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Huge networks everywhere!

The web graph: 30 billion nodes
Social networks: 7 billion

Online social networks: 500 million
Protein interactions

Human brain: 100 billion

10 gr Diamond crystal: 5 * 1023
Transistors on chips



Image from: http://www.math.ucsd.edu/~fan/graphs/gallery/bgpps.jpg



Challenges

1. Analyze their structure
2. Model them

3. Approximate them

4. Run algorithms on them



PROPERTIES OF THESE NETWORKS



Power-law degree distribution

* n =number of vertices

* n,=number of vertices with degree k
n, ~ Cnk=P

N

Figure 1: Power law degree distribution. Figure 2: Log-scale of Figure 1.




Power-law degree distribution

* Call Graph (AT&T): f = 2.1
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Power-law degree distribution

 Kumar et al. (IBM): Web crawl of 40 million
web pages in 1997

* Bin =2.1; Boyr = 2.7



Collaboration Graph
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Power-law degree distribution

e Collaboration graph (2004) 401000 nodes:
f =246
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Power-law degree distribution

* Hollywood graph (225000 nodes) f = 2.3

Image from: http://www.math.ucsd.edu/~fan/graphs/gallery/holys.jpg




Power-law degree distribution

* Biological networks:
1. Yeast protein-protein networks: f = 1.6
2. Yeast gene expression networks: f € [1.4,1.7]
3. Gene functional interaction network: f = 1.6



Notation

f =0(g)if f < cg foraconstant c > 0
f=Q(g)if f = cg foraconstant c > 0

f =0(g) ifcig < f < cyg for constants
Cq,Co >0



Power-law degree distribution

n, ~ Cnk=P
Assume [ > 2.

2|E(G)| = Y. deg(v) = Skn;, ~ CnY k1P
= 0(n)

Many real-world networks are sparse!



Small world phenomenon

Metric on graph vertices

d(1,4) =2
d(2,6) =3



Small world phenomenon

S = pair of vertices with finite distance

L(G) = average distance between pairsin S

diam(G) = max{d(u,v):{u, v} € S}



Small world phenomenon

1. Average distance and the diameter are small
(usually O(logn))

Examples:
* Six degrees of separation (Milgram’s test)
* Broder et al. (2000): L(Web graph) = 6.8



Small world phenomenon

2. Two vertices having a common neighbour are
more likely to be adjacent.

Local clustering coefficient of v:
probability that two random neighbours of v are
adjacent



Image from: http://networkx.lanl.gov/archive/networkx-1.4/_images/random_geometric_graph.png



MODELS



Notation

With high probability:
with probability approaching 1 as n goes to infinity



ErdOs-Renyi Random Graphs
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Figure 4.1. A graph with 100 vertices and edges drawn with probabil-
ity é



ErdOs-Renyi Random Graphs
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FIGURE 1.2. Degree distributions of an Erdés-Rényi random
graph on 100 nodes with edge density .1 (left) and of a real life
graph with similar parameters (right). The main feature to ob-
serve about the latter i1s not that the largest frequency 1s 1, but
that 1t 1s much more stretched out.



ErdOs-Renyi Random Graphs

* For np > 5logn, have logarithmic diameter.

* Clustering coefficient is small



Erdos-Renyl Random Graphs:

further reading
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Random Geometric Graphs




Random Geometric Graphs:
further reading

Random Geometric
Graphs

MATHEW PENROSE




Random Graphs with given expected
degree sequence

o Letw = (Wq,W,, ..., w,) be given

* Build a random graph on n vertices with
Win

2 Wk

* The average degree of vertex j is (almost) w;

p(i,j) =



Random Graphs with given expected
degree sequence

e Let (Wy,W,, ..., W, ) be power-law with
exponent f.

 Chung and Lu (2007):
diam = O(logn) for > 2

L if B> 3 then L(G)~ 2z
2. 2< B <3then L(G) = O(loglogn);
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Linearized Chord Diagram

* Bollobas, Riordan, Spencer, Tusnady (2001)

* An “evolving random graph”

I”

* First “preferential attachment mode
analyzed rigorously



Linearized Chord Diagram

G(m,t)
Start with a vertex

In step i, add one new vertex and join it to
exactly one old vertex with probability
proportional to their degree

After t steps, a tree with t vertices is obtained.
Merge every m consecutive vertices
Obtain a graph with t/m vertices



Linearized Chord Diagram

e Bollobas, Riordan, Spencer, Tusnady (2001).
For fixed m, e, with probability tending to 1 ast —
oo, forall0 <k S%,
ng
1—¢e< 3 <1l+¢

e Bollobas and Riordan (2004).

 Withprobability tending to1 as t — oo,
logt

loglogt

diameter~



Linearized chord diagram

 More preferential attachment models:
1. Aiello, Chung, Lu (2002): with any 8 € (2, o)

> W N

Cooper, Frieze (2003): many parameters
Buckley, Osthus (2004).

Bollobas, Borgs, Chayes, Riordan (2004)
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v
Full duplication
u
v
u
Partial duplication
V

Duplication Model

Image from: Chung, Lu, Dewey, and Galas. Duplication Models for Biological
Networks. Journal of Computational Biology. 10 (5), 2003 pp. 677--687.



Partial Duplication Model

* Parameter: p

* Chung, Lu, Dewey, Galas (2003):
Theorem. The partial duplication model
generates power-law graphs with exponent

satisfying
p(B—1) =1-pF
So, if 0.5<p<1thenf < 2.



Real-world networks: further reading
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Real-world networks: further reading

* Chung and Lu. Complex Graphs and Networks.

AMS. 2006;
chapterl: http://www.ams.org/bookstore/pspdf/cbms-107-prev.pdf

* Bonato. A Survey of Models of the Web

Graph. Proceedings of CAAN, 2004;
http://www.math.ryerson.ca/~abonato/WEBSURV2.pdf



Graph Limits

* |In 2003 people in Microsoft research started
to define notions of “convergence” for
sequences of graphs with increasing size...

* A book on this topic has been published in
2012



Copyvigited Matereal
American Mathematical Society
Colloquium Publications
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Large Networks
and Graph Limits

Laszlo Lovasz



GRAPH PROPERTY TESTING

Image from: Oded Goldreich. A Brief Introduction to Property Testing. Manuscript, 2010.



Graph Property Testing

* For graphs G and H on the same vertex set,

E(G)AE(H)
I = Er

* For a property P (i.e. a class of graphs),
d(G,P) = min{d(G,H): H € P}



Bipartite graph



Graph Property Testing

A property P (e.g., being bipartite)

The algorithm (called “tester”) is allowed to
ask queries of the following type:

— Are vertices u and v adjacent?

The algorithm should distinguish the cases:
—GisinP

— G has distance > € from all graphs in P



Graph Property Testing

* A property tester for property P:

A randomized decision algorithm

Is givennand € >0

Asks g queries

If G has P accepts with probability > 2/3
If d(G,P)> € rejects with probability > 2/3

A A

Important parameter: g = query complexity



Graph Property Testing

 Theorem (Alon-Krivelevich 2002). Query
complexity of testing bipartiteness is O( 1/g?)

e Algorithm works by “sampling”

* The analysis uses the probabilistic method



Graph Property Testing

* A graph property is hereditary if it is closed
under removal of vertices

— k-colourable graphs
— Planar graphs
— Chordal graphs

 Theorem (Alon, Shapira 2005). Every
hereditary graph property is testable with
qguery complexity independent of n



Graph Property Testing

 Which graph properties have query
complexity polynomial in 1/ € ?

— being k-colourable, for fixed k
— Being “induced P,"-free

* Which don’t?
— Being triangle-free



Graph Property Testing:
further reading

Rl * Alon and Shapira,
Homomorphisms in
Graph Property Testing,

Property Testing 2006.
Current Research and Surveys http Z//peOple. math .gatECh .

edu/~asafico/nesetril.pdf

State-of-the-Art

LNCS6390 BSIUAE)

@_ Springer




STRONG PERFECT GRAPH THEOREM



Perfect graphs

* For any graph G
Clique size of G < colouring number of G




Perfect Graphs

 Graph G is perfect if for any induced subgraph
H,

Clique size of H = colouring number of H




Berge’s conjectures

* Berge 1961.

 Weak perfect graph conjecture: A graph is
perfect if its complement is perfect.

— Proved by Lovasz 1972
* Strong perfect graph conjecture: A graph is

perfect if it does not contain an odd>3 cycle or
its complement as an induced subgraph



Annals of Mathematics, 164 (2006), 51-229

The strong perfect graph theorem

By MARIA CHUDNOVSKY, NEIL ROBERTSON.™ PAUL SEYMOUR,**

and ROBIN THOMAS™**



Strong Perfect Graph Theorem:
further reading

* Seymour, How the proof of the strong perfect
graph conjecture was found, 2003 (informal
report)
http://users.encs.concordia.ca/~chvatal/perfect/pds.pdf



WEAK 3-FLOW CONJECTURE



Z,-flows

* A Z,-flow for an undirected graph G is an
orientation of edges so that for each vertex,

number of incoming edges minus number of
outgoing edges is divisible by 3.

* Tutte showed: Graph G has a Z;-flow if and
only if it has a nowhere-zero 3-flow



Tutte’s 3-flow conjecture

Tutte (1950’s) conjectured: Every 4-edge-
connected graph has a Z,-flow.

Jaeger (1988) conjectured: there exists a k

such that every k-edge-connected graph has a
Z;-flow.

Thomassen (2012) proved for k = 8.
Recently improved to k = 6.



Tutte’s 3-flow conjecture:
further reading

e Laszlo Miklos Lovasz, Tutte’s flow conjectures,

2012
http://tlovering.files.wordpress.com/2012/06/laszloessay.pdf



Sources for Pictures

Fan Chung’s homepage: http://math.ucsd.edu/~fan/
Chung and Lu. Complex Graphs and Networks. AMS. 2006
Wikipedia

Bonato. A Course on the Web Graph. AMS. 2008

Lovasz. Large Networks and Graph Limits. AMS. 2012

Chung, Lu, Dewey, and Galas. Duplication Models for Biological Networks.
Journal of Computational Biology. 10 (5), 2003, 677--687

Goldreich. A Brief Introduction to Property Testing. Manuscript, 2010
http://networkx.github.com/
http://www.bordalierinstitute.com/



Thank you !



