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Huge networks everywhere! 

• The web graph: 30 billion nodes 

• Social networks: 7 billion 

• Online social networks: 500 million 

• Protein interactions 

• Human brain: 100 billion 

• 10 gr Diamond crystal: 5 * 1023 

• Transistors on chips 



Image from: http://www.math.ucsd.edu/~fan/graphs/gallery/bgpps.jpg 



Challenges 

1. Analyze their structure 

2. Model them 

3. Approximate them 

4. Run algorithms on them 



PROPERTIES OF THESE NETWORKS 



Power-law degree distribution 

• n = number of vertices 

• nk = number of vertices with degree k 

𝑛𝑘 ≈ 𝐶 𝑛𝑘−𝛽 

(scale-free) 



Power-law degree distribution 

• Call Graph (AT&T): 𝛽 = 2.1 

 



Power-law degree distribution 

• Kumar et al. (IBM): Web crawl of 40 million 
web pages in 1997 

•  𝛽𝑖𝑛 = 2.1; 𝛽𝑜𝑢𝑡 = 2.7 



Collaboration Graph 

Image from: http://www.math.ucsd.edu/~fan/graphs/gallery/collabb.jpg 

 

 

 

 

 

 

 

 



Power-law degree distribution 

• Collaboration graph (2004) 401000 nodes: 
𝛽 = 2.46 

 



Power-law degree distribution 

• Hollywood graph (225000 nodes) 𝛽 = 2.3 
Image from: http://www.math.ucsd.edu/~fan/graphs/gallery/holys.jpg 

 



Power-law degree distribution 

• Biological networks: 

1. Yeast protein-protein networks: 𝛽 = 1.6 

2. Yeast gene expression networks: 𝛽 ∈ 1.4,1.7  

3. Gene functional interaction network: 𝛽 = 1.6 

 

 



Notation 

 

𝑓 = 𝑂 𝑔  if 𝑓 ≤ 𝑐𝑔 for a constant 𝑐 > 0 

 

𝑓 = Ω 𝑔  if 𝑓 ≥ 𝑐𝑔 for a constant 𝑐 > 0 

 

𝑓 = Θ 𝑔  if c1g ≤ 𝑓 ≤ 𝑐2g for constants 
c1, c2 > 0 

 



Power-law degree distribution 

𝑛𝑘 ≈ 𝐶 𝑛𝑘−𝛽 

Assume 𝛽 > 2. 

 

2 𝐸 𝐺 = ∑ 𝑑𝑒𝑔 𝑣 = ∑𝑘𝑛𝑘 ≈ 𝐶𝑛∑𝑘1−𝛽

= 𝑂 𝑛  

 

Many real-world networks are sparse! 



Small world phenomenon 

Metric on graph vertices 

 

 

 

 

d(1,4) = 2 

d(2,6) = 3 

 

 

 

 

 



Small world phenomenon 

 

 S = pair of vertices with finite distance 

 

L(G) = average distance between pairs in S 

 
𝑑𝑖𝑎𝑚 𝐺 = max {𝑑 𝑢, 𝑣 : 𝑢, 𝑣 ∈ 𝑆} 



Small world phenomenon 

1. Average distance and the diameter are small 
(usually 𝑂(log 𝑛)) 

 

Examples: 

• Six degrees of separation (Milgram’s test) 

• Broder et al. (2000): 𝐿 𝑊𝑒𝑏 𝑔𝑟𝑎𝑝ℎ = 6.8 



Small world phenomenon 

2. Two vertices having a common neighbour are 
more likely to be adjacent. 

 

Local clustering coefficient of v:  
probability that two random neighbours of v are 
adjacent 

 



Small world phenomenon 
 

 

Image from: http://networkx.lanl.gov/archive/networkx-1.4/_images/random_geometric_graph.png 



MODELS 



Notation 

 

 

With high probability:  
with probability approaching 1 as n goes to infinity 



Erdös-Renyi Random Graphs 

• G (𝑛, 𝑝) 

 



Erdös-Renyi Random Graphs 



Erdös-Renyi Random Graphs 

 

• For 𝑛𝑝 > 5 log 𝑛, have logarithmic diameter. 

 

• Clustering coefficient is small 



Erdös-Renyi Random Graphs:  

further reading 



Random Geometric Graphs 

• G(n, r) 

 

 

 

 

 

 

 

 

 



Random Geometric Graphs: 
further reading 



Random Graphs with given expected 
degree sequence 

• Let 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛) be given 

• Build a random graph on n vertices with 

𝑝 𝑖, 𝑗 =
𝑤𝑖𝑤𝑗

∑𝑤𝑘
 

• The average degree of vertex j is (almost) wj 



Random Graphs with given expected 
degree sequence 

• Let 𝑑 =
∑𝑤𝑖

2

∑𝑤𝑖
  

• Let 𝑤1, 𝑤2, … , 𝑤𝑛  be power-law with 
exponent 𝛽. 

• Chung and Lu (2007): 
𝑑𝑖𝑎𝑚 = Θ(log 𝑛) 𝑓𝑜𝑟 𝛽 > 2 

1. 𝑖𝑓 𝛽 > 3 𝑡ℎ𝑒𝑛 𝐿 𝐺 ~
log 𝑛

log 𝑑
; 

2. 2 < 𝛽 < 3 𝑡ℎ𝑒𝑛 𝐿 𝐺 = 𝑂(log log 𝑛); 



Image from: http://www.math.ucsd.edu/~fan/graphs/gallery/ims.jpg 



Linearized Chord Diagram 

• Bollobas, Riordan, Spencer, Tusnady (2001) 

 

• An “evolving random graph” 

 

• First “preferential attachment model” 
analyzed rigorously 



Linearized Chord Diagram 

• G(m,t) 

• Start with a vertex 

• In step i, add one new vertex and join it to 
exactly one old vertex with probability 
proportional to their degree 

• After t steps, a tree with t vertices is obtained. 

• Merge every m consecutive vertices 

• Obtain a graph with t/m vertices 



Linearized Chord Diagram 

• Bollobas, Riordan, Spencer, Tusnady (2001). 

.𝐹𝑜𝑟 𝑓𝑖𝑥𝑒𝑑 𝑚, 𝜀, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑒𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 1 𝑎𝑠 𝑡 →

∞, 𝑓𝑜𝑟 𝑎𝑙𝑙 0 ≤ 𝑘 ≤
𝑡

𝑚
, 

1 − 𝜀 <
𝑛𝑘

𝐶𝑘3
< 1 + 𝜀 

 

• Bollobas and Riordan (2004). 

• 𝑊𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑒𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 1 𝑎𝑠 𝑡 → ∞, 

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟~
log 𝑡

log 𝑙𝑜𝑔 𝑡
 



Linearized chord diagram 

• More preferential attachment models: 

1. Aiello, Chung, Lu (2002): with any 𝛽 ∈ 2, ∞  

2. Cooper, Frieze (2003): many parameters 

3. Buckley, Osthus (2004). 

4. Bollobas, Borgs, Chayes, Riordan (2004) 



 

Image from: http://www.bordalierinstitute.com/images/yeastProteinInteractionNetwork.jpg 



Duplication Model 

Image from: Chung, Lu, Dewey, and Galas. Duplication Models for Biological 
Networks. Journal of Computational Biology. 10 (5), 2003 pp. 677--687. 



Partial Duplication Model 

• Parameter: p 

• Chung, Lu, Dewey, Galas (2003):  
Theorem. The partial duplication model 
generates power-law graphs with exponent 
satisfying 

𝑝 𝛽 − 1 = 1 − 𝑝𝛽−1 

So, if 0.5 < p < 1 then 𝛽 < 2. 



Real-world networks: further reading 



Real-world networks: further reading 

• Chung and Lu. Complex Graphs and Networks. 
AMS. 2006;  
chapter1: http://www.ams.org/bookstore/pspdf/cbms-107-prev.pdf 
 

• Bonato. A Survey of Models of the Web 
Graph. Proceedings of CAAN, 2004; 
http://www.math.ryerson.ca/~abonato/WEBSURV2.pdf 

 



Graph Limits 

• In 2003 people in Microsoft research started 
to define notions of “convergence” for 
sequences of graphs with increasing size… 

 

• A book on this topic has been published in 
2012 



 



GRAPH PROPERTY TESTING 
Image from: Oded Goldreich. A Brief Introduction to Property Testing. Manuscript, 2010. 



Graph Property Testing 

• For graphs G and H on the same vertex set, 

𝑑 𝐺, 𝐻 =
|𝐸 𝐺 Δ𝐸 𝐻 |

𝑉 𝐺 2
 

 

• For a property P (i.e. a class of graphs), 
𝑑 𝐺, 𝑃 = min {𝑑 𝐺, 𝐻 : 𝐻 ∈ 𝑃} 



Bipartite graph 



Graph Property Testing 

• A property P (e.g., being bipartite) 

• The algorithm (called “tester”) is allowed to 
ask queries of the following type: 

– Are vertices u and v adjacent? 

• The algorithm should distinguish the cases: 

– G is in P 

– G has distance > ԑ from all graphs in P 

 



Graph Property Testing 

• A property tester for property P: 

1. A randomized decision algorithm 

2. Is given n and ԑ > 0 

3. Asks q queries 

4. If G has P accepts with probability > 2/3 

5. If d(G,P)> ԑ rejects with probability > 2/3 

 

Important parameter: q = query complexity 



Graph Property Testing 

• Theorem (Alon-Krivelevich 2002). Query 
complexity of testing bipartiteness is O( 1/ԑ2 ) 

 

• Algorithm works by “sampling” 

 

• The analysis uses the probabilistic method 



Graph Property Testing 

• A graph property is hereditary if it is closed 
under removal of vertices 

– k-colourable graphs 

– Planar graphs 

– Chordal graphs 

• Theorem (Alon, Shapira 2005). Every 
hereditary graph property is testable with 
query complexity independent of n 



Graph Property Testing 

• Which graph properties have query 
complexity polynomial in 1/ ԑ ? 

– being k-colourable, for fixed k 

– Being “induced P3”-free 

• Which don’t? 

– Being triangle-free 



Graph Property Testing: 
further reading 

• Alon and Shapira, 
Homomorphisms in 
Graph Property Testing, 
2006. 
http://people.math.gatech.
edu/~asafico/nesetril.pdf 



STRONG PERFECT GRAPH THEOREM 



Perfect graphs 

• For any graph G 

Clique size of G ≤ colouring number of G 

 

 



Perfect Graphs 

• Graph G is perfect if for any induced subgraph 
H, 

Clique size of H = colouring number of H 

 

 



Berge’s conjectures 

• Berge 1961: 

• Weak perfect graph conjecture: A graph is 
perfect if its complement is perfect. 

– Proved by Lovász 1972 

• Strong perfect graph conjecture: A graph is 
perfect if it does not contain an odd>3 cycle or 
its complement as an induced subgraph 





Strong Perfect Graph Theorem: 
further reading 

• Seymour, How the proof of the strong perfect 
graph conjecture was found, 2003 (informal 
report) 
http://users.encs.concordia.ca/~chvatal/perfect/pds.pdf 



WEAK 3-FLOW CONJECTURE 



Z3-flows 

• A Z3-flow for an undirected graph G is an 
orientation of edges so that for each vertex, 
number of incoming edges minus number of 
outgoing edges is divisible by 3. 

 

• Tutte showed: Graph G has a Z3-flow if and 
only if it has a nowhere-zero 3-flow 



Tutte’s 3-flow conjecture 

• Tutte (1950’s) conjectured: Every 4-edge-
connected graph has a Z3-flow. 

• Jaeger (1988) conjectured: there exists a k 
such that every k-edge-connected graph has a 
Z3-flow. 

• Thomassen (2012) proved for k = 8. 

• Recently improved to k = 6. 



Tutte’s 3-flow conjecture: 
further reading 

 

• Laszlo Miklos Lovasz, Tutte’s flow conjectures, 
2012 
http://tlovering.files.wordpress.com/2012/06/laszloessay.pdf 



Sources for Pictures 

• Fan Chung’s homepage: http://math.ucsd.edu/~fan/ 

• Chung and Lu. Complex Graphs and Networks. AMS. 2006 

• Wikipedia 

• Bonato. A Course on the Web Graph. AMS. 2008 

• Lovász. Large Networks and Graph Limits. AMS. 2012 

• Chung, Lu, Dewey, and Galas. Duplication Models for Biological Networks. 
Journal of Computational Biology. 10 (5), 2003, 677--687 

• Goldreich. A Brief Introduction to Property Testing. Manuscript, 2010 

• http://networkx.github.com/ 

• http://www.bordalierinstitute.com/ 



Thank you ! 


