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. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

Recipe for elec. flow:
1) Treat edges as
resistors
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. Input: Undirected graph G,
Electrical flows (Take 1) " oo f P

source s and sink t

resistance r,

(Another) recipe for electrical flow (of value F):




Input: Undirected graph G,

f source s and sink t

(u,v

no leaks at all v#s,t

v

excess of F at t

(Another) recipe for electrical flow (of value F):
Find vertex potentials ¢, such that setting, for all (u,v)

(u v) ((Pv ‘-Pu)/r(u v) (Ohm’s Iaw)
gives a valid s-t flow of value F
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How fast can we solve L ¢ = b ?

« Ax=b can be solved in O(n?38) (CLRS chapter 31)
http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap31.htm
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« A Laplacian matrix of a graph:

— An g-approx. in time O(m log°°m log (1/¢))
[Spielman-Teng'04—11]

— O(m log¥2m log (1/¢))
[Cohen, Kyng, Miller, Pachocki, Peng, Rao, Xu'14]



How fast can we solve L ¢ = b ?

Ax=b can be solved in O(n?38) (CLRS chapter 31)
http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap31.htm

A Laplacian matrix of a graph:

— An g-approx. in time O(m log°°m log (1/¢))
[Spielman-Teng'04—11]

— O(m log¥2m log (1/¢))
[Cohen, Kyng, Miller, Pachocki, Peng, Rao, Xu'14]

Numerous applications in graph algorithms,
optimization, machine learning, numerical linear algebra

Kelner's 3 talks in Berkeley (2013):

https://sSimons.berkeley.edu/talks/laplacian-systems-and-electrical-flows

Vishnoi's 2012 book “Laplacian solvers and their
algorithmic applications” nup:itheory.epfi.chivishnoilLxb-web.pdf



THE MAXIMUM FLOW
PROBLEM



Input: Directed graph G,
integer capacities u,,
source s and sink t

Maximum flow problem

Think: arcs = roads
capacities = # of lanes
s/t = origin/destination)

Task: Find a feasible s-t flow of max value J

(Think: Estimate the max possible rate of traffic from s to t)




. Input: Directed graph G,
Maximum flow problem integer capacities u,,

value = net flow out of s J source s and sink t

Think: arcs = roads
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Input: Directed graph G,
integer capacities u,,
source s and sink t

Maximum flow problem

Think: arcs = roads
capacities = # of lanes
s/t = origin/destination)

F*=10

Max flow value J

Task: Find a feasible s-t flow of max value J

(Think: Estimate the max possible rate of traffic from s to t)




Why is this a good problem to study?

Max flow is a fundamental
optimization problem

e Extensively studied since 1930s (classic ‘textbook problem’)
e Surprisingly diverse set of applications
e Very influential in development of (graph) algorithms

_ Graph partitioning .
Transportation (Clustering) Scheduling,

(Route planning) Assignment problems

N

Connectivity Computer Vision
Analysis < Max Flow > (Image segmentation)



What is known about Max Flow?
A LOT of previous work

NETWORK
L




What is known about Max Flow?

NETWORK
A (very) rough history outline FIOWS
[Dantzig ‘51] O(mn2U)
[Ford Fulkerson ’56] O(mn U)
[Dinitz ’70] O(mn?)
[Dinitz ‘70] [Edmonds Karp '72] O(m?n)
[Dinitz ‘73] [Edmonds Karp ’72] O(m?log U)
[Dinitz ‘73] [Gabow ’85] O(mnlog U)
[Goldberg Rao 98] O(m min(m?/2,n2/3) log U)
[Lee Sidford ’14] O(mn?/2 log U)

Our focus: Sparse graph (m=0(n)) and unit-capacity (U=1) regime

- It is a good benchmark for combinatorial graph algorithms
- Already captures interesting problems, e.g., bipartite matching

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)
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A (very) rough history outline
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[Dinitz ‘70] [Edmonds Karp '72]
[Dinitz ‘73] [Edmonds Karp ’72]
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[Lee Sidford '14]
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O(n?)
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NETWORK
FLOWS

Our focus: Sparse graph (m=0(n)) and unit-capacity (U=1) regime

- It is a good benchmark for combinatorial graph algorithms
- Already captures interesting problems, e.g., bipartite matching

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)



What is known about Max Flow?
Emerging barrier: 0O(n3/2)

[Even Tarjan ’75, Karzanov ‘73]: Achieved this bound for U=1 long time ago

Last 40 years: Matching this bound in increasingly
more general settings, but no improvement

This indicates a fundamental limitation of our techniques

Our goal: Show a new approach finally breaking this barrier

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)



Breaking the Q(n3/2) barrier

Undirected graphs and approx. answers (Q(n3/2) barrier still holds here)

[M ‘10]: Crude approx. of max value in close to linear time

[CKMST ‘11]: (1-€)-approx. to max flow in O(n*/3€3) time

[Ls§”13, S ’13, KLOS 14, P ’14]: (1-€)-approx. in O(ng2) time

But: What about the directed and exact setting?
Today

M “13]: Exact O(n'%7)=0(n*-*3)-time alg.

(n = # of vertices, O() hides polylog factors)



New approach:
Bring linear-algebraic techniques into play

Idea: Probe the global flow structure
of the graph by solving linear systems

How to relate flow structure to linear algebra?
(And why should it even help?)

Key object: Electrical flows
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Input: Undirected graph G,

f source s and sink t

(u,v

no leaks at all v#s,t

v

excess of F at t

(Another) recipe for electrical flow (of value F):
Find vertex potentials ¢, such that setting, for all (u,v)

(u v) ((Pv ‘-Pu)/r(u v) (Ohm’s Iaw)
gives a valid s-t flow of value F




* Electrical 3-flow

2A

Wi
 Arbitrary 3-flow

1.5A




Input: Undirected graph G,

Electrical flows TR
= source s and sink t
o Principle of least energy

Electrical flow of value F:
The unigue minimizer of the energy

E(f) =2, r_f(e)?

among all s-t flows f of value F

Electrical flows = {,-minimization



How to compute an electrical flow?

Bottom line:
Electrical flow Solving a Laplacian system
computation

Bad news: Solving a linear system can take O(n*)=0(n2-373)

o
Key observation: (Prohibitive!)

BR1BT is the Laplacian matrix L

i e
of the underlying graph How to utilize it:

J

Result: Electrical flow is a nearly-linear time primitive J




From electrical flows to

undirected max flow
[CKMST "11]



« Suppose we have an algorithm, given F*,
either finds a feasible flow of value F*,
or decides that it does not exist



« Suppose we have an algorithm, given F*,
either finds a feasible flow of value F*,
or decides that it does not exist

* If this alg. has runtime T(n), we get an alg.
with runtime T(n) log n for finding max flow

Let LB = 0 and UB = n?

While UB — LB > ¢

— Let F* = (UB+LB)/2

— run the algorithm for F*

— If successful, LB = F* else UB = F*



Approx. undirected max flow
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1
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Approx. undirected max flow
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1

-> Compute electrical flow of value F*
(This flow has no leaks, but can
overflow some edges)

- To fix that: Increase resistances on the
overflowing edges
Repeat (hope: it doesn’t happen too often)

Surprisingly: This approach can be made work!

But: One needs to be careful how to fill in the blanks

We will do this now



Filling in the blanks

Recall: We are dealing with undirected graphs

From now on: All capacities are 1, m=0(n)
and the value F* of max flow is known



Electrical vs. maximum flows

Fix some resistances r and consider the elect. flow f; of value F*

We don’t expect f; to obey all capacity constraints
(i.e., we can have |f(e)| >> 1 for some edge e)

Still, f: obeys these constraints in a certain sense...

We have:

2. r, |fle)] =2, r,

In other words: Capacity constraints are
preserved on average (weighted wrt to r s)

Proof:




Electrical vs. maximum flows
This gives rise to a very fast algorithm for the following task:

‘Feasibility on average’:

Given weights w compute a flow f of value F* s.t.

2w, |fle)] £Z,w,

Key point: We already know how to make such a
crude algorithm useful to us!



Multiplicative weights update method
[FS ’97, PST 95, AHK ’05]

‘Technique for turning weak algorithms
into strong ones’

In our setting:
Crude algorithm computing ‘feasible on average’ flows

%

(1-€)-approx. max flow
[(1+€)-approx. feasibility everywhere]

How does this method work?



Underlying idea

A

Crude algorith
s chebnl Maintain weights w

(/(Imhally, all weights w,=1)

feasible on average

\ Update weights

W1

/ (based on f1)
f2
\ Update weights
3

W (based on f?)

e

. (Process continues for N rounds)
[

At the end: Return the average of all fis
(This is still a flow of value F*)



° o =
Updating weights : . Want this term to be

/W between 1 and 1+¢

Maximum congestion in f!
pi = maxe If'(E)l



Updating weights .
i-1 Weights w1

A

f
\i Update step: For each e
(* w,' ¢ w (1+|fi(e)|/p;)
A

Underlying dynamics:
Edge e suffers large overflow - w_ grows rapidly
Average overflow small - Z_w_ grows slowly

\”

No edge suffers large overflow too often
-» averaging out yields (almost) no overflow



Updating weights .
e Weights w1

fi
\i Update step: For each e
(* w,' ¢ w (1+|fi(e)|/p;)
A

o
o Width p = max; p;
®

A

[AHK ’05]: It suffices to repeat this step N=O(pe2) times
to get a (1-€)-approx to max flow

Think: p measures the electrical vs. max flow discrepancy

Note: Linear dependence on p is unavoidable



Updating weights .
i-1 Weights w'?!

A

f
\i Update step: For each e
(* w,' ¢ w (1+|fi(e)|/p;)
A

®
o Width p = max; p;
®

[AHK ’05]: It suffices to repeat this step N=O(pe2) times
to get a (1-€)-approx to max flow



Bottom line:

A — o

Electrical flow primitive gives us the crude algorithm

We can use MWU framework
to fill in our blanks!



Multiplicative weight update
method

* Arora, Hazan, Kale’12, “The multiplicative
weight update method: a meta-algorithm
and applications”
http://theoryofcomputing.org/articles/v008a006/

 Madry’12, "How to get rich (if you have

good advice”, EPFL course notes
http://thl.epfl.ch/gems/notes/lecturel.pdf

[l am preparing a Persian translation of this article for
http://sharifmathjournal.ir/]



http://thl.epfl.ch/gems/notes/lecture1.pdf

Our algorithm

—> Treat edges as resistors of resistance r,=1
- Compute electrical flow f of value F*

-> Increase resistances on overflowing edges
Repeat



Our algorithm

—> Treat edges as resistors of resistance r,=1
- Compute electrical flow f of value F*

= Increase resistances: for each e,
r.) € r " (1+e|fi(e)]/p))

Repeat N=O(pe2) times
- At the end: Take an average of
all the flows as the final answer

-> Resistances r, evolve as weights w,
- Convergence condition: “execute N rounds”



Our algorithm

—> Treat edges as resistors of resistance r,=1
- Compute electrical flow f of value F*

= Increase resistances: for each e,
r.) € r " (1+e|fi(e)]/p))

Repeat N=O(pe2) times
- At the end: Take an average of
all the flows as the final answer

Result: This algorithm gives us an (1-€)-approx. max flow
in O(pe2)-0(n) = O(npe2) time

Crucial question: How large the
worst-case overflow p can be?



Our question: Let f be an elect. flow of value F* wrt resist. r,
How large p = max, |f(e)] can be?

In general: p can be very large
(Think: one edge having an extremely small resistance)

Fix: Regularize the resistances with a uniform distribution
r/<r,+€|r|;/m

Can show: p is bounded by O(n”: £1) then

Proof: @

=

This gives a (1-€)-approx. O(n3/2¢3)-time algorithm



Going beyond the O(n3/2) Barrier



Speeding up our algorithm

Running time is dominated by =p elect. flow computations

Can we improve our O(n”€!) bound on p?

Not really...

=n” paths with =n” vertices each




Speeding up our algorithm

Running time is dominated by =p elect. flow computations

Can we improve our O(n”€!) bound on p?

Not really...

=n” paths with =n” vertices each

Max flow:




Speeding up our algorithm

Running time is dominated by =p elect. flow computations

Can we improve our O(n”€!) bound on p?

Not really...

Electr. flow:

DEAD ?
END




Speeding up our algorithm

Key observation: If we remove this bad edge...

- The max flow does not change much



Speeding up oyralgarithm

Key observation: If we remove this bad edge...

- The max flow does not change much

-> But the resulting electrical flow is much
better behaved!

Can we turn this observation into an
algorithmic idea?



Speeding up our algorithm

Idea: Let our electrical flow oracle self-enforce
a smaller overflow p’ << p

Modification of the oracle: If the computed electrical flow
has some edge e flow more than p’:

- Remove this edge from the graph (permanently)
- Recompute the electrical flow

Note: If this oracle always successfully terminates,
its effective overflow is p’



Speeding up our algorithm
Crucial question: What is the right setting of p’?

-> We want p’ to be as small as possible
- But if it becomes too small the edge removal
might be too aggressive and cut too many of them

Sweet spot: p’=n”*

Key reason: Removal of edges that flow a lot
-» significantly increases the energy of the electr. flow
- But perturbs the max flow only slightly



Speeding up our algorithm

Our potential: The energy E (f) of the
electrical flow f wrt current resistances r

Can show:

-> E (f) is not too small initially and cannot become too large
f (as long as we remove no more than = eF* edges)

- As

he resistances only increase, E (f) never decreases

—
This makes E (f) a convenient potential

Need to show: Removal of an overflowing edge
increases E (f) significantly



Speeding up our algorithm

Need to show: Removal of an overflowing edge
increases E (f) significantly

Fact: If an edge e contributes a 6-fraction of energy then
removing it increases E (f) by a factor of 1+Q(6)

Further: If an edge e flows at least p’ in f then
its energy contribution is A=Q(g(p’)?/n) ,/

=



Speeding up our algorithm

Need to show: Removal of an overflowing edge
increases E (f) significantly

Fact: If an edge e contributes a 6-fraction of energy then
removing it increases E (f) by a factor of 1+Q(6)

Further: If an edge e flows at least p’ in f then
its energy contribution is A=Q(g(p’)?/n)

Putting it all together: We can have < O(A1)=0(n/g(p’)?)
edge removals before E (f) grows by too much
Taking p’ = n*g makes O(A1)=0(en*)
be smaller than eF*> gp’ as needed

This gives the O(n*3¢g3)-time (1-€)-approx. algorithm



Main theorem

 Theorem. There Is an algorithm such that,
given an undirected, capacitated graph,
two vertices s, t, and >0, with maximum
s,t-flow value F*, outputs a feasible flow of
value at least (1- €)F* and has running
time O(M*3 ¢9).
[Christiano, Kelner, Madry and Spielman’11]

« Running time improved to O(m(log m)iie3)
[Peng’16] http://arxiv.org/abs/1411.7631



Our goal: Forging the next generation of tools
for graph algorithms

v st rotrson
- | | mmm LINEAR . .
o N - INBCIDIVEN Linear-algebraic
3 | tools
''''''' ALGORITHMS . Convex (eigenvalues,
Sttt (JRALEICH electrical flows,

i i l tems,...
Combinatorial methods inear systems,...)

(trees, paths, partitions, Cont. opt. primitives
matchings, routings,...) (gradient-descent, interior-
point methods,...)

Underlying theme: Merging
combinatorial and continuous methods



Linear Algebra & Algorithms

Shayan Oveis Gharan 2015, “Asymmetric TSP”

(with Nima Ahmadipour, gave O(log log n) approximation for
asymmetric travelling salesman problem)
https://www.mstri.org/workshops/754/schedules/19574

Workshop in Berkeley 2014: algorithmic spectral graph theory
https://simons.berkeley.edu/workshops/spectral2014-boot-camp

— James Lee,"The Unreasonable Effectiveness of Spectral Graph
Theory” https://simons.berkeley.edu/events/openlectures2014-fall-4

— Aleksander Madry (3 talks): Maximum flow

https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem

— Jon Kelner: Multicommodity flow
https://simons.berkeley.edu/talks/jon-kelner-2014-12-01

— Nikhil Srivastava (3 talks): graph sparsification via random matrices
https://simons.berkeley.edu/talks/graph-sparsification

More examples on Spielman’s page on Laplacian solvers (eg. Clustering
algorithms) https://sites.google.com/alyale.edu/laplacian/

Vishnoi 2012 book “Laplacian solvers and their algorithmic
applications” (eg graph partitioning) http:/theory.epfl.ch/vishnoi/Lxb-Web.pdf
Kannan-Vempala 2013 book “Spectal algorithms” http://www.cc.gatech.edu/~vempala/spectral/
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