are needed to approximate m₂/m₁ within ratio (1 + ε) with probability (1 - δ).

Rest of the Ratios

Therefore, the set $LM(\overline{G})$ can be partitioned into four sets T_1, T_2, T_3, T_4 , where $|T_1| = m_2, |T_2| = 4m_1, |T_3| = 2m_2, |T_4| = m_3.$

To approximate m_2/m_1

- **1** Take X samples from $LM(\overline{G})$.
- 2 Let X_i be the number of samples of type i, for i = 1, ..., 4.
- **3** Then $\frac{X_1+X_3}{X_2}$ is an approximation for $\frac{3m_2}{4m_1}$.
- Using Sampling Lemma and Technical Lemma, it can be proved that just poly (n, ε⁻¹, log(δ⁻¹)) samples are needed to approximate m₂/m₁ within ratio (1 + ε) with probability (1 - δ).

Rest of the Ratios

Therefore, the set $LM(\overline{G})$ can be partitioned into four sets T_1, T_2, T_3, T_4 , where $|T_1| = m_2, |T_2| = 4m_1, |T_3| = 2m_2, |T_4| = m_3.$

To approximate m_2/m_1

- **1** Take X samples from $LM(\overline{G})$.
- 2 Let X_i be the number of samples of type i, for i = 1, ..., 4.
- 3 Then $\frac{X_1+X_3}{X_2}$ is an approximation for $\frac{3m_2}{4m_1}$.
- Using Sampling Lemma and Technical Lemma, it can be proved that just poly (n, ε⁻¹, log(δ⁻¹)) samples are needed to approximate m₂/m₁ within ratio (1 + ε) with probability (1 - δ).

Preliminaries Sampling means approximating The sampling Rest of the ratios

Wrapping Things Up

Outline of the Algorithm

• For each k = 2, ..., n, suppose that $r_k \simeq m_k/m_{k-1}$ within ratio $(1 + \epsilon/4n)^2$ with probability $(1 - 1/8n)^2$.

Return $\widehat{m}_n = m_1 \times r_2 \times r_3 \times \cdots \times r_n$.

Analysis

- Each r_k can be calculated in time poly (n, ϵ^{-1}) .
- The answer \widehat{m}_n approximates m_n within ratio $(1 + \epsilon/4n)^{2n} < 1 + \epsilon$ with probability at least $(1 - 1/8n)^{2n} > 3/4$.

・ロト ・四ト ・ヨト ・ヨト

Wrapping Things Up

Outline of the Algorithm

- For each k = 2, ..., n, suppose that $r_k \simeq m_k/m_{k-1}$ within ratio $(1 + \epsilon/4n)^2$ with probability $(1 - 1/8n)^2$.
- 2 Return $\widehat{m}_n = m_1 \times r_2 \times r_3 \times \cdots \times r_n$.

Analysis

- Each r_k can be calculated in time $poly(n, e^{-1})$.
- The answer \widehat{m}_n approximates m_n within ratio $(1 + \epsilon/4n)^{2n} < 1 + \epsilon$ with probability at least $(1 - 1/8n)^{2n} > 3/4$.

(日) (四) (王) (王) (王) (王)

Wrapping Things Up

Outline of the Algorithm

- For each k = 2, ..., n, suppose that $r_k \simeq m_k/m_{k-1}$ within ratio $(1 + \epsilon/4n)^2$ with probability $(1 - 1/8n)^2$.
- 2 Return $\widehat{m}_n = m_1 \times r_2 \times r_3 \times \cdots \times r_n$.

Analysis

• Each r_k can be calculated in time $poly(n, e^{-1})$.

• The answer \widehat{m}_n approximates m_n within ratio $(1 + \epsilon/4n)^{2n} < 1 + \epsilon$ with probability at least $(1 - 1/8n)^{2n} > 3/4$

(日) (四) (王) (王) (王) (王)

Wrapping Things Up

Outline of the Algorithm

- For each k = 2, ..., n, suppose that $r_k \simeq m_k/m_{k-1}$ within ratio $(1 + \epsilon/4n)^2$ with probability $(1 - 1/8n)^2$.
- 2 Return $\widehat{m}_n = m_1 \times r_2 \times r_3 \times \cdots \times r_n$.

Analysis

- Each r_k can be calculated in time $poly(n, e^{-1})$.
- The answer \widehat{m}_n approximates m_n within ratio $(1 + \epsilon/4n)^{2n} < 1 + \epsilon$ with probability at least $(1 - 1/8n)^{2n} > 3/4$.

Notes

- This algorithm was proposed in 1986 by Broder.
- The Rapid Convergence Lemma (for dense bipartite graphs) was proved in 1988 by Jerrum and Sinclair.
- An fpras for nondense bipartite graphs was found in 2001 by Jerrum, Sinclair and Vigoda, which uses a more complicated random walk.
- The problem of finding an fpras for non-bipartite graphs is open.

(日) (周) (王) (王)

What is The Permanent?

Definiti<u>on</u>

The permanent of an $n \times n$ matrix $A = [a_{i,j}]$ is defined as

$$\operatorname{per}(A) = \sum_{\sigma} \prod_{i=1}^n a_{i,\sigma(i)}$$

where the sum is over all permutations σ of $\{1, 2, \ldots, n\}$.

$\operatorname{Example}$

$$A = \left(egin{array}{cccc} 1 & 0 & 1 \ 1 & 1 & 1 \ 0 & 1 & 0 \end{array}
ight)$$

Abbas Number of Perfect Matchings in Bipartite Graphs

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

What is The Permanent?

Definition

The permanent of an $n \times n$ matrix $A = [a_{i,j}]$ is defined as

$$\operatorname{per}(A) = \sum_{\sigma} \prod_{i=1}^n a_{i,\sigma(i)}$$

where the sum is over all permutations σ of $\{1, 2, \ldots, n\}$.

Example

$$A = \left(\begin{array}{rrrr} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{array} \right)$$

イロン イヨン イヨン イヨン

ъ

What is The Permanent?

Definition

The permanent of an $n \times n$ matrix $A = [a_{i,j}]$ is defined as

$$\operatorname{per}(A) = \sum_{\sigma} \prod_{i=1}^n a_{i,\sigma(i)}$$

where the sum is over all permutations σ of $\{1, 2, \ldots, n\}$.

Example

per

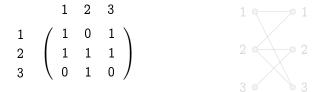
$$(A) = 2:$$
 $\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix},$ $\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

Abbas Number of Perfect Matchings in Bipartite Graphs

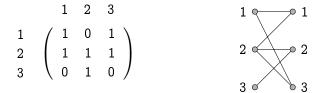
イロン イヨン イヨン イヨン

ъ

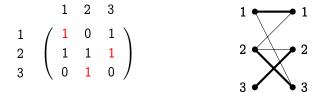
Estimating the Permanent of a 0,1-Matrix



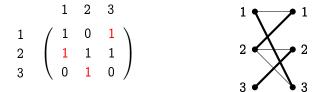
Estimating the Permanent of a 0,1-Matrix



Estimating the Permanent of a 0,1-Matrix



Estimating the Permanent of a 0,1-Matrix



Computational Complexity of Estimating Permanent

- The discussed algorithm gives an fpras for permanent of a 0,1-matrix in which each row/column sums to at least n/2.
- Jerrum et al. gave an fpras for the permanent of any matrix with nonnegative entries in 2001.
- They showed that there is no fpras for the permanent of a general matrix unless P = NP.