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Toy problem: finding a triangle 

 

 

 

 

 

 

• Running time:                   … can we do better?  



Adjacency matrix 

1 2 

3 4 



Adjacency matrix and its square 

1 2 

3 4 



Adjacency matrix and its square 

1 2 

3 4 

So, vertices 1 and 2 are in a triangle! 



How fast can we find A2? 

• Naïve multiplication: O(n3) 

• Strassen algorithm’69: O(n2.81) for 

multiplying two nxn matrices 

 (Very nice algorithm… read wikipedia or CLRS 
http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap31.htm) 

• Coppersmith-Winograd’90: O(n2.38)   

 (Best known exponent is Le Gall’14: 2.3728639) 



How fast can we find A2? 
• Naïve multiplication: O(n3) 

• Strassen algorithm’69: O(n2.81) for 

multiplying two nxn matrices 

 (Very nice algorithm… read wikipedia or CLRS 

http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap31.htm) 

• Coppersmith-Winograd’90: O(n2.38)   

 (Best known exponent is Le Gall’14: 2.3728639) 

• Gives a running time of  

O(n2.38) + n2 + n = O(n2.38) 

 for finding a triangle in an n-vertex graph. 
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http://www.math.uwaterloo.ca/~amehrabi/Articles/linearalgebramethods.pdf 



Perfect Matching 

 

• Perfect matching is M⊆E 

such that each vertex 

incident with exactly 

one edge in M 

• Problem: find a perfect 

matching in a given graph! 



Edmonds 1965 O(n4) 

Even-Kariv 1975 O(n2.5) 

Micali-Vazirani 1980-1990 O(n2.5) 

Rabin-Vazirani 1989 O(n3.38) 

Mucha-Sankowski 2004 O(n3) 

Mucha-Sankowski 2004 O(n2.38) 

Harvey 2006 O(n2.38) 

Matching History Dense Graphs 

m=n2 

Algebraic algorithms are probabilistic: 

probability of correctness > 99% 



Generic Matching Algorithm 

 

If G has no perfect matching, halt 

For each edge e 

 If e is contained in a perfect matching 

  Add e to solution 

  Delete endpoints of e 

  



Generic Matching Algorithm 

• How can we test this? 

• Randomization and linear algebra play key role 

 

If G has no perfect matching, halt 

For each edge e 

 If e is contained in a perfect matching 

  Add e to solution 

  Delete endpoints of e 



Outline 

• Implementing Generic Algorithm 

– O(n4.38) algorithm (4.38 = 2 + 2.38) 

 

– O(n3.38)  algorithm  
Rabin-Vazirani’89 

– O(n3)     algorithm 
Micha-Sankowski’04 

– O(n2.38)  algorithm 
Harvey’06 



Matching & Tutte Matrix 

• Let G=(V,E) be a graph 

• Define variable xuv  for each edge uv 

• Define a skew-symmetric matrix T s.t. 

Tu,v = 
± x{u,v} 

0 

c b 

a 0 -x{a,b} -x{a,c}
 

x{a,b} 0 -x{b,c} 

x{a,c} x{b,c} 0 

if {u,v}∈E 

otherwise 



Properties of Tutte Matrix 

Lemma [Tutte’47]: G has a perfect matching 

if and only if det(T)≠0. 

 

This graph has no perfect matching 

 
 

 

1 2 

3 4 



Properties of Tutte Matrix 

Lemma [Tutte’47]: G has a perfect matching 

if and only if det(T)≠0. 

 

This graph has a perfect matching 

 

 
 

 

1 2 

3 4 



Properties of Tutte Matrix 

Lemma [Tutte’47]: G has a perfect matching 

if and only if det(T)≠0. 

Computing det(T) very slow: Contains variables, and 

can have exponential number of terms. 

Lemma [Lovász’79]: This result holds with 

probability 99% if we randomly choose 

values for x{u,v}’s. 

Computing determinant of an nxn matrix of 

numbers can be done in time O(n2.38) 

O(n2.38) algorithm for deciding a perfect 

matching 



 

O(n4.38) algorithm for building PM 

Choose random values for variables and 

compute det (T) 

If det(T) = 0 halt 

For each edge uv 

 Let U be Tutte matrix of G – {u, v} 

 If det(U)  0 

  Add uv to matching 

  Delete vertices u and v 

(Takes O(n2.38) time) 

(Edge uv is contained in a PM) 



Outline 

• Implementing Generic Algorithm 

– O(n4.38) algorithm 

– O(n3.38)  algorithm  
Rabin-Vazirani’89 

– O(n3)     algorithm 
Micha-Sankowski’04 

– O(n2.38)  algorithm 
Harvey’06 



Properties of Tutte Matrix 

Lemma [Tutte’47]: G has a perfect matching 

if and only if det(T)  0. 

Lemma [Rabin-Vazirani’89]: G-{u,v}  has a 

perfect matching if and only if (T-1)u,v  0. 



Properties of Tutte Matrix 

Lemma [Tutte’47]: G has a perfect matching 

if and only if det(T)  0. 

Lemma [Rabin-Vazirani’89]: G-{u,v}  has a 

perfect matching if and only if (T-1)u,v  0. 

Proof: 

 

 

G-{1,2} has a perfect matching  

det(W)  0 



Properties of Tutte Matrix 

Lemma [Tutte’47]: G has a perfect matching 

if and only if det(T)  0. 

Lemma [Rabin-Vazirani’89]: G-{u,v}  has a 

perfect matching if and only if (T-1)u,v  0. 

Proof: 

 

 

G-{1,2} has a perfect matching  

det(W)  0                                     

 



Properties of Tutte Matrix 

Lemma [Tutte’47]: G has a perfect matching 

if and only if det(T)  0. 

Lemma [Rabin-Vazirani’89]: G-{u,v}  has a 

perfect matching if and only if (T-1)u,v  0. 

 
 

v 

u 

(T-1)u,v  0 



Properties of Tutte Matrix 

Lemma [Tutte’47]: G has a perfect matching 

if and only if det(T)  0. 

Lemma [Rabin-Vazirani’89]: G-{u,v}  has a 

perfect matching if and only if (T-1)u,v  0. 

(T-1)u,v  0 
G-{u,v}  has 

perfect 

matching 



Properties of Tutte Matrix 

Lemma [Tutte’47]: G has a perfect matching 

if and only if det(T)  0. 

Lemma [Rabin-Vazirani’89]: G-{u,v}  has a 

perfect matching if and only if (T-1)u,v  0. 
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Properties of Tutte Matrix 

Lemma [Tutte’47]: G has a perfect matching 

if and only if det(T)  0. 

Lemma [Rabin-Vazirani’89]: G-{u,v}  has a 

perfect matching if and only if (T-1)u,v  0. 

(T-1)u,v  0 
G-{u,v}  has 

perfect 

matching 

v 

u 



O(n3.38)  algorithm 

Choose random values for variables and 

compute det (T) 

If det(T) = 0 halt 

Repeat n/2 times 

 Compute T-1 

 Find an edge uv with T-1
u,v  0 

 Add uv to matching 

 Delete u and v from G 
 

 

 

Rabin-Vazirani ’89 

(Takes O(n2.38) time) 

(Takes O(n2) time) 



O(n3.38)  algorithm 

Choose random values for variables and 

compute det (T) 

If det(T) = 0 halt 

Repeat n/2 times 

 Compute T-1 

 Find an edge uv with T-1
u,v  0 

 Add uv to matching 

 Delete u and v from G 
 

 

• Total running time: O(n3.38) 

• Improve: Recompute T-1 quickly in each iteration? 

 

Rabin-Vazirani ’89 

(Takes O(n2.38) time) 

(Takes O(n2) time) 



Outline 

• Implementing Generic Algorithm 

– O(n4.38) algorithm 

– O(n3.38)  algorithm  
Rabin-Vazirani’89 

– O(n3)     algorithm 
Micha-Sankowski’04 

– O(n2.38)  algorithm 
Harvey’06 



Quick updating lemma 

• Lemma. After deleting two vertices, 

inverse of the new Tutte matrix can be 

found in time O(n2) 



Quick updating lemma 

• Lemma. After deleting two vertices, 

inverse of the new Tutte matrix can be 

found in time O(n2) 

• Proof.  



Quick updating lemma 

• Lemma. After deleting two vertices, 

inverse of the new Tutte matrix can be 

found in time O(n2) 

• Proof. 

 

 

Sherman-Morrison-Woodbury Formula:  



O(n3)  algorithm 

Choose random values for variables and 

compute det (T) 

If det(T) = 0 halt 

Compute T-1 

Repeat n/2 times 

 Find an edge uv with T-1
u,v  0 

 Add uv to matching 

 Delete u and v from G 

  Update T-1 

 

 

 

 

• Total runtime: O(n3) 

 

Micha-Sankowski’04 

(Takes O(n2.38) time) 

(Takes O(n2) time) 

(Takes O(n2) time) 



Outline 

• Implementing Generic Algorithm 

– O(n4.38) algorithm 

– O(n3.38)  algorithm  
Rabin-Vazirani’89 

– O(n3)     algorithm 
Micha-Sankowski’04 

– O(n2.38)  algorithm 
Harvey’06 



New Recursive Approach 

(Here c=4 parts) 

 

• Partition into c parts {V1,…,Vc}      (arbitrarily) 

• For each pair of parts {Va,Vb}      (arbitrary order) 

– Recurse on G[Va ⋃ Vb] 
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New Recursive Approach 

 

• Partition into c parts {V1,…,Vc}       (arbitrarily) 

• For each pair of parts {Va,Vb}       (arbitrary order) 

– Recurse on G[Va ⋃ Vb] 

• Base case: 2 vertices 



New Recursive Approach 

• Partition into c parts {V1,…,Vc}       (arbitrarily) 

• For each pair of parts {Va,Vb}       (arbitrary order) 

– Recurse on G[Va ⋃ Vb] 

• Base case: 2 vertices {u,v} 

– If T-1
u,v  0, add {u,v} to matching, update T-1 



Recursion F.A.Q. 
• Why not just recurse on G[ Va ]? 

– Edges between parts would be missed 

– Claim: Our recursion examines every 
pair of vertices  examines every edge 

• Why does algorithm work? 
– It implements Rabin-Vazirani Algorithm! 

• Isn’t this horribly slow? 
– No: we’ll see recurrence next 

• Partition into c parts {V1,…,Vc}       (arbitrarily) 

• For each pair of parts {Va,Vb}       (arbitrary order) 

– Recurse on G[Va ⋃ Vb] 

• Base case: 2 vertices {u,v} 

– If T-1
u,v  0, add {u,v} to matching, update T-1 



Final Matching Algorithm 
 

If base case with 2 vertices {u,v} 

If T-1
u,v  0, add {u,v} to matching 

Else 

 Partition into c parts {V1,…,Vc} 

 For each pair {Va,Vb} 

 Recurse on G[Va ⋃ Vb] 

 Apply updates to current subproblem 
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Final Matching Algorithm 
 

If base case with 2 vertices {u,v} 

If T-1
u,v  0, add {u,v} to matching 

Else 

 Partition into c parts {V1,…,Vc} 

 For each pair {Va,Vb} 

 Recurse on G[Va ⋃ Vb] 

 Apply updates to current subproblem 
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Assume: 

O(s) time 

s = size of 

subproblem 



• Basic Divide-and-Conquer  
 

– If                         then  

 

• Since                                   , 

 

just choose c large enough! 

 

Time Analysis 
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c = 13 is large enough if  = 2.38 



Handling Updates 

T = 



Handling Updates 

T = T-1 = 

• Delete vertices u and v 

u 

v 

u v 

u 

v 

u v 



Handling Updates (Naively) 

T = T-1 = 

• Delete vertices u and v   clear rows / columns 

• Causes rank-1 updates to T-1 

• Algorithm still takes (n3) time 

u 

v 

u v 

u 

v 

u v 



Matching Outline 

– Tutte Matrix & Properties 

– Rabin-Vazirani Algorithm 

– Rank-1 Updates 

– Rabin-Vazirani with Rank-1 Updates 

– Our Recursive Algorithm (overview) 

– Our Recursive Algorithm (fast updates) 



Just-in-time Updates 

T-1 = 

• Don’t update entire matrix! 

• Just update parent in recursion tree 

• Updates outside of parent are postponed 

u 

v 

u v 



Postponed Updates 

T-1 = 

• Accumulate batches of updates 

• Claim: New updates can be applied with matrix 
multiplication and inversion 

u 

v 

u v 



Final Matching Algorithm 
 

If base case with 2 vertices {u,v} 

If T-1
u,v  0, add {u,v} to matching 

Else 

 Partition into c parts {V1,…,Vc} 

 For each pair {Va,Vb} 

 Recurse on G[Va ⋃ Vb] 

 Apply updates to current subproblem 

Invariant: Before / after child subproblem, 
parent’s submatrix is completely updated 

 in every base case, T-1
u,v is up-to-date! 



Graph G 

children 













2

c

All edges chosen in base cases 

Only take edges that can be extended to a 

perfect matching in the whole graph. 

This decision is possible because invariant 

ensures that T-1
u,v is up-to-date. 

Just apply postponed updates 



Matching Summary 

• Theorem. We can compute a perfect 

matching in O(n2.38) time, with correctness 

probability > 99% 

• Algorithm uses only simple randomization, 

linear algebra and divide-and-conquer 

• Easy to implement 

 (200 lines of MATLAB code) 

• Extensions for:  (by existing techniques) 

– Maximum matching 

– Las Vegas 



Conclusion 

• Aim: highlight the power of linear algebra 

in algorithm design … read! 

• Another example tomorrow:  

maximum flow problem 

• Easy-to-read reference for this talk: 
Algebraic algorithms for matching, Ivan, Virza, and Yuen 

https://madars.org/projects/6854/AlgMatching.pdf 



Conclusion 

• Aim: highlight the power of linear algebra 

in algorithm design … read! 

• Another example tomorrow:  

maximum flow problem 

• Easy-to-read reference for this talk: 
Algebraic algorithms for matching, Ivan, Virza, and Yuen 

https://madars.org/projects/6854/AlgMatching.pdf 

• Nick Harvey’s paper is also readable: 
http://www.cs.ubc.ca/~nickhar/Publications/AlgebraicMatching/AlgebraicMatching.pdf 

Thanks for listening 

https://madars.org/projects/6854/AlgMatching.pdf
https://madars.org/projects/6854/AlgMatching.pdf

