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What is The Problem?

Problem

Given a bipartite graph G with two parts of equal size,

how many perfect matchings does G have?

Example

The following graph has two perfect matchings:
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Computational Complexity of The Problem

Deciding if the graph has a perfect matching is in P

(via reduction to max-�ow).

Counting the number of perfect matchings is
#P -complete.

Hence there is no polynomial-time exact algorithm

(unless P = NP).

But we can hope for polynomial-time approximation
algorithms!

We will see a polynomial-time randomized

approximation algorithm for dense graphs.
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Rest of the ratios

Some Notation

G a bipartite graph with two parts of size n

dense G is dense if all vertices have degree at least n/2.

k -matching a matching having k edges

Mk (G) the set of k -matchings of G

mk (G) the number of k -matchings of G

e.g. m1(G) = |E(G)|

poly(x , y) the set of polynomially-bounded functions in x , y

e.g. x 2y3, 2x + log y + 5 ∈ poly(x , y)
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Ratio of Approximation

De�nition

For numbers a , â , ε > 0, let's say â approximates a

within ratio 1+ ε if the following holds:

a

1+ ε
< â < a × (1+ ε).

We abbreviate this as: â ' a within ratio (1+ ε).

Why use this (unusual) de�nition?

If â1 approximates a1 within ratio 1+ ε1 and

â2 approximates a2 within ratio 1+ ε2 then:

â1â2 approximates a1a2 within ratio (1+ ε1)(1+ ε2).

â1/â2 approximates a1/a2 within ratio (1+ ε1)(1+ ε2).
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We abbreviate this as: â ' a within ratio (1+ ε).

Why use this (unusual) de�nition?
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within ratio 1+ ε if the following holds:

a

1+ ε
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Fully Polynomial Time Randomized Approximation Scheme

De�nition

A fully polynomial time randomized approximation scheme

(fpras) is a randomized algorithm that:

inputs: a dense bipartite graph G and a number ε> 0

outputs: a number m̂n(G) that approximates mn(G)

within ratio 1+ ε with probability more than 3/4:

Pr

[
mn(G)

1+ ε
< m̂n(G) < mn(G)× (1+ ε)

]
> 3/4.

run-time: is in poly(n , ε−1).

Probability can be increased to 1− δ by repeating O(lg δ) times.
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The First Idea

We have:

mn =
mn

mn−1
× mn−1

mn−2
× · · · × m2

m1

×m1.

Focus on �rst ratio mn

mn−1
for now.
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Approximating mn

mn−1

Large matchings

De�nition

A large matching of G is a matching of size n or n − 1,

LM (G) = Mn(G) ∪Mn−1(G),

lm(G) = |LM (G)| = mn(G) +mn−1(G).

Example
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Approximating mn

mn−1

The idea of sampling

De�nition

A large matching of G is a matching of size n or n − 1,

LM (G) = Mn(G) ∪Mn−1(G),

lm(G) = |LM (G)| = mn(G) +mn−1(G).

The Sampling Method

1 Take X samples uniformly at random from LM .

2 Suppose that Xn of them have size n , and

Xn−1 of them have size n − 1.

3 Then Xn/Xn−1 is an estimate for mn/mn−1.

Question: How many samples are needed?
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How Many Samples Are Needed?
The sampling lemma

Lemma (The Sampling Lemma)

Let U ⊆ S and p = |U |/|S |. The number of samples needed

to approximate p within ratio 1+ ε

with probability at least 1− δ is

675 ln(2/δ)

pε2
∈ poly

(
p−1, ε−1, log(δ−1)

)
.

Proof.

Use Cherno� bounds.
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How Many Samples Are Needed?

Corollary

Let p = min{mn/lm ,mn−1/lm}. We can approximate

mn/mn−1 within ratio 1+ ε with probability 1− δ

by taking poly
(
p−1, ε−1, log(δ−1)

)
samples from LM.

Proof.

1 Take X = 10
4
ln(4/δ)
pε2

samples. De�ne Xn ,Xn−1 as before.

2 Then Xn/X ' mn/lm within ratio (1+ ε/3) with prob. 1− δ/2,

Xn−1/X ' mn−1/lm within ratio (1+ ε/3) with prob. 1− δ/2,so

Xn

Xn−1

=
Xn/X

Xn−1/X
' mn/lm

mn−1/lm
=

mn

mn−1

within ratio (1+ ε/3)2 < 1+ ε with prob. (1− δ/2)2 > 1− δ.
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A Technical Lemma

Lemma (The Technical Lemma)

If G is dense then we have

1/n2 ≤ mn

mn−1
≤ n2.

Corollary

If we can sample from the large matchings

in polynomial time then we can approximate mn

mn−1
.

Proof (of Corollary).

Recall that lm = mn +mn−1. So

p = min{mn/lm ,mn−1/lm} > n−3,

i.e. p−1 is polynomially bounded in n .
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Proof of the Technical Lemma
upper bound

Lemma (The Technical Lemma (generalized))

If G is dense then for all 2 ≤ k ≤ n we have

1/n2 ≤ mk

mk−1
≤ n2.

Proof (Upper Bound).

1 Any k -matching can be built by

adding an edge to some (k − 1)-matching.

2 Each (k − 1)-matching has (n − k + 1) unmatched vertices

in each part, thus at most (n − k + 1)2 edges can be added

to build a k -matching.

3 Therefore, mk ≤ (n − k + 1)2mk−1.
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Proof of the Technical Lemma
lower bound

De�nition

De-augmenting a matching:

removing two edges from the matching

and adding a cross-edge.

There are ≤ 2
(
k
2

)
= k2 − k ways

to de-augment a k -matching.
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Proof of the Technical Lemma
lower bound

Remark.

If a (k − 1)-matching has an alternating path of length 3, then

it can be built by de-augmenting some k -matching.

Proof.
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Proof of the Technical Lemma
lower bound

Claim.

If G is dense and 2 ≤ k ≤ n , then any (k − 1)-matching

has an alternating path of length at most 3.

Proof.

uu
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Proof of the Technical Lemma
lower bound

Lemma (The Technical Lemma (generalized))

If G is dense then for all 2 ≤ k ≤ n we have

1/n2 ≤ mk

mk−1
≤ n2.

Proof (lower bound).

1 Any (k − 1)-matching can be built by one of these operations:

removing an edge from some k -matching.

de-augmenting some k -matching.

2 There are k ways to remove an edge from a k -matching.

3 There are k2 − k ways to de-augment a k -matching.

4 Therefore, mk−1 ≤ k2mk .
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Recall: The Technical Lemma

Lemma (The Technical Lemma)

If G is dense then we have

1/n2 ≤ mn

mn−1
≤ n2.

Corollary

If we can sample from the large matchings

in polynomial time then we can approximate mn

mn−1
.

Now, let's focus on the sampling.
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Elementary Operations on Matchings

De�nition

insert

delete

rotate
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Sampling From the Large Matchings

Example

Suppose that we are trying to sample from the set of

large matchings of the following graph:
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Sampling From the Large Matchings
The random walk

1/4

1/4

1/4

1/41/4

1/4

1/4

1/4
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Sampling From the Large Matchings
The random walk

after �rst step ...

1/4

1/4

1/4

1/41/4

1/4

1/4

1/4
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Sampling From the Large Matchings
The random walk

after second step ...

1/4

1/4

1/4

1/41/4

1/4

1/4

1/4
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Sampling From the Large Matchings
The random walk

after third step ...

1/4

1/4

1/4

1/41/4

1/4

1/4

1/4
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Sampling From the Large Matchings
The random walk

after fourth step ...

1/4

1/4

1/4

1/41/4

1/4

1/4

1/4
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Sampling From the Large Matchings
The random walk

after tenth step ...

1/4

1/4

1/4

1/41/4

1/4

1/4

1/4

Abbas Number of Perfect Matchings in Bipartite Graphs



Introduction
The Algorithm

Notes
Estimating the Permanent

Preliminaries
Sampling means approximating
The sampling
Rest of the ratios

Sampling From the Large Matchings
The random walk

How many steps are needed to achieve a uniform sample?

1/4

1/4

1/4

1/41/4

1/4

1/4

1/4

Abbas Number of Perfect Matchings in Bipartite Graphs



Introduction
The Algorithm

Notes
Estimating the Permanent

Preliminaries
Sampling means approximating
The sampling
Rest of the ratios

How Many Steps Are Needed?

Lemma (The Rapid Convergence Lemma)

Let G be a dense graph. If we take 24n7 steps in the

random walk associated with G, then the �nal

large matching is an almost uniform sample from LM (G).

Corollary

For a dense G and positive numbers ε, δ, it is possible to

approximate mn

mn−1
within ratio (1+ ε) with probability 1− δ

in time poly
(
n , ε−1, log(δ−1)

)
.

Abbas Number of Perfect Matchings in Bipartite Graphs



Introduction
The Algorithm

Notes
Estimating the Permanent

Preliminaries
Sampling means approximating
The sampling
Rest of the ratios

How Many Steps Are Needed?

Lemma (The Rapid Convergence Lemma)

Let G be a dense graph. If we take 24n7 steps in the

random walk associated with G, then the �nal

large matching is an almost uniform sample from LM (G).

Corollary

For a dense G and positive numbers ε, δ, it is possible to

approximate mn

mn−1
within ratio (1+ ε) with probability 1− δ

in time poly
(
n , ε−1, log(δ−1)

)
.

Abbas Number of Perfect Matchings in Bipartite Graphs



Introduction
The Algorithm

Notes
Estimating the Permanent

Preliminaries
Sampling means approximating
The sampling
Rest of the ratios

What Next?

Corollary

For a dense G and positive numbers ε, δ, it is possible to

approximate mn

mn−1
within ratio (1+ ε) with probability 1− δ

in time poly
(
n , ε−1, log(δ−1)

)
.

Recall.

We have:

mn =
mn

mn−1
× mn−1

mn−2
× · · · × m2

m1

×m1.

We are done with mn

mn−1
.

Let us consider rest of the ratios now!
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The Auxiliary Graph G

We know how to approximate m3/m2.

Suppose we want to approximate m2/m1:

G

u v

G
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We know how to approximate m3/m2.

Suppose we want to approximate m2/m1:

G

u v
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There are four types of large matchings of G .
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Large Matchings of the Auxiliary Graph

First type: a 4-matching

u v

G G

There are m2(G) matchings of this type.
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Large Matchings of the Auxiliary Graph

Second type: a 3-matching that covers both of u and v

u v

G G

There are 4m1(G) matchings of this type.
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Large Matchings of the Auxiliary Graph

Third type: a 3-matching that covers one of u and v

u v

G G

There are 2m2(G) matchings of this type.
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Large Matchings of the Auxiliary Graph

Fourth type: a 3-matching that covers none of u and v

u v

G G

There are m3(G) matchings of this type.
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Large Matchings of the Auxiliary Graph

Fourth type: a 3-matching that covers none of u and v

u v

G G

There are m3(G) matchings of this type.
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Large Matchings of the Auxiliary Graph

Fourth type: a 3-matching that covers none of u and v

u v

G G

There are m3(G) matchings of this type.
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Rest of the Ratios

Therefore, the set LM (G) can be partitioned into four sets

T1,T2,T3,T4, where

|T1| = m2, |T2| = 4m1, |T3| = 2m2, |T4| = m3.

To approximate m2/m1

1 Take X samples from LM (G).

2 Let Xi be the number of samples of type i , for i = 1, . . . , 4.

3 Then X1+X3

X2

is an approximation for 3m2

4m1

.

4 Using Sampling Lemma and Technical Lemma, it can be proved

that just poly
(
n , ε−1, log(δ−1)

)
samples are needed to

approximate m2/m1 within ratio (1+ ε) with probability (1− δ).
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Wrapping Things Up

Outline of the Algorithm

1 For each k = 2, . . . ,n , suppose that rk ' mk/mk−1

within ratio (1+ ε/4n)2 with probability (1− 1/8n)2.

2 Return m̂n = m1 × r2 × r3 × · · · × rn .

Analysis

Each rk can be calculated in time poly(n , ε−1).

The answer m̂n approximates mn

within ratio (1+ ε/4n)2n < 1+ ε

with probability at least (1− 1/8n)2n > 3/4.
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Notes

This algorithm was proposed in 1986 by Broder.

The Rapid Convergence Lemma (for dense bipartite

graphs) was proved in 1988 by Jerrum and Sinclair.

An fpras for nondense bipartite graphs was found in 2001

by Jerrum, Sinclair and Vigoda, which uses a

more complicated random walk.

The problem of �nding an fpras for non-bipartite graphs

is open.
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What is The Permanent?

De�nition

The permanent of an n × n matrix A = [ai ,j ] is de�ned as

per(A) =
∑
σ

n∏
i=1

ai ,σ(i)

where the sum is over all permutations σ of {1, 2, . . . ,n}.

Example

A =

 1 0 1

1 1 1

0 1 0
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What is The Permanent?

De�nition

The permanent of an n × n matrix A = [ai ,j ] is de�ned as

per(A) =
∑
σ

n∏
i=1

ai ,σ(i)

where the sum is over all permutations σ of {1, 2, . . . ,n}.

Example

per(A) = 2 :

 1 0 1

1 1 1

0 1 0

 ,
 1 0 1

1 1 1

0 1 0
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Estimating the Permanent of a 0,1-Matrix

The permanent of a 0,1-matrix is equal to the

number of perfect matchings of a bipartite graph:

1

2

3

1 2 3 1 0 1

1 1 1

0 1 0


1 1

2 2

3 3

1 1

2 2

3 3

1 1

2 2

3 3
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The permanent of a 0,1-matrix is equal to the

number of perfect matchings of a bipartite graph:

1

2

3

1 2 3 1 0 1

1 1 1

0 1 0


1 1

2 2

3 3

1 1

2 2

3 3

1 1

2 2

3 3
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Estimating the Permanent of a 0,1-Matrix

The permanent of a 0,1-matrix is equal to the

number of perfect matchings of a bipartite graph:

1

2

3

1 2 3 1 0 1

1 1 1

0 1 0


1 1

2 2

3 3

1 1

2 2

3 3

1 1

2 2

3 3
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Computational Complexity of Estimating Permanent

The discussed algorithm gives an fpras for permanent of a

0,1-matrix in which each row/column sums to at least n/2.

Jerrum et al. gave an fpras for the permanent of any

matrix with nonnegative entries in 2001.

They showed that there is no fpras for the permanent of a

general matrix unless P = NP .
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