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Example 1: Preferential attachment graphs



Model definition

1. Fix m and start with a connected graph.

2. In each step a new vertex and m new edges are born.

3. One endpoint of each new edge is the new vertex,
the other endpoint is sampled according to the degrees.

The diameter is a.a.s. O(logn) if m = 1 [Pittel’94] and
O(logn/ log logn) if m > 1 [Bollobás and Riordan’04].
We prove a.a.s. the diameter ≤ 4e logn .
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Proof sketch

1. Choose a vertex of the initial graph as the root.

2. Couple with a tree whose nodes correspond to the edges of
the graph, such that the depth of each node ≥ the distance
between the corresponding edge and the root.

r

6

2

1

3 4

5

1

2
3

56

4



3. Creation of a new vertex (say m = 3)

Key observation: Sampling according to the degrees is
equivalent to choosing a random endpoint of a uniformly
random edge!
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Thus, the diameter is a.a.s. at most 4e logn .
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Slight generalization

What if the attachment probabilities are linear functions of the
degrees?

Say prob. of attaching to v = 2 deg(v) + 1



Slight generalization

What if the attachment probabilities are linear functions of the
degrees?
Say prob. of attaching to v = 2 deg(v) + 1



Example 2: The Cooper-Frieze model



The Cooper-Frieze model

X In an step, either a new vertex is born and edges are added
from it to the existing graph,
or edges are added between the existing vertices.

X The number of added edges is a bounded random variable.

X One endpoint of each added edge is either the new vertex,
or a uniformly random vertex,
or sampled according to degrees.

X The other endpoint is either a uniformly random vertex or
sampled according to degrees.

[Cooper and Frieze’01]

We prove a.a.s. the diameter is O(logn). (NEW RESULT!)



The Cooper-Frieze model

X In an step, either a new vertex is born and edges are added
from it to the existing graph,
or edges are added between the existing vertices.

X The number of added edges is a bounded random variable.

X One endpoint of each added edge is either the new vertex,
or a uniformly random vertex,
or sampled according to degrees.

X The other endpoint is either a uniformly random vertex or
sampled according to degrees.

[Cooper and Frieze’01]

We prove a.a.s. the diameter is O(logn). (NEW RESULT!)



Proof sketch
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In every step, either a uniformly random white node gives birth,
or a uniformly random black node gives birth.
The height is still logarithmic.
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New results

Theorem (M’14+)
The following random graph models have diameter O(log n) a.a.s.

X The (edge) copying model
[Kumar,Raghavan,Rajagopalan,Sivakumar,Tomkins,Upfal’00]

X Aiello-Chung-Lu models [Aiello,Chung,Lu’01]

X The Cooper-Frieze model [Cooper,Frieze’01]

X The generalized linear preference model [Bu,Towsley’02]

X The PageRank-based selection model
[Pandurangan,Raghavan,Upfal’02]

X Directed scale-free graphs [Bollobás,Borgs,Chayes,Riordan’03]

X The forest fire model [Leskovec,Kleinberg,Faloutsos’05]

The PARID model of Deijfen, van den Esker, van der Hofstad and
Hooghiemstra has diameter O(log2 n) a.a.s. if the initial degrees’
distribution has an exponential decay.


