
Using Linear Algebra in Algorithms

Example 1: Perfect Matching

Abbas Mehrabian

Acknowledgement: some of the following slides were prepared by Nick Harvey and are

downloaded from http://www.cs.ubc.ca/~nickhar/Publications/PublicationsSelected.html

Toy problem: finding a triangle

• Running time: … can we do better?

Adjacency matrix

1 2

3 4

Adjacency matrix and its square

1 2

3 4

Adjacency matrix and its square

1 2

3 4

So, vertices 1 and 2 are in a triangle!

How fast can we find A2?

• Naïve multiplication: O(n3)

• Strassen algorithm’69: O(n2.81) for

multiplying two nxn matrices

 (Very nice algorithm… read wikipedia or CLRS
http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap31.htm)

• Coppersmith-Winograd’90: O(n2.38)

 (Best known exponent is Le Gall’14: 2.3728639)

How fast can we find A2?
• Naïve multiplication: O(n3)

• Strassen algorithm’69: O(n2.81) for

multiplying two nxn matrices

 (Very nice algorithm… read wikipedia or CLRS

http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap31.htm)

• Coppersmith-Winograd’90: O(n2.38)

 (Best known exponent is Le Gall’14: 2.3728639)

• Gives a running time of

O(n2.38) + n2 + n = O(n2.38)

 for finding a triangle in an n-vertex graph.

 مجله ریاضی شریف

http://www.math.uwaterloo.ca/~amehrabi/Articles/linearalgebramethods.pdf

Perfect Matching

• Perfect matching is M⊆E

such that each vertex

incident with exactly

one edge in M

• Problem: find a perfect

matching in a given graph!

Edmonds 1965 O(n4)

Even-Kariv 1975 O(n2.5)

Micali-Vazirani 1980-1990 O(n2.5)

Rabin-Vazirani 1989 O(n3.38)

Mucha-Sankowski 2004 O(n3)

Mucha-Sankowski 2004 O(n2.38)

Harvey 2006 O(n2.38)

Matching History Dense Graphs

m=n2

Algebraic algorithms are probabilistic:

probability of correctness > 99%

Generic Matching Algorithm

If G has no perfect matching, halt

For each edge e

 If e is contained in a perfect matching

 Add e to solution

 Delete endpoints of e

Generic Matching Algorithm

• How can we test this?

• Randomization and linear algebra play key role

If G has no perfect matching, halt

For each edge e

 If e is contained in a perfect matching

 Add e to solution

 Delete endpoints of e

Outline

• Implementing Generic Algorithm

– O(n4.38) algorithm (4.38 = 2 + 2.38)

– O(n3.38) algorithm
Rabin-Vazirani’89

– O(n3) algorithm
Micha-Sankowski’04

– O(n2.38) algorithm
Harvey’06

Matching & Tutte Matrix

• Let G=(V,E) be a graph

• Define variable xuv for each edge uv

• Define a skew-symmetric matrix T s.t.

Tu,v =
± x{u,v}

0

c b

a 0 -x{a,b} -x{a,c}

x{a,b} 0 -x{b,c}

x{a,c} x{b,c} 0

if {u,v}∈E

otherwise

Properties of Tutte Matrix

Lemma [Tutte’47]: G has a perfect matching

if and only if det(T)≠0.

This graph has no perfect matching

1 2

3 4

Properties of Tutte Matrix

Lemma [Tutte’47]: G has a perfect matching

if and only if det(T)≠0.

This graph has a perfect matching

1 2

3 4

Properties of Tutte Matrix

Lemma [Tutte’47]: G has a perfect matching

if and only if det(T)≠0.

Computing det(T) very slow: Contains variables, and

can have exponential number of terms.

Lemma [Lovász’79]: This result holds with

probability 99% if we randomly choose

values for x{u,v}’s.

Computing determinant of an nxn matrix of

numbers can be done in time O(n2.38)

O(n2.38) algorithm for deciding a perfect

matching

O(n4.38) algorithm for building PM

Choose random values for variables and

compute det (T)

If det(T) = 0 halt

For each edge uv

 Let U be Tutte matrix of G – {u, v}

 If det(U)  0

 Add uv to matching

 Delete vertices u and v

(Takes O(n2.38) time)

(Edge uv is contained in a PM)

Outline

• Implementing Generic Algorithm

– O(n4.38) algorithm

– O(n3.38) algorithm
Rabin-Vazirani’89

– O(n3) algorithm
Micha-Sankowski’04

– O(n2.38) algorithm
Harvey’06

Properties of Tutte Matrix

Lemma [Tutte’47]: G has a perfect matching

if and only if det(T)  0.

Lemma [Rabin-Vazirani’89]: G-{u,v} has a

perfect matching if and only if (T-1)u,v  0.

Properties of Tutte Matrix

Lemma [Tutte’47]: G has a perfect matching

if and only if det(T)  0.

Lemma [Rabin-Vazirani’89]: G-{u,v} has a

perfect matching if and only if (T-1)u,v  0.

Proof:

G-{1,2} has a perfect matching 

det(W)  0

Properties of Tutte Matrix

Lemma [Tutte’47]: G has a perfect matching

if and only if det(T)  0.

Lemma [Rabin-Vazirani’89]: G-{u,v} has a

perfect matching if and only if (T-1)u,v  0.

Proof:

G-{1,2} has a perfect matching 

det(W)  0  

Properties of Tutte Matrix

Lemma [Tutte’47]: G has a perfect matching

if and only if det(T)  0.

Lemma [Rabin-Vazirani’89]: G-{u,v} has a

perfect matching if and only if (T-1)u,v  0.

v

u

(T-1)u,v  0

Properties of Tutte Matrix

Lemma [Tutte’47]: G has a perfect matching

if and only if det(T)  0.

Lemma [Rabin-Vazirani’89]: G-{u,v} has a

perfect matching if and only if (T-1)u,v  0.

(T-1)u,v  0
G-{u,v} has

perfect

matching

Properties of Tutte Matrix

Lemma [Tutte’47]: G has a perfect matching

if and only if det(T)  0.

Lemma [Rabin-Vazirani’89]: G-{u,v} has a

perfect matching if and only if (T-1)u,v  0.

(T-1)u,v  0
G-{u,v} has

perfect

matching

Properties of Tutte Matrix

Lemma [Tutte’47]: G has a perfect matching

if and only if det(T)  0.

Lemma [Rabin-Vazirani’89]: G-{u,v} has a

perfect matching if and only if (T-1)u,v  0.

(T-1)u,v  0
G-{u,v} has

perfect

matching

v

u

O(n3.38) algorithm

Choose random values for variables and

compute det (T)

If det(T) = 0 halt

Repeat n/2 times

 Compute T-1

 Find an edge uv with T-1
u,v  0

 Add uv to matching

 Delete u and v from G

Rabin-Vazirani ’89

(Takes O(n2.38) time)

(Takes O(n2) time)

O(n3.38) algorithm

Choose random values for variables and

compute det (T)

If det(T) = 0 halt

Repeat n/2 times

 Compute T-1

 Find an edge uv with T-1
u,v  0

 Add uv to matching

 Delete u and v from G

• Total running time: O(n3.38)

• Improve: Recompute T-1 quickly in each iteration?

Rabin-Vazirani ’89

(Takes O(n2.38) time)

(Takes O(n2) time)

Outline

• Implementing Generic Algorithm

– O(n4.38) algorithm

– O(n3.38) algorithm
Rabin-Vazirani’89

– O(n3) algorithm
Micha-Sankowski’04

– O(n2.38) algorithm
Harvey’06

Quick updating lemma

• Lemma. After deleting two vertices,

inverse of the new Tutte matrix can be

found in time O(n2)

Quick updating lemma

• Lemma. After deleting two vertices,

inverse of the new Tutte matrix can be

found in time O(n2)

• Proof.

Quick updating lemma

• Lemma. After deleting two vertices,

inverse of the new Tutte matrix can be

found in time O(n2)

• Proof.

Sherman-Morrison-Woodbury Formula:

O(n3) algorithm

Choose random values for variables and

compute det (T)

If det(T) = 0 halt

Compute T-1

Repeat n/2 times

 Find an edge uv with T-1
u,v  0

 Add uv to matching

 Delete u and v from G

 Update T-1

• Total runtime: O(n3)

Micha-Sankowski’04

(Takes O(n2.38) time)

(Takes O(n2) time)

(Takes O(n2) time)

Outline

• Implementing Generic Algorithm

– O(n4.38) algorithm

– O(n3.38) algorithm
Rabin-Vazirani’89

– O(n3) algorithm
Micha-Sankowski’04

– O(n2.38) algorithm
Harvey’06

New Recursive Approach

(Here c=4 parts)

• Partition into c parts {V1,…,Vc} (arbitrarily)

• For each pair of parts {Va,Vb} (arbitrary order)

– Recurse on G[Va ⋃ Vb]

New Recursive Approach

• Partition into c parts {V1,…,Vc} (arbitrarily)

• For each pair of parts {Va,Vb} (arbitrary order)

– Recurse on G[Va ⋃ Vb]

New Recursive Approach

• Partition into c parts {V1,…,Vc} (arbitrarily)

• For each pair of parts {Va,Vb} (arbitrary order)

– Recurse on G[Va ⋃ Vb]

New Recursive Approach

• Partition into c parts {V1,…,Vc} (arbitrarily)

• For each pair of parts {Va,Vb} (arbitrary order)

– Recurse on G[Va ⋃ Vb]

• Base case: 2 vertices

New Recursive Approach

• Partition into c parts {V1,…,Vc} (arbitrarily)

• For each pair of parts {Va,Vb} (arbitrary order)

– Recurse on G[Va ⋃ Vb]

• Base case: 2 vertices {u,v}

– If T-1
u,v  0, add {u,v} to matching, update T-1

Recursion F.A.Q.
• Why not just recurse on G[Va]?

– Edges between parts would be missed

– Claim: Our recursion examines every
pair of vertices  examines every edge

• Why does algorithm work?
– It implements Rabin-Vazirani Algorithm!

• Isn’t this horribly slow?
– No: we’ll see recurrence next

• Partition into c parts {V1,…,Vc} (arbitrarily)

• For each pair of parts {Va,Vb} (arbitrary order)

– Recurse on G[Va ⋃ Vb]

• Base case: 2 vertices {u,v}

– If T-1
u,v  0, add {u,v} to matching, update T-1

Final Matching Algorithm

If base case with 2 vertices {u,v}

If T-1
u,v  0, add {u,v} to matching

Else

 Partition into c parts {V1,…,Vc}

 For each pair {Va,Vb}

 Recurse on G[Va ⋃ Vb]

 Apply updates to current subproblem







































 s

c
Os

c
R

c
sR

2

2

2
)(

s = size of

subproblem

Final Matching Algorithm

If base case with 2 vertices {u,v}

If T-1
u,v  0, add {u,v} to matching

Else

 Partition into c parts {V1,…,Vc}

 For each pair {Va,Vb}

 Recurse on G[Va ⋃ Vb]

 Apply updates to current subproblem







































 s

c
Os

c
R

c
sR

2

2

2
)(

s = size of

subproblem

Final Matching Algorithm

If base case with 2 vertices {u,v}

If T-1
u,v  0, add {u,v} to matching

Else

 Partition into c parts {V1,…,Vc}

 For each pair {Va,Vb}

 Recurse on G[Va ⋃ Vb]

 Apply updates to current subproblem







































 s

c
Os

c
R

c
sR

2

2

2
)(

Assume:

O(s) time

s = size of

subproblem

• Basic Divide-and-Conquer

– If then

• Since ,

just choose c large enough!

Time Analysis









22/

log
c

c
)()(nOnR 

1log

1
2

22/
log











c

c

c







































 s

c
Os

c
R

c
sR

2

2

2
)(

c = 13 is large enough if  = 2.38

Handling Updates

T =

Handling Updates

T = T-1 =

• Delete vertices u and v

u

v

u v

u

v

u v

Handling Updates (Naively)

T = T-1 =

• Delete vertices u and v  clear rows / columns

• Causes rank-1 updates to T-1

• Algorithm still takes (n3) time

u

v

u v

u

v

u v

Matching Outline

– Tutte Matrix & Properties

– Rabin-Vazirani Algorithm

– Rank-1 Updates

– Rabin-Vazirani with Rank-1 Updates

– Our Recursive Algorithm (overview)

– Our Recursive Algorithm (fast updates)

Just-in-time Updates

T-1 =

• Don’t update entire matrix!

• Just update parent in recursion tree

• Updates outside of parent are postponed

u

v

u v

Postponed Updates

T-1 =

• Accumulate batches of updates

• Claim: New updates can be applied with matrix
multiplication and inversion

u

v

u v

Final Matching Algorithm

If base case with 2 vertices {u,v}

If T-1
u,v  0, add {u,v} to matching

Else

 Partition into c parts {V1,…,Vc}

 For each pair {Va,Vb}

 Recurse on G[Va ⋃ Vb]

 Apply updates to current subproblem

Invariant: Before / after child subproblem,
parent’s submatrix is completely updated

 in every base case, T-1
u,v is up-to-date!

Graph G

children 













2

c

All edges chosen in base cases

Only take edges that can be extended to a

perfect matching in the whole graph.

This decision is possible because invariant

ensures that T-1
u,v is up-to-date.

Just apply postponed updates

Matching Summary

• Theorem. We can compute a perfect

matching in O(n2.38) time, with correctness

probability > 99%

• Algorithm uses only simple randomization,

linear algebra and divide-and-conquer

• Easy to implement

 (200 lines of MATLAB code)

• Extensions for: (by existing techniques)

– Maximum matching

– Las Vegas

Conclusion

• Aim: highlight the power of linear algebra

in algorithm design … read!

• Another example tomorrow:

maximum flow problem

• Easy-to-read reference for this talk:
Algebraic algorithms for matching, Ivan, Virza, and Yuen

https://madars.org/projects/6854/AlgMatching.pdf

Conclusion

• Aim: highlight the power of linear algebra

in algorithm design … read!

• Another example tomorrow:

maximum flow problem

• Easy-to-read reference for this talk:
Algebraic algorithms for matching, Ivan, Virza, and Yuen

https://madars.org/projects/6854/AlgMatching.pdf

• Nick Harvey’s paper is also readable:
http://www.cs.ubc.ca/~nickhar/Publications/AlgebraicMatching/AlgebraicMatching.pdf

Thanks for listening

https://madars.org/projects/6854/AlgMatching.pdf
https://madars.org/projects/6854/AlgMatching.pdf

