Using Linear Algebra in Algorithms
Example 2: Maximum flow

Abbas Mehrabian

C a place of mind

Tn""‘i THE UNIVERSITY OF BRITISH COLUMBIA

Acknowledgement: some of the following slides were prepared by Aleksander
Madry and are downloaded from http://www.iasi.cnr.it/~ventura/Cargesel15/Lectures.html

. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

Recipe for elec. flow:
1) Treat edges as
resistors

. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

resistance r,

Recipe for elec. flow:
1) Treat edges as

resistors
q 2) Connect a battery
tosandt /

. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

resistance r,

Recipe for elec. flow:
1) Treat edges as

resistors
q 2) Connect a battery
tosandt /

. Input: Undirected graph G,
Electrical flows (Take 1) " oo f P

source s and sink t

resistance r,

(Another) recipe for electrical flow (of value F):

Input: Undirected graph G,

f source s and sink t

(u,v

no leaks at all v#s,t

v

excess of F at t

(Another) recipe for electrical flow (of value F):
Find vertex potentials ¢, such that setting, for all (u,v)

(u v) ((Pv ‘-Pu)/r(u v) (Ohm’s Iaw)
gives a valid s-t flow of value F

1A

4@—¢ 1 500 mQ 250 mQ
1A
10
AW WV O=

10 4 5]

outgoing — current(1) = L I L + L&l I Lo —1

201—@; — @, =—1

outgoing — current(2) = Y2 — + LER + V2 "% _ 0

1 1 1/2

A4pr—@1 — P3—2¢0, = 0

10 3

N

10

—AW

1A

4@—¢ 1 500 mQ 250 mQ
1A
10
A WV O=

10 4 5]

201—=P2 — @4 = —1
4p2—¢1 — 93—2¢, =0
4p3 — =3¢ =0
4Ps—p1 — Ps—2¢, =0
4ps — =303 =1

1A

—1
0
—1

-0

10 2 10 3
—~AW
500 mQ
10
—VVW! VWA
a4 5]
-1 0 -1 07791
4 -1 =2 0 [|92
-1 4 0 —3||¥3
-2 0 4 —1||Pa
0 -3 -1 41L¥s-

250 mQ

1A

11

- 2
—1
0
—1
-0

10

—AW

A

10

—1
4
—1
—2
0

0
—1
4
0
-3

symmetric, positive semi-definite,

row-sum-zero, n+2m non-zero entries

4

250 mQ

500 mQ
10
VW

5
-1 0 79r®1-
—2 0 ||92
0 —=-3||9s3
4 —1|1¥Pa
-1 4 1L@sd

How fast can we solve L ¢ = b ?

« Ax=b can be solved in O(n?38) (CLRS chapter 31)
http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap31.htm

How fast can we solve L ¢ = b ?

« Ax=b can be solved in O(n?38) (CLRS chapter 31)
http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap31.htm

« A Laplacian matrix of a graph:

— An g-approx. in time O(m log°°m log (1/¢))
[Spielman-Teng'04—11]

— O(m log¥2m log (1/¢))
[Cohen, Kyng, Miller, Pachocki, Peng, Rao, Xu'14]

How fast can we solve L ¢ = b ?

Ax=b can be solved in O(n?38) (CLRS chapter 31)
http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap31.htm

A Laplacian matrix of a graph:

— An g-approx. in time O(m log°°m log (1/¢))
[Spielman-Teng'04—11]

— O(m log¥2m log (1/¢))
[Cohen, Kyng, Miller, Pachocki, Peng, Rao, Xu'14]

Numerous applications in graph algorithms,
optimization, machine learning, numerical linear algebra

Kelner's 3 talks in Berkeley (2013):

https://sSimons.berkeley.edu/talks/laplacian-systems-and-electrical-flows

Vishnoi's 2012 book “Laplacian solvers and their
algorithmic applications” nup:itheory.epfi.chivishnoilLxb-web.pdf

THE MAXIMUM FLOW
PROBLEM

Input: Directed graph G,
integer capacities u,,
source s and sink t

Maximum flow problem

Think: arcs = roads
capacities = # of lanes
s/t = origin/destination)

Task: Find a feasible s-t flow of max value J

(Think: Estimate the max possible rate of traffic from s to t)

. Input: Directed graph G,
Maximum flow problem integer capacities u,,

value = net flow out of s J source s and sink t

Think: arcs = roads
capacities = # of lanes
s/t = origin/destination)

Max flow value
F*=10

no overﬂow on arcs. no Ieaks at a|| V¢S,t J
0 < f(e) < u(e)

Task: Find a feasible s-t flow of max value J

(Think: Estimate the max possible rate of traffic from s to t)

Input: Directed graph G,
integer capacities u,,
source s and sink t

Maximum flow problem

Think: arcs = roads
capacities = # of lanes
s/t = origin/destination)

F*=10

Max flow value J

Task: Find a feasible s-t flow of max value J

(Think: Estimate the max possible rate of traffic from s to t)

Why is this a good problem to study?

Max flow is a fundamental
optimization problem

e Extensively studied since 1930s (classic ‘textbook problem’)
e Surprisingly diverse set of applications
e Very influential in development of (graph) algorithms

_ Graph partitioning .
Transportation (Clustering) Scheduling,

(Route planning) Assignment problems

N

Connectivity Computer Vision
Analysis < Max Flow > (Image segmentation)

What is known about Max Flow?
A LOT of previous work

NETWORK
L

What is known about Max Flow?

NETWORK
A (very) rough history outline FIOWS
[Dantzig ‘51] O(mn2U)
[Ford Fulkerson ’56] O(mn U)
[Dinitz ’70] O(mn?)
[Dinitz ‘70] [Edmonds Karp '72] O(m?n)
[Dinitz ‘73] [Edmonds Karp ’72] O(m?log U)
[Dinitz ‘73] [Gabow ’85] O(mnlog U)
[Goldberg Rao 98] O(m min(m?/2,n2/3) log U)
[Lee Sidford ’14] O(mn?/2 log U)

Our focus: Sparse graph (m=0(n)) and unit-capacity (U=1) regime

- It is a good benchmark for combinatorial graph algorithms
- Already captures interesting problems, e.g., bipartite matching

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)

What is known about Max Flow?
A (very) rough history outline

[Dantzig ‘51]

[Ford Fulkerson ’56]

[Dinitz ’'70]

[Dinitz ‘70] [Edmonds Karp '72]
[Dinitz ‘73] [Edmonds Karp ’72]
[Dinitz ‘73] [Gabow ’85]
[Goldberg Rao "98]

[Lee Sidford '14]

O(n3)
O(n?)
O(n3)
O(n3)
O(n2?)
O(n?)
6(n3/2)
6(n3/2)

NETWORK
FLOWS

Our focus: Sparse graph (m=0(n)) and unit-capacity (U=1) regime

- It is a good benchmark for combinatorial graph algorithms
- Already captures interesting problems, e.g., bipartite matching

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)

What is known about Max Flow?
Emerging barrier: 0O(n3/2)

[Even Tarjan ’75, Karzanov ‘73]: Achieved this bound for U=1 long time ago

Last 40 years: Matching this bound in increasingly
more general settings, but no improvement

This indicates a fundamental limitation of our techniques

Our goal: Show a new approach finally breaking this barrier

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)

Breaking the Q(n3/2) barrier

Undirected graphs and approx. answers (Q(n3/2) barrier still holds here)

[M ‘10]: Crude approx. of max value in close to linear time

[CKMST ‘11]: (1-€)-approx. to max flow in O(n*/3€3) time

[Ls§”13, S ’13, KLOS 14, P ’14]: (1-€)-approx. in O(ng2) time

But: What about the directed and exact setting?
Today

M “13]: Exact O(n'%7)=0(n*-*3)-time alg.

(n = # of vertices, O() hides polylog factors)

New approach:
Bring linear-algebraic techniques into play

Idea: Probe the global flow structure
of the graph by solving linear systems

How to relate flow structure to linear algebra?
(And why should it even help?)

Key object: Electrical flows

. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

resistance r,

Recipe for elec. flow:
1) Treat edges as

resistors
q 2) Connect a battery
tosandt /

. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

resistance r,

Recipe for elec. flow:
1) Treat edges as

resistors
q 2) Connect a battery
tosandt /

Input: Undirected graph G,

f source s and sink t

(u,v

no leaks at all v#s,t

v

excess of F at t

(Another) recipe for electrical flow (of value F):
Find vertex potentials ¢, such that setting, for all (u,v)

(u v) ((Pv ‘-Pu)/r(u v) (Ohm’s Iaw)
gives a valid s-t flow of value F

* Electrical 3-flow

2A

Wi
 Arbitrary 3-flow

1.5A

Input: Undirected graph G,

Electrical flows TR
= source s and sink t
o Principle of least energy

Electrical flow of value F:
The unigue minimizer of the energy

E(f) =2, r_f(e)?

among all s-t flows f of value F

Electrical flows = {,-minimization

How to compute an electrical flow?

Bottom line:
Electrical flow Solving a Laplacian system
computation

Bad news: Solving a linear system can take O(n*)=0(n2-373)

o
Key observation: (Prohibitive!)

BR1BT is the Laplacian matrix L

i e
of the underlying graph How to utilize it:

J

Result: Electrical flow is a nearly-linear time primitive J

From electrical flows to

undirected max flow
[CKMST "11]

« Suppose we have an algorithm, given F*,
either finds a feasible flow of value F*,
or decides that it does not exist

« Suppose we have an algorithm, given F*,
either finds a feasible flow of value F*,
or decides that it does not exist

* If this alg. has runtime T(n), we get an alg.
with runtime T(n) log n for finding max flow

Let LB = 0 and UB = n?

While UB — LB > ¢

— Let F* = (UB+LB)/2

— run the algorithm for F*

— If successful, LB = F* else UB = F*

Approx. undirected max flow
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1

Approx. undirected max flow
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1
-> Compute electrical flow of value F*

Approx. undirected max flow
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1

-> Compute electrical flow of value F*
(This flow has no leaks, but can
overflow some edges)

Approx. undirected max flow
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1

-> Compute electrical flow of value F*
(This flow has no leaks, but can
overflow some edges)

- To fix that: Increase resistances on the
overflowing edges
Repeat (hope: it doesn’t happen too often)

Surprisingly: This approach can be made work!

But: One needs to be careful how to fill in the blanks

We will do this now

Filling in the blanks

Recall: We are dealing with undirected graphs

From now on: All capacities are 1, m=0(n)
and the value F* of max flow is known

Electrical vs. maximum flows

Fix some resistances r and consider the elect. flow f; of value F*

We don’t expect f; to obey all capacity constraints
(i.e., we can have |f(e)| >> 1 for some edge e)

Still, f: obeys these constraints in a certain sense...

We have:

2. r, |fle)] =2, r,

In other words: Capacity constraints are
preserved on average (weighted wrt to r s)

Proof:

Electrical vs. maximum flows
This gives rise to a very fast algorithm for the following task:

‘Feasibility on average’:

Given weights w compute a flow f of value F* s.t.

2w, |fle)] £Z,w,

Key point: We already know how to make such a
crude algorithm useful to us!

Multiplicative weights update method
[FS ’97, PST 95, AHK ’05]

‘Technique for turning weak algorithms
into strong ones’

In our setting:
Crude algorithm computing ‘feasible on average’ flows

%

(1-€)-approx. max flow
[(1+€)-approx. feasibility everywhere]

How does this method work?

Underlying idea

A

Crude algorith
s chebnl Maintain weights w

(/(Imhally, all weights w,=1)

feasible on average

\ Update weights

W1

/ (based on f1)
f2
\ Update weights
3

W (based on f?)

e

. (Process continues for N rounds)
[

At the end: Return the average of all fis
(This is still a flow of value F*)

° o =
Updating weights : . Want this term to be

/W between 1 and 1+¢

Maximum congestion in f!
pi = maxe If'(E)l

Updating weights .
i-1 Weights w1

A

f
\i Update step: For each e
(* w,' ¢ w (1+|fi(e)|/p;)
A

Underlying dynamics:
Edge e suffers large overflow - w_ grows rapidly
Average overflow small - Z_w_ grows slowly

\”

No edge suffers large overflow too often
-» averaging out yields (almost) no overflow

Updating weights .
e Weights w1

fi
\i Update step: For each e
(* w,' ¢ w (1+|fi(e)|/p;)
A

o
o Width p = max; p;
®

A

[AHK ’05]: It suffices to repeat this step N=O(pe2) times
to get a (1-€)-approx to max flow

Think: p measures the electrical vs. max flow discrepancy

Note: Linear dependence on p is unavoidable

Updating weights .
i-1 Weights w'?!

A

f
\i Update step: For each e
(* w,' ¢ w (1+|fi(e)|/p;)
A

®
o Width p = max; p;
®

[AHK ’05]: It suffices to repeat this step N=O(pe2) times
to get a (1-€)-approx to max flow

Bottom line:

A — o

Electrical flow primitive gives us the crude algorithm

We can use MWU framework
to fill in our blanks!

Multiplicative weight update
method

* Arora, Hazan, Kale’12, “The multiplicative
weight update method: a meta-algorithm
and applications”
http://theoryofcomputing.org/articles/v008a006/

 Madry’12, "How to get rich (if you have

good advice”, EPFL course notes
http://thl.epfl.ch/gems/notes/lecturel.pdf

[l am preparing a Persian translation of this article for
http://sharifmathjournal.ir/]

http://thl.epfl.ch/gems/notes/lecture1.pdf

Our algorithm

—> Treat edges as resistors of resistance r,=1
- Compute electrical flow f of value F*

-> Increase resistances on overflowing edges
Repeat

Our algorithm

—> Treat edges as resistors of resistance r,=1
- Compute electrical flow f of value F*

= Increase resistances: for each e,
r.) € r " (1+e|fi(e)]/p))

Repeat N=O(pe2) times
- At the end: Take an average of
all the flows as the final answer

-> Resistances r, evolve as weights w,
- Convergence condition: “execute N rounds”

Our algorithm

—> Treat edges as resistors of resistance r,=1
- Compute electrical flow f of value F*

= Increase resistances: for each e,
r.) € r " (1+e|fi(e)]/p))

Repeat N=O(pe2) times
- At the end: Take an average of
all the flows as the final answer

Result: This algorithm gives us an (1-€)-approx. max flow
in O(pe2)-0(n) = O(npe2) time

Crucial question: How large the
worst-case overflow p can be?

Our question: Let f be an elect. flow of value F* wrt resist. r,
How large p = max, |f(e)] can be?

In general: p can be very large
(Think: one edge having an extremely small resistance)

Fix: Regularize the resistances with a uniform distribution
r/<r,+€|r|;/m

Can show: p is bounded by O(n”: £1) then

Proof: @

=

This gives a (1-€)-approx. O(n3/2¢3)-time algorithm

Going beyond the O(n3/2) Barrier

Speeding up our algorithm

Running time is dominated by =p elect. flow computations

Can we improve our O(n”€!) bound on p?

Not really...

=n” paths with =n” vertices each

Speeding up our algorithm

Running time is dominated by =p elect. flow computations

Can we improve our O(n”€!) bound on p?

Not really...

=n” paths with =n” vertices each

Max flow:

Speeding up our algorithm

Running time is dominated by =p elect. flow computations

Can we improve our O(n”€!) bound on p?

Not really...

Electr. flow:

DEAD ?
END

Speeding up our algorithm

Key observation: If we remove this bad edge...

- The max flow does not change much

Speeding up oyralgarithm

Key observation: If we remove this bad edge...

- The max flow does not change much

-> But the resulting electrical flow is much
better behaved!

Can we turn this observation into an
algorithmic idea?

Speeding up our algorithm

Idea: Let our electrical flow oracle self-enforce
a smaller overflow p’ << p

Modification of the oracle: If the computed electrical flow
has some edge e flow more than p’:

- Remove this edge from the graph (permanently)
- Recompute the electrical flow

Note: If this oracle always successfully terminates,
its effective overflow is p’

Speeding up our algorithm
Crucial question: What is the right setting of p’?

-> We want p’ to be as small as possible
- But if it becomes too small the edge removal
might be too aggressive and cut too many of them

Sweet spot: p’=n”*

Key reason: Removal of edges that flow a lot
-» significantly increases the energy of the electr. flow
- But perturbs the max flow only slightly

Speeding up our algorithm

Our potential: The energy E (f) of the
electrical flow f wrt current resistances r

Can show:

-> E (f) is not too small initially and cannot become too large
f (as long as we remove no more than = eF* edges)

- As

he resistances only increase, E (f) never decreases

—
This makes E (f) a convenient potential

Need to show: Removal of an overflowing edge
increases E (f) significantly

Speeding up our algorithm

Need to show: Removal of an overflowing edge
increases E (f) significantly

Fact: If an edge e contributes a 6-fraction of energy then
removing it increases E (f) by a factor of 1+Q(6)

Further: If an edge e flows at least p’ in f then
its energy contribution is A=Q(g(p’)?/n) ,/

=

Speeding up our algorithm

Need to show: Removal of an overflowing edge
increases E (f) significantly

Fact: If an edge e contributes a 6-fraction of energy then
removing it increases E (f) by a factor of 1+Q(6)

Further: If an edge e flows at least p’ in f then
its energy contribution is A=Q(g(p’)?/n)

Putting it all together: We can have < O(A1)=0(n/g(p’)?)
edge removals before E (f) grows by too much
Taking p’ = n*g makes O(A1)=0(en*)
be smaller than eF*> gp’ as needed

This gives the O(n*3¢g3)-time (1-€)-approx. algorithm

Main theorem

 Theorem. There Is an algorithm such that,
given an undirected, capacitated graph,
two vertices s, t, and >0, with maximum
s,t-flow value F*, outputs a feasible flow of
value at least (1- €)F* and has running
time O(M*3 ¢9).
[Christiano, Kelner, Madry and Spielman’11]

« Running time improved to O(m(log m)iie3)
[Peng’16] http://arxiv.org/abs/1411.7631

Our goal: Forging the next generation of tools
for graph algorithms

v st rotrson
- | | mmm LINEAR . .
o N - INBCIDIVEN Linear-algebraic
3 | tools
''''''' ALGORITHMS . Convex (eigenvalues,
Sttt (JRALEICH electrical flows,

i i l tems,...
Combinatorial methods inear systems,...)

(trees, paths, partitions, Cont. opt. primitives
matchings, routings,...) (gradient-descent, interior-
point methods,...)

Underlying theme: Merging
combinatorial and continuous methods

Linear Algebra & Algorithms

Shayan Oveis Gharan 2015, “Asymmetric TSP”

(with Nima Ahmadipour, gave O(log log n) approximation for
asymmetric travelling salesman problem)
https://www.mstri.org/workshops/754/schedules/19574

Workshop in Berkeley 2014: algorithmic spectral graph theory
https://simons.berkeley.edu/workshops/spectral2014-boot-camp

— James Lee,"The Unreasonable Effectiveness of Spectral Graph
Theory” https://simons.berkeley.edu/events/openlectures2014-fall-4

— Aleksander Madry (3 talks): Maximum flow

https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem

— Jon Kelner: Multicommodity flow
https://simons.berkeley.edu/talks/jon-kelner-2014-12-01

— Nikhil Srivastava (3 talks): graph sparsification via random matrices
https://simons.berkeley.edu/talks/graph-sparsification

More examples on Spielman’s page on Laplacian solvers (eg. Clustering
algorithms) https://sites.google.com/alyale.edu/laplacian/

Vishnoi 2012 book “Laplacian solvers and their algorithmic
applications” (eg graph partitioning) http:/theory.epfl.ch/vishnoi/Lxb-Web.pdf
Kannan-Vempala 2013 book “Spectal algorithms” http://www.cc.gatech.edu/~vempala/spectral/

https://www.msri.org/workshops/754/schedules/19574
https://simons.berkeley.edu/events/openlectures2014-fall-4
https://simons.berkeley.edu/events/openlectures2014-fall-4
https://simons.berkeley.edu/events/openlectures2014-fall-4
https://simons.berkeley.edu/events/openlectures2014-fall-4
https://simons.berkeley.edu/events/openlectures2014-fall-4
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/electrical-flows-optimization-and-new-approaches-maximum-flow-problem
https://simons.berkeley.edu/talks/jon-kelner-2014-12-01
https://simons.berkeley.edu/talks/jon-kelner-2014-12-01
https://simons.berkeley.edu/talks/jon-kelner-2014-12-01
https://simons.berkeley.edu/talks/jon-kelner-2014-12-01
https://simons.berkeley.edu/talks/jon-kelner-2014-12-01
https://simons.berkeley.edu/talks/jon-kelner-2014-12-01
https://simons.berkeley.edu/talks/jon-kelner-2014-12-01
https://simons.berkeley.edu/talks/jon-kelner-2014-12-01
https://simons.berkeley.edu/talks/jon-kelner-2014-12-01
http://theory.epfl.ch/vishnoi/Lxb-Web.pdf
http://theory.epfl.ch/vishnoi/Lxb-Web.pdf
http://theory.epfl.ch/vishnoi/Lxb-Web.pdf

