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Load balancing

Want to re-allocate balls into bins to achieve perfect balance quickly.

Definition (Asynchronous greedy algorithm)

1 Each ball has an exponential clock of rate 1. When the clock rings, the
ball is activated.

2 On activation, the ball chooses a random bin and moves there if its own
load is improved by doing so.

Simple, distributed, asynchronous, ball-controlled, no global knowledge

n = number of bins, m = number of balls

O(n2) Bound on expected time to reach perfect balance [Goldberg’04]
O
(
ln(n)2 + ln(n) · n2/m

)
[Ganesh,Lilienthal,Manjunath,Proutiere,Simatos’12]

O(ln n + n2/m) [Berenbrink, Kling, Liaw, M’17]
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Tightness of our analysis: O(ln n + n2/m)

ln n n2/m

This algorithm is known as randomized local search.
We also show, whp, time to reach perfect balance ≤ O(ln n + ln n · n2/m)
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About the proof

A key majorization lemma:
Balancing time of left configuration 4 Balancing time of right configuration

Helps in two ways: (1) we may do some destructive moves to make
“well-shaped” configurations that are simpler to analyze.
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About the proof

A key majorization lemma:
Balancing time of left configuration 4 Balancing time of right configuration
Helps in two ways: (1) we may do some destructive moves to make
“well-shaped” configurations that are simpler to analyse.
(2) we may “ignore” certain (at the moment unwanted) moves made
by the algorithm.
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About the proof

A key majorization lemma:
Balancing time of left configuration 4 Balancing time of right configuration
Helps in two ways: (1) we may do some destructive moves to make
“well-shaped” configurations that are simpler to analyse.
(2) we may “ignore” certain (at the moment unwanted) moves made
by the algorithm.

1 max load − min load is reduced to m/n within time ≤ O(ln n)

2 max load − min load is reduced to O(ln n) within time ≤ O(ln n)

3 max load − min load is reduced to 0 within time ≤ O(n2/m)
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