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Motivation

Many random graphs have diameters at most O(logn) ...
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Motivation

Many random graphs have diameter O(logn) ...
1. Why is it important?
2. What is the reason?

3. How to prove such results?

Expansion? Works in many cases!
But, many random trees also have logarithmic diameter!



Our contribution

A technique for proving certain random graphs have diameter
at most O(logn).
Note: no lower bounds today!
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Our contribution

A technique for proving certain random graphs have diameter
at most O(logn).

The idea is to couple with a random recursive tree such that
graph’s diameter < tree’s diameter.

Definition (random recursive tree)

Fix k. Initially we have a single node;
in every round a uniformly random node gives birth to k new
children.

Pittel’94 proved a.a.s. the height is asymptotic to elogn.
Height: maximum distance between a vertex and the root



Example 1: Preferential attachment graphs



Model definition

1. Fix m and start with a connected graph.
2. In each step a new vertex and m new edges are born.

3. One endpoint of each new edge is the new vertex,
the other endpoint is sampled according to the degrees.



Model definition

1. Fix m and start with a connected graph.
2. In each step a new vertex and m new edges are born.
3. One endpoint of each new edge is the new vertex,

the other endpoint is sampled according to the degrees.

The diameter is a.a.s. O(logn) if m = 1 [Pittel’94] and
O(log n/loglogn) if m > 1 [Bollobas and Riordan’04].
We prove a.a.s. the diameter < 4elogn.



Proof sketch

1. Choose a vertex of the initial graph as the root.

2. Couple with a tree whose nodes correspond to the edges of
the graph, such that the depth of each node > the distance
between the corresponding edge and the root.




3. Creation of a new vertex (say m = 3)

Key observation: Sampling according to the degrees is
equivalent to choosing a random endpoint of a uniformly
random edge!



3. Creation of a new vertex (say m = 3)

Key observation: Sampling according to the degrees is
equivalent to choosing a random endpoint of a uniformly

random edge!
€

i/ f 3

e1 h £ B



3. Creation of a new vertex (say m = 3)

Key observation: Sampling according to the degrees is
equivalent to choosing a random endpoint of a uniformly

random edge!
€1

i/ f 3

e1 h £ B

Thus, the diameter is a.a.s. at most 4e logn.



Slight generalization

What if the attachment probabilities are linear functions of the
degrees?



Slight generalization

What if the attachment probabilities are linear functions of the
degrees?
Say prob. of attaching to v = 2deg(v) + 1

AN



Example 2: The Cooper-Frieze model



BN

The Cooper-Frieze model

In an step, either a new vertex is born and edges are added
from it to the existing graph,

or edges are added between the existing vertices.

The number of added edges is a bounded random variable.
One endpoint of each added edge is either the new vertex,

or a uniformly random vertex,

or sampled according to degrees.

The other endpoint is either a uniformly random vertex or
sampled according to degrees.

[Cooper and Frieze’01]



The Cooper-Frieze model

v' In an step, either a new vertex is born and edges are added
from it to the existing graph,
or edges are added between the existing vertices.

BN

The number of added edges is a bounded random variable.

v" One endpoint of each added edge is either the new vertex,
or a uniformly random vertex,
or sampled according to degrees.

v" The other endpoint is either a uniformly random vertex or
sampled according to degrees.

[Cooper and Frieze’01]
We prove a.a.s. the diameter is O(logn). (NEW RESULT!)



Proof sketch




Proof sketch

In every step, either a uniformly random white node gives birth,
or a uniformly random black node gives birth.
The height is still logarithmic.



New results

Theorem (M’14+)

The following random graph models have diameter O(logn) a.a.s.

v The (edge) copying model
[Kumar, Raghavan, Rajagopalan, Stvakumar, Tomkins, Upfal’00]

v Aiello-Chung-Lu models [Atello, Chung, Lu’01]
v' The Cooper-Frieze model [Cooper, Frieze’01]
V' The generalized linear preference model [Bu, Towsley’02]
v The PageRank-based selection model

[Pandurangan, Raghavan, Upfal’02]
V' Directed scale-free graphs [Bollobds, Borgs, Chayes, Riordan’03]
V' The forest fire model [Leskovec, Kleinberg, Faloutsos’05]

The PARID model of Deyfen, van den Esker, van der Hofstad and
Hooghiemstra has diameter O(log® n) a.a.s. if the initial degrees’
distribution has an exponential decay.



