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Introduction

What 1s The Problem?

Given a bipartite graph G with two parts of equal size,
how many perfect matchings does G have?
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Introduction

Computational Complexity of The Problem

o Deciding if the graph has a perfect matching is in P
(via reduction to max-flow).
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Introduction

Computational Complexity of The Problem

o Deciding if the graph has a perfect matching is in P
(via reduction to max-flow).

o Counting the number of perfect matchings is
# P-complete.

o Hence there is no polynomial-time exact algorithm
(unless P = NP).

o But we can hope for polynomial-time approximation
algorithms!

o We will see a polynomial-time randomized
approximation algorithm for dense graphs.
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Preliminaries
The Algorithm Sampling means approximating
' ympling
f the ratios

Some Notation

G a bipartite graph with two parts of size n
dense G is dense if all vertices have degree at least n/2.
k-matching a matching having k& edges
My (G) the set of k-matchings of G
my(G) the number of k-matchings of G
e.g. m(G) =I[E(G)
poly(z,y) the set of polynomially-bounded functions in z, y
e.g. z%y°, 2z +logy + 5 € poly(z, y)
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i Preliminaries
The Algorithm Sampling means approximating
The sampling
m m Rest of the ratios

Ratio of Approximation

Definition
For numbers a, a, € > 0, let’s say a approximates a
within ratio 1 + € if the following holds:
a
1+e

<a<ax(l+e).

We abbreviate this as: @ ~ a within ratio (1 + €).
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Ratio of Approximation

For numbers a, a, € > 0, let’s say a approximates a
within ratio 1 + € if the following holds:

a
1+e€

<a<ax(l+e).

We abbreviate this as: @ ~ a within ratio (1 + €).

Why use this (unusual) definition?

If a; approximates a; within ratio 1 + €; and

ap approximates a, within ratio 1 + €5 then:
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Ratio of Approximation

For numbers a, a, € > 0, let’s say a approximates a
within ratio 1 + € if the following holds:

a

<a<ax(l+e).
1+e€ Bare

We abbreviate this as: @ ~ a within ratio (1 + €).

Why use this (unusual) definition?

If a; approximates a; within ratio 1 + €; and
ap approximates a, within ratio 1 + €5 then:

a0, approximates ajas within ratio (1 + e1)(1 + €3).
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Ratio of Approximation

For numbers a, a, € > 0, let’s say a approximates a
within ratio 1 + € if the following holds:

a
1+e€

<a<ax(l+e).

We abbreviate this as: @ ~ a within ratio (1 + €).

Why use this (unusual) definition?

If a; approximates a; within ratio 1 + €; and

ap approximates a, within ratio 1 + €5 then:

a0, approximates ajas within ratio (1 + e1)(1 + €3).
ay/ay approximates a;/ap within ratio (1 + €1)(1 + €3).




i Preliminaries
The Algorithm Sampling means approximating
I\ The sampling
m m Rest of the ratios

Fully Polynomial Time Randomized Approximation Scheme

A fully polynomial time randomized approximation scheme
(fpras) is a randomized algorithm that:

inputs: a dense bipartite graph G and a number €> 0
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Fully Polynomial Time Randomized Approximation Scheme

A fully polynomial time randomized approximation scheme
(fpras) is a randomized algorithm that:

inputs: a dense bipartite graph G and a number €> 0

outputs: a number m,(G) that approximates m,(G)
within ratio 1 + € with probability more than 3/4:

mn(G)
1+e€

Pr <Mp(G) < my(G) x (1+¢€)| > 3/4.

Abbas Number of Perfect Matchings in Bipartite Graphs



i Preliminaries
The Algorithm Sampling means approximating
I\ The sampling
Rest of the ratios

Fully Polynomial Time Randomized Approximation Scheme

A fully polynomial time randomized approximation scheme
(fpras) is a randomized algorithm that:

inputs: a dense bipartite graph G and a number €> 0

outputs: a number m,(G) that approximates m,(G)
within ratio 1 + € with probability more than 3/4:

mn(G)
1+e€

Pr <Mp(G) < my(G) x (1+¢€)| > 3/4.

run-time: is in poly(n, e™1).
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Fully Polynomial Time Randomized Approximation Scheme

A fully polynomial time randomized approximation scheme
(fpras) is a randomized algorithm that:

inputs: a dense bipartite graph G and a number €> 0

outputs: a number m,(G) that approximates m,(G)
within ratio 1 + € with probability more than 3/4:

mn(G)
1+e€

Pr <Mp(G) < my(G) x (1+¢€)| > 3/4.

run-time: is in poly(n, e™1).

Probability can be increased to 1 — & by repeating O(lg ) times.



Preliminaries
The Algorithm Sampling means approximating
Th mpling
) m of the ratios

The First Idea

We have:

me
My = —— X —= X -+ X — X My.
Mn—1 Mp—2 my
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Pre11m1nar1es
The Algorithm E g mea oximating

The First Idea

We have:
mpy Mmp—1 mo
my = X X — X my.
Mn—1 Mp—2 my
Focus on first rat1o for now.
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The Algorithm Sampling means approximating
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Rest of the ratios

Approximating mm—fl

Large matchings

A large matching of G is a matching of size n or n — 1,
LM(G) = Mn(G) U Mp1(G),
im(G) =[LM(G)| = ma(G) + mp1(G).
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Approximating mm—fl

Large matchings

Definition

A large matching of G is a matching of size n or n — 1,
LM(G) = Mn(G) U Mp1(G),
im(G) =[LM(G)| = ma(G) + mp1(G).

Example
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Approximating mm—fl

The idea of sampling

A large matching of G is a matching of size n or n — 1,
LM(G) = Mn(G) U Mp1(G),
Im(G) =|LM(G)| = ma(G) + mn_1(G).

The Sampling Method
@ Take X samples uniformly at random from LM.
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The idea of sampling

A large matching of G is a matching of size n or n — 1,
LM(G) = Mn(G) U Mp1(G),
Im(G) =|LM(G)| = ma(G) + mn_1(G).

The Sampling Method

@ Take X samples uniformly at random from LM.

© Suppose that X,, of them have size n, and
X,_1 of them have size n — 1.

© Then X,,/X, ;1 is an estimate for m,,/m,_;.
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The Algorithm Sampling means approximating
The sampling

Rest of the ratios

Approximating mm—fl

The idea of sampling

A large matching of G is a matching of size n or n — 1,
LM(G) = Mn(G) U Mp1(G),
Im(G) =|LM(G)| = ma(G) + mn_1(G).

The Sampling Method

@ Take X samples uniformly at random from LM.

© Suppose that X,, of them have size n, and
X,_1 of them have size n — 1.

© Then X,,/X, ;1 is an estimate for m,,/m,_;.

Question: How many samples are needed?

Abbas Number of Perfect Matchings in Bipartite Graphs



i Preliminaries

The Algorithm Sampling means approximating
The sampling
Rest of the ratios

How Many Samples Are Needed?

The sampling lemma

Lemma (The Sampling Lemma)

Let U C S and p =|U|/|S|. The number of samples needed
to approzimate p within ratio 1+ €
with probability at least 1 — & 1s

6751n(2/8)

e € poly (p*,e ! log(671)).

v

Use Chernoff bounds. ]
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The sampling
Rest of the ratios

How Many Samples Are Needed?

Let p = min{m,/lm, m,_1/lm}. We can approrimate
My /Mp_1 within ratio 1+ € with probability 1 — 6
by taking poly (p *,e !, log(67 1)) samples from LM.
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How Many Samples Are Needed?

Corollary

Let p = min{m,/lm, m,_1/lm}. We can approrimate
My /Mp_1 within ratio 1+ € with probability 1 — 6

by taking poly (p *,e !, log(67 1)) samples from LM.

@ Take X = % samples. Define X,, X,,_; as before.
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How Many Samples Are Needed?

Corollary

Let p = min{m,/lm, m,_1/lm}. We can approrimate
My /Mp_1 within ratio 1+ € with probability 1 — 6

by taking poly (p *,e !, log(67 1)) samples from LM.

@ Take X = % samples. Define X,, X,,_; as before.

@ Then X,,/X ~ m,/lm within ratio (1 + €/3) with prob. 1 —56/2,
Xn_1/X ~ my,_1/lm within ratio (1 + €¢/3) with prob. 1—5/2,s0

Abbas Number of Perfect Matchings in Bipartite Graphs



i Preliminaries
The Algorithm Sampling means approximating
The sampling
Rest of the ratios

How Many Samples Are Needed?

Corollary

Let p = min{m,/lm, m,_1/lm}. We can approrimate
My /Mp_1 within ratio 1+ € with probability 1 — 6

by taking poly (p *,e !, log(67 1)) samples from LM.

@ Take X = % samples. Define X,, X,,_; as before.

@ Then X,,/X ~ m,/lm within ratio (1 + €/3) with prob. 1 —56/2,
Xn_1/X ~ my,_1/lm within ratio (1 + €¢/3) with prob. 1—5/2,s0

X, Xn/X my/lm m,

— ~ —

Xn1 - Xn1/X - my_1/Ilm B Mp—1
within ratio (14 €/3)% < 1+ € with prob. (1—5/2)2 >1—-5. [
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A Technical Lemma

Lemma (The Technical Lemma)

If G 1s dense then we have

m
"< nl.

1/n2 <

Mp—1
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A Technical Lemma

Lemma (The Technical Lemma)

If G 1s dense then we have

m.
1/n? < —" < n2
Mp—1

Corollary

If we can sample from the large matchings
in polynomzeal time then we can approrimate %
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A Technical Lemma

Lemma (The Technical Lemma)

If G 1s dense then we have

m.
1/n? < —" < n2

Mp—1

Corollary

If we can sample from the large matchings
in polynomzeal time then we can approrimate %

Proof (of Corollary).

Recall that im = m, + m,_1. So
p = min{m, /Im, m,_1/lm} > n3,
i.e. p~* is polynomially bounded in 7. [

Abbas Number of Perfect Matchings in Bipartite Graphs

1




i Preliminaries
The Algorithm Sampling means approximating
The sampling
Rest of the ratios

Proof of the Technical Lemma
upper bound

Lemma (The Technical Lemma (generalized))
If G 1s dense then for all 2 < k < n we have

m
1/n2 < k < n?.

mr—1
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Proof of the Technical Lemma

upper bound

Lemma (The Technical Lemma (generalized))
If G 1s dense then for all 2 < k < n we have

m
1/n2 < k < n?.

mr—1

Proof (Upper Bound).

© Any k-matching can be built by
adding an edge to some (k — 1)-matching.
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Proof of the Technical Lemma

upper bound

Lemma (The Technical Lemma (generalized))
If G 1s dense then for all 2 < k < n we have

m
1/n2 < k < n?.

mr—1

Proof (Upper Bound).
© Any k-matching can be built by
adding an edge to some (k — 1)-matching.

@ Each (k — 1)-matching has (n — k + 1) unmatched vertices
in each part, thus at most (n — k + 1)2 edges can be added
to build a k-matching.
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Proof of the Technical Lemma

upper bound

Lemma (The Technical Lemma (generalized))
If G 1s dense then for all 2 < k < n we have

m
1/n2 < k < n?.

mr—1

Proof (Upper Bound).
© Any k-matching can be built by
adding an edge to some (k — 1)-matching.

@ Each (k — 1)-matching has (n — k + 1) unmatched vertices
in each part, thus at most (n — k + 1)2 edges can be added
to build a k-matching.

© Therefore, my < (n —k + 1)%my_1. O
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Proof of the Technical Lemma

lower bound

De-augmenting a matching:
removing two edges from the matching
and adding a cross-edge.
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Proof of the Technical Lemma

lower bound

De-augmenting a matching:
removing two edges from the matching
and adding a cross-edge.

There are < 2('2“) = k% — k ways
to de-augment a k-matching.
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Proof of the Technical Lemma

lower bound

If a (k — 1)-matching has an alternating path of length 3, then
it can be built by de-augmenting some k-matching.
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Proof of the Technical Lemma

lower bound

If a (k — 1)-matching has an alternating path of length 3, then
it can be built by de-augmenting some k-matching.

o

[l
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Proof of the Technical Lemma

lower bound

If G is dense and 2 < k < n, then any (k — 1)-matching
has an alternating path of length at most 3.
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Proof of the Technical Lemma

lower bound

If G is dense and 2 < k < n, then any (k — 1)-matching
has an alternating path of length at most 3.

o o U
o o
o o
o o

]
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Proof of the Technical Lemma
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Claim.

If G is dense and 2 < k < n, then any (k — 1)-matching
has an alternating path of length at most 3.

Proof.

]
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Proof of the Technical Lemma

lower bound

If G is dense and 2 < k < n, then any (k — 1)-matching
has an alternating path of length at most 3.

]
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Proof of the Technical Lemma

lower bound

Lemma (The Technical Lemma (generalized))
If G 1s dense then for all 2 < k < n we have

Proof (lower bound).
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Proof of the Technical Lemma

lower bound

Lemma (The Technical Lemma (generalized))
If G 1s dense then for all 2 < k < n we have

Proof (lower bound).

© Any (k — 1)-matching can be built by one of these operations:

e removing an edge from some k-matching.
o de-augmenting some k-matching.
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Proof of the Technical Lemma

lower bound

Lemma (The Technical Lemma (generalized))
If G 1s dense then for all 2 < k < n we have

Proof (lower bound).

© Any (k — 1)-matching can be built by one of these operations:

e removing an edge from some k-matching.
o de-augmenting some k-matching.

© There are k ways to remove an edge from a k-matching.
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Proof of the Technical Lemma

lower bound

Lemma (The Technical Lemma (generalized))
If G 1s dense then for all 2 < k < n we have

Proof (lower bound).

© Any (k — 1)-matching can be built by one of these operations:

e removing an edge from some k-matching.
o de-augmenting some k-matching.

© There are k ways to remove an edge from a k-matching.

© There are k2 — k ways to de-augment a k-matching.
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Proof of the Technical Lemma

lower bound

Lemma (The Technical Lemma (generalized))
If G 1s dense then for all 2 < k < n we have

Proof (lower bound).

© Any (k — 1)-matching can be built by one of these operations:

e removing an edge from some k-matching.
o de-augmenting some k-matching.

© There are k ways to remove an edge from a k-matching.
© There are k2 — k ways to de-augment a k-matching.
@ Therefore, my;_; < k*m;. O
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Recall: The Technical Lemma

Lemma (The Technical Lemma)

If G 1s dense then we have

m
1/n? < —" < n2
Mmp—1

Corollary

If we can sample from the large matchings
wn polynomzal time then we can approrimate %

A\
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Preliminaries
The Algorithm Sampling means approximating
The sampling
m m Rest of the ratios

Recall: The Technical Lemma

Lemma (The Technical Lemma)

If G 1s dense then we have

m
1/n? < —" < n2
Mmp—1

Corollary

If we can sample from the large matchings
wn polynomzal time then we can approrimate %

A\

Now, let’s focus on the sampling.
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Elementary Operatlons on Matchings
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Elementary Operatlons on Matchings

insert
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Elementary Operations on Matchings

insert
delete
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Elementary Operatlons on Matchings

insert
delete

rotate
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The Algorithm a ing means approximating

Rest of the ratios

Sampling From the Large Matchings

Example

Suppose that we are trying to sample from the set of
large matchings of the following graph:

X
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Sampling From the Large Matchings

The random walk
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Sampling From the Large Matchings

The random walk
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Sampling From the Large Matchings

The random walk

after first step ...
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Sampling From the Large Matchings

The random walk

after second step ...
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Sampling From the Large Matchings

The random walk

after third step ...
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Sampling From the Large Matchings

The random walk

after fourth step ...
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Sampling From the Large Matchings

The random walk

after tenth step ...

Abbas Number of Perfect Matchings in Bipartite Graphs



Preliminaries
The Algorithm Sampling means approximating
The sampling
m Rest of the ratios

Sampling From the Large Matchings

The random walk

How many steps are needed to achieve a uniform sample?
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How Many Steps Are Needed?

Lemma (The Rapid Convergence Lemma)

Let G be a dense graph. If we take 24n” steps in the
random walk associated with G, then the final
large matching s an almost uniform sample from LM (G).
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How Many Steps Are Needed?

Lemma (The Rapid Convergence Lemma)

Let G be a dense graph. If we take 24n” steps in the
random walk associated with G, then the final
large matching s an almost uniform sample from LM (G).

Corollary
For a dense G and positive numbers €,9d, it 18 possible to
approrimate 22— within ratio (1 + €) with probability 1 — 6

Mp—1

in time poly (n,e !, log(671)).
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What Next?

Corollary

For a dense G and positive numbers €,0, it 1s possible to
approrimate % within ratio (1 + €) with probability 1 — O
in time poly (n,e ', log(671)).

We have:
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What Next?

Corollary

For a dense G and positive numbers €,0, it 1s possible to
approrimate % within ratio (1 + €) with probability 1 — O
in time poly (n,e ', log(671)).

We have:

We are done Wlth 1.
Let us consider rest of the ratios now!
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The Auxiliary Graph G

We know how to approximate ms/ms.
Suppose we want to approximate my/m;:
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The Auxiliary Graph G
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Rest of the ratios

The Auxiliary Graph G

We know how to approximate ms/ms.
Suppose we want to approximate my/m;:

oO—o0 —F—

G G

There are four types of large matchings of G.
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First type: a 4-matching

G G

There are my(G) matchings of this type.
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Abbas Number of Perfect Matchings in Bipartite Graphs



Preliminari

The Algorithm Sampling m approximating
The sampling
Rest of the ratios

Large Matchmgs of the Auxiliary Graph

Third type: a 3-matching that covers one of © and v

Q|
Q

Abbas Number of Perfect Matchings in Bipartite Graphs



Preliminaries

The Algorithm Sampling means approximating
The sampling
Rest of the ratios

Large Matchmgs of the Auxiliary Graph

Third type: a 3-matching that covers one of © and v

G G

There are 2my( G) matchings of this type.
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Large Matchmgs of the Auxiliary Graph

Fourth type: a 3-matching that covers none of u and v

U o oV
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There are mz(G) matchings of this type.
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Rest of the Ratios

Therefore, the set LM (G) can be partitioned into four sets
T]_, Tg, Tg, T4, where
|T1| = mga, | T2l = 4my, | T3| = 2mgz, | Ta| = ms.
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Therefore, the set LM (G) can be partitioned into four sets
T]_, Tg, Tg, T4, where
|T1| = mga, | T2l = 4my, | T3| = 2mgz, | Ta| = ms.

To approximate my/m;

© Take X samples from LM (G).
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Rest of the Ratios

Therefore, the set LM (G) can be partitioned into four sets
T]_, Tg, Tg, T4, where
|T1| = mga, | T2l = 4my, | T3| = 2mgz, | Ta| = ms.

To approximate my/m;

@ Take X samples from LM (G).

@ Let X; be the number of samples of type ¢, for 2 = 1,...,4.
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Rest of the ratios

Rest of the Ratios

Therefore, the set LM (G) can be partitioned into four sets
T]_, Tg, Tg, T4, where
|T1| = mga, | T2l = 4my, | T3| = 2mgz, | Ta| = ms.

To approximate my/m;

@ Take X samples from LM (G).

@ Let X; be the number of samples of type ¢, for 2 = 1,...,4.

3mo
4m1 )

© Then % is an approximation for
2
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The Algorithm Sampling means approximating
The sampling

Rest of the ratios

Rest of the Ratios

Therefore, the set LM (G) can be partitioned into four sets
T]_, Tg, Tg, T4, where
|T1| = mga, | T2l = 4my, | T3| = 2mgz, | Ta| = ms.

To approximate my/m;

@ Take X samples from LM (G).

@ Let X; be the number of samples of type ¢, for 2 = 1,...,4.

3mo
4m1 )

© Then % is an approximation for
2

© Using Sampling Lemma and Technical Lemma, it can be proved
that just poly (n,e*,log(57 1)) samples are needed to
approximate my/m; within ratio (1 + €) with probability (1 —9).
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The Algorithm Sampling means approximating
The sampling

) Rest of the ratios

Wrapping Things Up

Outline of the Algorithm

© For each k =2,...,n, suppose that r, ~ my/mi_1
within ratio (1 + €/4n)? with probability (1 — 1/8n)2.
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Wrapping Things Up

Outline of the Algorithm

© For each k =2,...,n, suppose that r, ~ my/mi_1
within ratio (1 + €/4n)? with probability (1 — 1/8n)2.

©Q Return M, = my X 7y X 3 X -+ X Tp,.
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Wrapping Things Up

Outline of the Algorithm

© For each k =2,...,n, suppose that r, ~ my/mi_1
within ratio (1 + €/4n)? with probability (1 — 1/8n)2.

©Q Return M, = my X 7y X 3 X -+ X Tp,.

e Each 74 can be calculated in time poly(n,e~1).
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i Preliminaries
The Algorithm Sampling means approximating
The sampling

Rest of the ratios

Wrapping Things Up

Outline of the Algorithm

© For each k =2,...,n, suppose that r, ~ my/mi_1
within ratio (1 + €/4n)? with probability (1 — 1/8n)2.

©Q Return M, = my X 7y X 3 X -+ X Tp,.

e Each 74 can be calculated in time poly(n,e~1).

@ The answer m,, approximates m,,
within ratio (1+ €/4n)*" <1+ ¢
with probability at least (1 — 1/8n)%" > 3/4.
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@ This algorithm was proposed in 1986 by Broder.

e The Rapid Convergence Lemma (for dense bipartite
graphs) was proved in 1988 by Jerrum and Sinclair.

@ An fpras for nondense bipartite graphs was found in 2001
by Jerrum, Sinclair and Vigoda, which uses a
more complicated random walk.

@ The problem of finding an fpras for non-bipartite graphs
is open.
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Estimating the Permanent

What 1s The Permanent?

The permanent of an 7 x n matrix A = [a, ;] is defined as

per(4) =Y [ a0

o =1

where the sum is over all permutations o of {1,2,...,n}.
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Estimating the Permanent

What 1s The Permanent?

The permanent of an 7 x n matrix A = [a, ;] is defined as

per(4) =Y [ a0

o =1

where the sum is over all permutations o of {1,2,...,n}.

1 01 1 0 1
per(A) =2: 11 1], 111
0 1 0 010
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Estimating the Permanent

Estimating the Permanent of a 0,1-Matrix

The permanent of a 0,1-matrix is equal to the
number of perfect matchings of a bipartite graph:

1 2 3
1 1 0 1
2 1 1 1
3 0 1 0
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Estimating the Permanent

Estimating the Permanent of a 0,1-Matrix

The permanent of a 0,1-matrix is equal to the
number of perfect matchings of a bipartite graph:

1 2 3 1 1
1 1 0 1
2 11 1 2 2
3 0 1 0
3 3
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Estimating the Permanent

Computational Complexity of Estimating Permanent

@ The discussed algorithm gives an fpras for permanent of a
0,1-matrix in which each row/column sums to at least n/2.

@ Jerrum et al. gave an fpras for the permanent of any
matrix with nonnegative entries in 2001.

@ They showed that there is no fpras for the permanent of a
general matrix unless P = NP.
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