
Load balancing by an asynchronous greedy

algorithm

Abbas Mehrabian

Simons Institute

ITCS Graduating Bits, 9 January 2017

joint work with Petra Berenbrink, Peter Kling, Chris Liaw

Abbas Mehrabian Load balancing by an asynchronous greedy algorithm



Load balancing

Want to re-allocate balls into bins to achieve perfect balance quickly.

Definition (Asynchronous greedy algorithm)

1 Each ball has an exponential clock of rate 1. When the clock rings, the
ball is activated.

2 On activation, the ball chooses a random bin and moves there if its own
load is improved by doing so.

Simple, distributed, asynchronous, ball-controlled, no global knowledge

n = number of bins, m = number of balls

O(n2) Bound on expected time to reach perfect balance [Goldberg’04]
O
(
ln(n)2 + ln(n) · n2/m

)
[Ganesh,Lilienthal,Manjunath,Proutiere,Simatos’12]

O(ln n + n2/m) [Berenbrink, Kling, Liaw, M’17]



Load balancing

Want to re-allocate balls into bins to achieve perfect balance quickly.

Definition (Asynchronous greedy algorithm)

1 Each ball has an exponential clock of rate 1. When the clock rings, the
ball is activated.

2 On activation, the ball chooses a random bin and moves there if its own
load is improved by doing so.

Simple, distributed, asynchronous, ball-controlled, no global knowledge

n = number of bins, m = number of balls

O(n2) Bound on expected time to reach perfect balance [Goldberg’04]
O
(
ln(n)2 + ln(n) · n2/m

)
[Ganesh,Lilienthal,Manjunath,Proutiere,Simatos’12]

O(ln n + n2/m) [Berenbrink, Kling, Liaw, M’17]



Load balancing

Want to re-allocate balls into bins to achieve perfect balance quickly.

Definition (Asynchronous greedy algorithm)

1 Each ball has an exponential clock of rate 1. When the clock rings, the
ball is activated.

2 On activation, the ball chooses a random bin and moves there if its own
load is improved by doing so.

Simple, distributed, asynchronous, ball-controlled, no global knowledge

n = number of bins, m = number of balls

O(n2) Bound on expected time to reach perfect balance [Goldberg’04]
O
(
ln(n)2 + ln(n) · n2/m

)
[Ganesh,Lilienthal,Manjunath,Proutiere,Simatos’12]

O(ln n + n2/m) [Berenbrink, Kling, Liaw, M’17]



Tightness of our analysis: O(ln n + n2/m)

ln n n2/m

This algorithm is known as randomized local search.
We also show, whp, time to reach perfect balance ≤ O(ln n + ln n · n2/m)

Abbas Mehrabian Load balancing by an asynchronous greedy algorithm



Tightness of our analysis: O(ln n + n2/m)

ln n n2/m

This algorithm is known as randomized local search.
We also show, whp, time to reach perfect balance ≤ O(ln n + ln n · n2/m)

Abbas Mehrabian Load balancing by an asynchronous greedy algorithm



About the proof

A key majorization lemma:
Balancing time of left configuration 4 Balancing time of right configuration

Helps in two ways: (1) we may do some destructive moves to make
“well-shaped” configurations that are simpler to analyze.

16

∅-x

∅

∅+x

bin ID

lo
a
d ignore

ignore

ignore

16
bin ID

lo
a
d

Abbas Mehrabian Load balancing by an asynchronous greedy algorithm



About the proof

A key majorization lemma:
Balancing time of left configuration 4 Balancing time of right configuration
Helps in two ways: (1) we may do some destructive moves to make
“well-shaped” configurations that are simpler to analyze.

16

∅-x

∅

∅+x

bin ID

lo
a
d ignore

ignore

ignore

16
bin ID

lo
a
d

Abbas Mehrabian Load balancing by an asynchronous greedy algorithm



About the proof

A key majorization lemma:
Balancing time of left configuration 4 Balancing time of right configuration
Helps in two ways: (1) we may do some destructive moves to make
“well-shaped” configurations that are simpler to analyse.
(2) we may “ignore” certain (at the moment unwanted) moves made
by the algorithm.

Abbas Mehrabian Load balancing by an asynchronous greedy algorithm



About the proof

A key majorization lemma:
Balancing time of left configuration 4 Balancing time of right configuration
Helps in two ways: (1) we may do some destructive moves to make
“well-shaped” configurations that are simpler to analyse.
(2) we may “ignore” certain (at the moment unwanted) moves made
by the algorithm.

1 max load − min load is reduced to m/n within time ≤ O(ln n)

2 max load − min load is reduced to O(ln n) within time ≤ O(ln n)

3 max load − min load is reduced to 0 within time ≤ O(n2/m)

Abbas Mehrabian Load balancing by an asynchronous greedy algorithm



About me

Interests
X Stochastic processes with applications in TCS

X Theoretical machine learning

Homes
X 2015: graduated from U of Waterloo

Joseph Cheriyan and Nick Wormald

X 2016: postdoc at U of British Columbia and Simon Fraser
Petra Berenbrink and Nick Harvey

X 2017 (Spring): Simons Institute
pseudorandomness and machine learning

X Next home? Who knows?

Abbas Mehrabian Load balancing by an asynchronous greedy algorithm



About me

Interests
X Stochastic processes with applications in TCS

X Theoretical machine learning

Homes
X 2015: graduated from U of Waterloo

Joseph Cheriyan and Nick Wormald

X 2016: postdoc at U of British Columbia and Simon Fraser
Petra Berenbrink and Nick Harvey

X 2017 (Spring): Simons Institute
pseudorandomness and machine learning

X Next home? Who knows?

Abbas Mehrabian Load balancing by an asynchronous greedy algorithm


