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The push&pull rumour spreading protocol

[Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart,
Terry, Woods’87]

1. Consider a simple connected graph.

2. At time 0, one vertex knows a rumour.

3. At each time-step 1,2,...,
every informed vertex sends the rumour to a random
neighbour (PUSH);

and every uninformed vertex queries a random neighbour
about the rumour (PULL).

We are interested in the spread time.



e
. Replicated databases
. Broadcasting algorithms

1
2
3. News propagation in social networks
4

. Spread of viruses on the Internet.



2 rounds
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vertex 0
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vertex 2

vertex 3

0 1 2 3 4

knows rumour at round 0
1s informed at round 1

is informed at round
1 + min{Geo(1/2),Geo(1/2)} = 1 + Geo(3/4)
is informed at round 1 + Geo(3/4) + Geo(3/4)



Example: path graph

0 1 2 3 4

vertex 0 knows rumour at round 0
vertex 1 is informed at round 1
vertex 2 is informed at round

1 + min{Geo(1/2),Geo(1/2)} = 1 + Geo(3/4)
vertex 3 is informed at round 1+ Geo(3/4) + Geo(3/4)
vertex 4 is informed at round 1 + Geo(3/4) + Geo(3/4) + 1



Example: path graph

0 1 2 3 4

vertex 0 knows rumour at round 0
vertex 1 is informed at round 1
vertex 2 is informed at round

1 + min{Geo(1/2),Geo(1/2)} = 1 + Geo(3/4)
vertex 3 is informed at round 1+ Geo(3/4) + Geo(3/4)
vertex 4 is informed at round 1 + Geo(3/4) + Geo(3/4) + 1

4
E[Spread Time] = gn -2



Time to pass edge e = min{Geo(1/4), Geo(1/4)}

), Geo )} = Geol - — 1)

n/2

= min{Geo(

n/2
Expected spread time ~ n/4



Example: a complete graph

logs n rounds [Karp, Schindelhauer, Shenker, Vécking’00]



Known results

s(G) expected value of spread time (for worst starting vertex)

Graph G H s(G)

Star 2

Path (4/3)n + O(1)

Double star (14+o0(1))n/4

Complete (14 0(1))logzn
[Karp,Schindelhauer,Shenker, Vécking’00]

G(n,p) O(lnn)

(connected) [Feige, Peleg, Raghavan, Upfal’90]



What’s the maximum spread time of an n-vertex graph?

O(nlnn) upper bound by [Feige, Peleg, Raghavan, Upfal’90]
for “push only” protocol



An extremal question

What’s the maximum spread time of an n-vertex graph?

n/4 4n/3

O(nlnn) upper bound by [Feige, Peleg, Raghavan, Upfal’90]
for “push only” protocol

Theorem (Acan, Collevecchio, M, Wormald'15)

For any connected G on n vertices

s(G)< 5n

Only pull operations are needed!



An asynchronous variant



In each step, one random vertex performs one action
(PUSH or PULL).
Each step takes time 1/n.



In each step, one random vertex performs one action
(PUSH or PULL).
Each step takes time 1/n.

Almost equivalent definition:
every vertex has an exponential clock with rate 1,
at each clock ring, performs one action.



synchronous protocol: 1 round



synchronous protocol: 1 round

Coupon collector: Consider a bag containing n different balls.
In each step we draw a random ball and put it back.

How many draws to see each ball at least once?



Example: a star

synchronous protocol: 1 round

Coupon collector: Consider a bag containing n different balls.
In each step we draw a random ball and put it back.

How many draws to see each ball at least once? About nlnn.
asynchronous protocol: nlnn steps = Inn amount of time



Spread time ~ sum of n — 1 independent exponentials

4
E[Spread Time] = n —5/3 (versus gn — 2 for synchronous)



; ), Exp(—

Time to pass edge e = min{Exp( )} = Exp(4/n)

/
Expected spread time ~ n/4



Some known results

a(G) expected value of spread time in asynchronous protocol

Graph G H s(G) ‘ a(G)

Star 2 Inn+ O(1)

Path (4/3)n + O(1) n+ O(1)

Double star (14+0(1))n/4 (14+0(1))n/4

Complete (1+0(1))logzn Inn + o(1)
[Karp,Schindelhauer,Shenker,V6cking’00]

Hypercube O(lnn) O(lnn)

graph [Feige, Peleg, Raghavan, Upfal’90] [F'ill,Pemantle’93]

G(n,p) O(lnn) (14+0(1))Inn

(connected) [Feige, Peleg, Raghavan, Upfal’90] [Panagiotou,Speidel’13]



What’s the maximum spread time of an n-vertex graph?



What’s the maximum spread time of an n-vertex graph?

For any connected G on n vertices

In(n)/5 < a(G)< 4n

Only pull operations are needed!



Induction?



We show inductively the expected remaining time < 2|B| + 4|R]



Proof idea for linear upper bound 4(G) < 4n

We show inductively the expected remaining time < 2|B| + 4|R|

1. If there is some boundary vertex v with
degp(v) > degg(v): it may take a lot of time to inform v,
but once it is informed, R || and B ]



Proof idea for linear upper bound 4(G) < 4n

We show inductively the expected remaining time < 2|B| + 4|R|

1. If there is some boundary vertex v with
degp(v) > degg(v): it may take a lot of time to inform v,
but once it is informed, R || and B ]

2. Otherwise, each boundary vertex has pulling rate > 1/2|B],
and the B boundary vertices work together “in parallel”
and average time for one of them to pull the rumour is 2.



Comparison of the two variants
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In which graph synchronous is quicker than asynchronous?

synchronous protocol: 1 round
asynchronous protocol: Inn time

a(G) < O(s(G) xInn).




Consider an arbitrary calling sequence:
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In which graph asynchronous is much quicker than
synchronous?



In which graph asynchronous is much quicker than
synchronous?

VN
NN

logarithmic < polynomial



k paths of length 2



Time taken to pass through a diamond

k paths of length 2

Birthday paradox: Consider a bag containing k different balls.
In each step we draw a random ball and put it back.
How many draws to see some ball twice?



Time taken to pass through a diamond

k paths of length 2

Birthday paradox: Consider a bag containing k different balls.
In each step we draw a random ball and put it back.
How many draws to see some ball twice? /7k/2 ~ 1.25Vk



Time taken to pass through a diamond

k paths of length 2

Birthday paradox: Consider a bag containing k different balls.
In each step we draw a random ball and put it back.

How many draws to see some ball twice? /7k/2 ~ 1.25Vk
Time to pass the rumour

Asynchronous: <4 x 1.25/ Vi

Synchronous: > 2



e sring of diomonds, cominued
WA

nl/3 diamonds, each consisting of n%/3 paths of length 2

57 +Inn=5+1Inn
n



e sring of diomonds, cominued
WA

nl/3 diamonds, each consisting of n%/3 paths of length 2

57 +Inn=5+1Inn
n

while
s(G) > 2nt/?



The string of diamonds, continued

A
VY

n!/3 diamonds, each consisting of n?/3 paths of length 2

a(G) < n/3x

+Inn=5+1Inn
n2/3

while

s(G) > 2n/3
Z((g)) can be as large as Q (n'/3), but can it be larger?




For any G,

s(G) -0 (nz/s)

[Acan, Collevecchio, M., Wormald’15]



For any G,

s5(G) -0 (n1/2>

[Giakkoupis, Nazari, and Woelfel’16]



Comparison o

For any G,

f the protocols: our results

Theorem (Angel, M.,
We have

s(G) —0 (nl/Z)

[Giakkoupis, Nazari, and Woelfel’16]
Peres’17)

which is tight (up to

sl _ 5 (nl/s) )

a logarithmic factor).



Proof sketch for s(G) < a(G) x O (n1/3)

Build a coupling so that

asynchronous contamination synchronous contamination
by time 1 by time z



Proof sketch for s(G) < a(G) x O (n1/3)

Build a coupling so that

asynchronous contamination synchronous contamination
by time 1 by time z

If asynchronous contaminates a path of length L,
need to have z > L



In asynchronous, after one time unit, rumor does not pass along
a path of length > Cn'/3 (with high prob).



In asynchronous, after one time unit, rumor does not pass along
a path of length > Cn'/3 (with high prob).

For fixed path v1vs ... vy, this probability is

L—1

n 1 1
< 2f x x n L x max{ }
N <L> g deg(v;)’ deg(vi11)




In asynchronous, after one time unit, rumor does not pass along
a path of length > Cn'/3 (with high prob).

For fixed path v1vs ... vy, this probability is

1
n 1 1

< 2f x xn_Lxllmax{ }

N <L> ey deg(v;)’ deg(vi11)

Will show

L—1
! /
Z H min{deg(v;), deg(v;+1)} < (C’n/L)L 2 (1)

L—paths 1=1



In asynchronous, after one time unit, rumor does not pass along
a path of length > Cn'/3 (with high prob).

For fixed path v1vs ... vy, this probability is

1
n 1 1
< 2f x xn_Lxllmax{ }
N <L> ey deg(v;)’ deg(vi11)

Will show

L1
! /
Z H min{deg(v; ), deg(vi 1)) < (Cn/L)*? (1)

L—paths 1=1

Implies the total probability is < (C+/n/Lv/L)~.
Putting L = Cn'/3 makes this o(1).



Want to show

L—1
1
Z H min{deg(v;), deg(

< (Cn/L)"?
L—paths 1=1 }

Vit1)



Want to show

L1
e /
Z H min{deg(v; ), deg(v; 1)} < (Cn/L)*?

L—paths 1=1

Baby version: we have

L—1 1
2 ey ="

L—npaths i=1

Once we choose the first vertex, the 1/ deg factors cancel number of
choices for next vertices!



Want to show

L—1
1
: < (Cn/L) L/2
L—pZaths g min{deg(v;), deg(vi11)}
Consider the local minima vertices in the sequence

deg(v1),deg(v2),...,deg(vy)



Want to show

L—1 )
: < (Cn/L) L/2
L—pZaths g min{deg(v;), deg(vi11)}

Consider the local minima vertices in the sequence

deg(v1),deg(v2),...,deg(vy)

deg(v1) deg(va) deg(vs) deg(vy) deg(vs)  deg(ve)



Proof sketch for s(G) < a(G) x O (n1/3)

Want to show

L/2
Z H min{deg(v deg(vZ c1)} < (Cn/L)

L—paths 1=1

Consider the local minima vertices in the sequence

deg(vl)» deg(”Z)a LRRS] deg('UL)~

Once we choose these vertices, the 1/ min{deg, deg} factors cancel out
number of choices for other vertices, so

L n y
Z H min{deg(v deg(vu ) < sg <s) . <S> < (C’n/L)L 2

L—paths 1=1



In asynchronous, during [0, t], rumor does not pass along a path
of length > Cn'/3t%/3 (with high prob).



In asynchronous, during [0, t], rumor does not pass along a path
of length > Cn'/3t%/3 (with high prob).

Let s be starting vertex. Observe there are independent exponential
random variables Y ,:

A = asynchronous spread time = max  min Z min{ Yy y, Yy 2}
veV T:(s,v)-path
zy€E(T)



Proof sketch for s(G) < a(G) x O(n'/3)

Lemma

In asynchronous, during [0, t], rumor does not pass along a path
of length > Cn'/3t%/3 (with high prob).

Let s be starting vertex. Observe there are independent exponential
random variables Y7 4

A = asynchronous spread time — max mm min{ Y, Y, 2}
y P vEV T:(s,v)-path Z(F) RETRCRY

Similarly, there are non-independent geometric random variables T7 y:

S = synchronous spread time = max mln E min{ Ty y, Ty 2}
veV TI'i(s, path B(r)



Proof sketch for s(G) < a(G) x O(n'/3)

Lemma
In asynchronous, during [0, t], rumor does not pass along a path
of length > Cn'/3t%/3 (with high prob).

Let s be starting vertex. Observe there are independent exponential
random variables Y7 4

A = asynchronous spread time — max mm min{ Y, Y.
y P vEV T:(s,v)-path Z(F) Yo Yy}

Similarly, there are non-independent geometric random variables T7 y:

S = synchronous spread time = max mln E min{ Ty y, Ty 2}
veV TI'i(s, path B(r)

Fortunately, can couple them with independent exponentlals Xz,y 8.t
Try <lnn+ X; 4, s0
S <max min Z (In7n + min{ Xy 4, Xy o)) < A% 3n'2xInntA.

veV T: -path
(s,v)-p e B (r)



Summary of our results on pushé&pull

Theorem (Acan, Angel, Collevecchio, M, Peres,
Wormald’15,’17)

For any connected G on n wvertices,

s(G)< 5n
In(n)/5 < a(G)< 4n
1 s(G)

1/3
Inn < a(G)

< C(nlnn)

Black bounds are tight, up to constant factors.
Green bound 1s tight, up to an O(lnn) factor.

Giakkoupis, Nagari, and Woelfel’16 proved a(G) < O(s(G) +1nn)

THANKS!



Future directions

. Connect s(G)/a(G) with other graph properties.

2. How to choose first vertex(es) carefully to minimize the

spread time? [Kempe, J. Kleinberg, E. Tardos’03]

. Number of passed messages? [Fraigniaud, Giakkoupis’10]
. More than one message? [Censor-Hillel, Haeupler, Kelner,
Maymounkov’12]

. Variation: each node spreads for a bounded number of
rounds [Akbarpour, Jackson’16].
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rounds [Akbarpour, Jackson’16].




