Using Linear Algebra in Algorithms
Example 1: Perfect Matching

Abbas Mehrabian

C a place of mind

riif—‘i THE UNIVERSITY OF BRITISH COLUMBIA

Acknowledgement: some of the following slides were prepared by Nick Harvey and are
downloaded from http://www.cs.ubc.ca/~nickhar/Publications/PublicationsSelected.html

Toy problem: finding a triangle

Adjacency maitrix

2

1

™ 2 — 2

— — 2 —

— O — 2

= = = =

Adjacency matrix and its square

1 2
0 1 1 1
11 0 1 0
A_fl.”lﬂ”l
1 0 1 0
3 4
3 1 2 1
L1201 2
E_A_E'].E”l
11 2 1 2

('
B; ;= Z Ajp % Ay ; = number of common neighboursof i and j
k=1

Adjacency matrix and its square

1 2
0 [1] 1 1
A= 1 0 1 0
1 1 0 1
L1 0 1 0
3 4
3 [1] 2 1]
B =A2 = 1 2 1 2
P, 1 3 1 So, vertices 1 and 2 are in a triangle!
11 2 1 2
Ez',_;l' = A X Hk,}- = number of common neighboursofi and j

How fast can we find A2?

« Naive multiplication: O(n3)
 Strassen algorithm’69: O(n43%) for
multiplying two nxn matrices

(Very nice algorithm... read wikipedia or CLRS
http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap31.htm)

» Coppersmith-Winograd’90: O(n2-38)
(Best known exponent is Le Gall'14: 2.3728639)

How fast can we find A2?
« Naive multiplication: O(n3)

 Strassen algorithm’69: O(n438%) for
multiplying two nxn matrices

(Very nice algorithm... read wikipedia or CLRS
http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap31.htm)

« Coppersmith-Winograd’90: O(n2-38)
(Best known exponent is Le Gall'14: 2.3728639)
» Glves a running time of
O(n238) + n2 + n = O(n238)
for finding a triangle in an n-vertex graph.

STUDENT MATHENMNATICAL LIBRARY
Voluene 53

Thirty-three
Miniatures

Mathematical and
-\’.gnrit!nnic .-‘\pplimtions
of Linear Algebra

Jiri Matousek

STUDENT MATHEMATICAL LIBRARY
Voluene 53

Thirty-three
Miniatures

Mathematical and
Algorithmic Applications
of Linear Algebra

Jiri Matousek

mathematicsjournal@gmail.com
Slhol) gleasly 308 jo s o slao)l 5l agas s www sharifmathjournal.ir

T G swob, ad=o

LS s o ol5Liilo -

abbas.mehrabianOgmail.com

WAYF e VYV

http://www.math.uwaterloo.ca/~amehrabi/Articles/linearalgebramethods.pdf

Perfect Matching

» Perfect matching is MCE
such that each vertex
iIncident with exactly
one edge In M

* Problem: find a perfect
matching in a given graph!

MatChing History Dense Grzaphs

m=n

Edmonds 1965 O(n%)
Even-Kariv 1975 O(n25)
Micali-Vazirani 1980-1990 | O(n25)
Rabin-Vazirani 1989 O(n338)
Mucha-Sankowski 2004 O(n3)
Mucha-Sankowski 2004 O(n2-39)
Harvey 2006 O(n2-38)

Algebraic algorithms are probabillistic:
probability of correctness > 99%

Generic Matching Algorithm

If G has no perfect matching, halt
For each edge e
If e IS contained In a perfect matching
Add e to solution
Delete endpoints of e

Generic Matching Algorithm

If G has no perfect matching, halt

For each edge e

If e IS contained In a perfect matching
Add e to solution
Delete endpoints of e

 How can we test this?
« Randomization and linear algebra play key role

Outline

* Implementing Generic Algorithm
— O(n*38) algorithm (4.38 = 2 + 2.38)

— O(n338) algorithm
Rabin-Vazirani’89

— O(n® algorithm
Micha-Sankowski’04

— O(n%3%) algorithm
Harvey’06

Matching & Tutte Matrix

_et G=(V,E) be a graph
Define variable x,, for each edge uv
Define a skew-symmetric matrix T s.t.

/‘

+ Xy IT{uViEE

0 otherwise

0 -Xaby Xag
Xapy O Xpg
b C Xiac Xpe O

Properties of Tutte Matrix

Lemma [Tutte’47]. G has a perfect matching
if and only if det(T)#O0.

0
This graph has no perfect matching
3 4
0 —Xyp X1z X1
Jot X2 0 0 0 | q
““lxy3 O 0 0 |7
.f!I.':L.q_ 0 0 0

Properties of Tutte Matrix

Lemma [Tutte’4d7]. G has a perfect matching
if and only if det(T)#O0.

5O
This graph has a perfect matching i
3 4
- 0 _Il.- _ILE 0
det Il.-: 0 0 0 7 7 0
““lxes 0 0 —xg.| L2347
L 0 0 ::!':3_.4 0

Properties of Tutte Matrix

Lemma [Tutte’47]. G has a perfect matching
If and only if det(T)#O0.

Computing det(T) very slow: Contains variables, and
can have exponential number of terms.

Lemma [Lovasz'79]: This result holds with
probability 99% if we randomly choose
values for xg,,'S.

Computing determinant of an nxn matrix of
numbers can be done in time O(n?-38)

O(n?38) algorithm for deciding a perfect
matching

O(n4-3%) algorithm for building PM

Choose random values for variables and
compute det (T) (Takes O(n2%) time)
If det(T) = O halt
For each edge uv
Let U be Tutte matrix of G — {u, v}
If det(U) = 0O (Edge uv is contained in a PM)
Add uv to matching
Delete vertices u and v

Outline

* Implementing Generic Algorithm

— O(n*38) algorithm

— O(n338) algorithm
Rabin-Vazirani’89

— O(n® algorithm
Micha-Sankowski’04

— O(n43%) algorithm
Harvey’06

Properties of Tutte Matrix

Lemma [Tutte’47]. G has a perfect matching
If and only if det(T) = O.

Lemma [Rabin-Vazirani’'89]. G-{u,v} has a
perfect matching if and only if (T-1),, # 0.

Properties of Tutte Matrix

Lemma [Tutte’4d7]. G has a perfect matching
If and only if det(T) = O.

Lemma [Rabin-Vazirani'89]: G-{u,v} has a
perfect matching if and only if (T-1),, # 0.

Proof:
—X1,2

T —_ '1-1.-: ﬂ U
Vv A

G-{1,2} has a perfect matching <
det(W) =0

Properties of Tutte Matrix
Lemma [Tutte’47]. G has a perfect matching

If and only if det(T) = O.

Lemma [Rabin-Vazirani’'89]. G-{u,v} has a
perfect matching if and only if (T-1),, # 0.

Proof:

T =

A1,

e
0

u

V

T

G-{1,2} has a perfect matching <
det(W) = 0 < det(T) x det |

T-1=

0 —a

ﬂ]i

SIS

Properties of Tutte Matrix

Lemma [Tutte’47]. G has a perfect matching
If and only if det(T) = O.

Lemma [Rabin-Vazirani’'89]. G-{u,v} has a
perfect matching if and only if (T-1),, # 0.

W @,

(THuy # 0

Properties of Tutte Matrix

Lemma [Tutte’47]. G has a perfect matching
If and only if det(T) = O.

Lemma [Rabin-Vazirani’'89]. G-{u,v} has a
perfect matching if and only if (T-1),, # 0.

G-{u,v} has
(T-l)u,v # 0 perfect
matching

Properties of Tutte Matrix

Lemma [Tutte’47]. G has a perfect matching
If and only if det(T) = O.

Lemma [Rabin-Vazirani’'89]. G-{u,v} has a
perfect matching if and only if (T-1),, # 0.

G-{u,v}has
(T-l)u,v # 0 perfect
matching

Properties of Tutte Matrix

Lemma [Tutte’4d7]. G has a perfect matching
If and only if det(T) = O.

Lemma [Rabin-Vazirani'89]: G-{u,v} has a
perfect matching if and only if (T-1),, # 0.

G-{u,v} has
(T-l)u,v # 0 perfect
matching

O(n3-3%) algorithm

Rabin-Vazirani ‘89

Choose random values for variables and
compute det (T)

If det(T) = O halt

Repeat n/2 times

Compute T (Takes O(n238) time)
Find an edge uv with T, # 0
Add uv to matching (Takes O(n2) time)

Delete u and v from G

O(n3-3%) algorithm

Rabin-Vazirani ‘89

Choose random values for variables and
compute det (T)
If det(T) = O halt

Repeat n/2 times

Compute T (Takes O(n238) time)
Find an edge uv with T, # 0
Add uv to matching (Takes O(n2) time)

Delete u and v from G

 Total running time: O(n3-38)
« Improve: Recompute T quickly in each iteration?

Outline

* Implementing Generic Algorithm

— O(n*38) algorithm

— O(n338) algorithm
Rabin-Vazirani’89

— O(n® algorithm
Micha-Sankowski’04

— O(n?438) algorithm
Harvey’06

Quick updating lemma

 Lemma. After deleting two vertices,
Inverse of the new Tutte matrix can be
found in time O(n?)

Quick updating lemma

Lemma. After deleting two vertices,
Inverse of the new Tutte matrix can be
found in time O(n?)
Prootf. r g —y,. . 0 —a
T = I:L.: 0 T_l — | EI

=~

v W, T

Eir

Quick updating lemma

 Lemma. After deleting two vertices,
Inverse of the new Tutte matrix can be
found in time O(n?)
* Proof. r oy, . [0 -a
I'=|xy2 O rl=|g _0
v W LV !

=~

I-::i!

Sherman-Morrison-Woodbury Formula:

-1

wi=w-7[°] o= —%{L’f’:ﬁl 0, ,)

O(n3) algorithm

Micha-Sankowski'04

Choose random values for variables and
compute det (T)
If det(T) = O halt
Compute T-1 (Takes O(n%38) time)
Repeat n/2 times
Find an edge uv with T, # 0

Add uv to matching (Takes O(n?) time)
Delete u and v from G
Update T-1 (Takes O(n?) time)

 Total runtime: O(n3)

Outline

* Implementing Generic Algorithm

— O(n*38) algorithm

— O(n338) algorithm
Rabin-Vazirani’89

— O(n® algorithm
Micha-Sankowski’04

— O(n438) algorithm
Harvey’06

New Recursive Approach

(Here c=4 parts)

 Partition into c parts {V,...,V.}
* For each pair of parts {V,,V,}
— Recurse on G[V,U V,]

(arbitrarily)

(arbitrary order)

New Recursive Approach

 Partition into c parts {V,...,V.}
* For each pair of parts {V_,V,}
— Recurse on G[V,U V,]

(arbitrarily)

(arbitrary order)

New Recursive Approach

N/

 Partition into c parts {V,...,V.}
* For each pair of parts {V_,V,}
— Recurse on G[V,U V,]

(arbitrarily)

(arbitrary order)

New Recursive Approach

N/

 Partition into c parts {V,...,V.}

* For each pair of parts {V_,V,}
— Recurse on G[V,U V,]

* Base case: 2 vertices

(arbitrarily)

(arbitrary order)

New Recursive Approach

 Partition into c parts {V,...,V.}

* For each pair of parts {V_,V,}
— Recurse on G[V,U V,]

« Base case: 2 vertices {u,v}

(arbitrarily)

(arbitrary order)

—1f T, ,#0, add {u,v} to matching, update T

Recursion F.A.Q.

* Why not just recurse on G[V, |?
— Edges between parts would be missed

— Claim: Our recursion examines every
pair of vertices = examines every edge

* Why does algorithm work?
— It implements Rabin-Vazirani Algorithm!

* Isn’t this horribly slow?
— No: we’ll see recurrence next

 Partition into c parts {V,...,V}
* For each pair of parts {V_,V,}
— Recurse on G[V,U V,]
« Base case: 2 vertices {u,v}
—1f T, ,#0, add {u,v} to matching,

(arbitrarily)

(arbitrary order)

update T

Final Matching Algorithm

If base case with 2 vertices {u,v}
If T,, # 0, add {u,v} to matching
Else
Partition into c parts {V,,...,V.}
For each pair {V_,V,}
Recurse on G[V,U V,]
Apply updates to current subproblem

S = size of

subproblem’_FQS) (2) R(% Sj 'O (;) | Sw]

Final Matching Algorithm

If base case with 2 vertices {u,v}
If T1,, # 0, add {u,v} to matching

Else

Partition into ¢ parts {V,,...,V}

For each pair

/{Vaivb}

Recurse oh G[V,U V,]

Apply updates to qurrent subproblem

C
-f)

el

Final Matching Algorithm

If base case with 2 vertices {u,v}
If T1,, # 0, add {u,v} to matching

Else
Partition into c parts {V,,...,V}
For each pair {V,,V,} ASsume:
O(s®) time

Recurse on G[V,U V,] P
Apply updates to current subproblem

=[5 20 of[5]

Time Analysis

(o5

/0
 Basic Di\fiﬂg-and- uer
— If Iogc/z(;)<” then R(n)=0(n®)

* Since Iogclz(c)d =

+)
logc -1

just choose c large enough!
c =13 is large enough if ® = 2.38

Handling Updates

Handling Updates

u v u v

1"n n

« Delete vertices u and v

Handling Updates (Naively)

u v u v

* Delete vertices u and v = clear rows / columns
« Causes rank-1 updates to T
 Algorithm still takes Q(n?3) time

Matching Outline

— Tutte Matrix & Properties

— Rabin-Vazirani Algorithm

— Rank-1 Updates

— Rabin-Vazirani with Rank-1 Updates

— Our Recursive Algorithm (overview)

— Our Recursive Algorithm (fast updates)

Just-in-time Updates

u Vv

: [ES)

] — \ G /

~Posiponed

* Don’t update entire matrix!
« Just update parent in recursion tree
« Updates outside of parent are postponed

Postponed Updates

u Vv
4 I
y o©
o0—o0,

Inueruiuply

* Accumulate batches of updates

* Claim: New updates can be applied with matrix
multiplication and inversion

c

T =

Final Matching Algorithm

If base case with 2 vertices {u,v}
If T,, # 0, add {u,v} to matching
Else
Partition into c parts {V,,...,V.}
For each pair {V_,V,}
Recurse on G[V,U V,]
Apply updates to current subproblem

Invariant: Before / after child subproblem,
parent’s submatrix is completely updated

= in every base case, T, is up-to-date!

g R ~
% ~ Graph G

o/ TTTO [C] e

g

} Just apply postponed updates
S } All edges chosen in base cases

Only take edges that can be extended to a
perfect matching in the whole graph.

This decision is possible because invariant
ensures that T, is up-to-date.

Matching Summary

Theorem. We can compute a perfect
matching in O(n438) time, with correctness
probability > 99%

Algorithm uses only simple randomization,
linear algebra and divide-and-conguer

Easy to implement
(200 lines of MATLAB code)
Extensions for: (by existing technigues)

— Maximum matching
— Las Vegas

Conclusion

« Aim: highlight the power of linear algebra
In algorithm design ... read!

* Another example tomorrow:
maximum flow problem

« Easy-to-read reference for this talk:

Algebraic algorithms for matching, Ivan, Virza, and Yuen
https://madars.org/projects/6854/AlgMatching.pdf

Conclusion

« Aim: highlight the power of linear algebra
In algorithm design ... read!

* Another example tomorrow:
maximum flow problem

« Easy-to-read reference for this talk:

Algebraic algorithms for matching, Ivan, Virza, and Yuen
https://madars.org/projects/6854/AlgMatching.pdf

* Nick Harvey’s paper is also readable:
http://www.cs.ubc.ca/~nickhar/Publications/AlgebraicMatching/AlgebraicMatching.pdf

Thanks for listening

https://madars.org/projects/6854/AlgMatching.pdf
https://madars.org/projects/6854/AlgMatching.pdf

