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Observation: data is asymmetric.

Hypothesis: may be a mixture of two Gaussians.

Method: numerically matching the moments.
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Learning mixtures of Gaussians in modern times

These days trying to �t data with mixtures of Gaussians is

popular in data science.

Modern applications: high-dimensional data

[Richardson and Weiss, Neurips 2018]

Why mixtures of Gaussians?

X �t some natural data well

X universal approximators

X clustering
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High-dimensional Gaussians

Multivariate normal distribution:

Nµ,Σ(x ) =
exp

�
−1

2
(x − µ)TΣ−1(x − µ)

�
(2π)d/2

p
det(Σ)

for x 2 Rd

X ∼ Nµ,Σ: E [X ] = µ 2 Rd ,E
h
(X − µ)(X − µ)T

i
= Σ 2 Rd�d
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High-dimensional Gaussians

Multivariate normal distribution:

Nµ,Σ(x ) =
exp

�
−1

2
(x − µ)TΣ−1(x − µ)

�
(2π)d/2

p
det(Σ)

for x 2 Rd

X ∼ Nµ,Σ: E [X ] = µ 2 Rd ,E
h
(X − µ)(X − µ)T

i
= Σ 2 Rd�d

Mixture of k Gaussians in Rd :
∑k

i=1wiNµi ,Σi

mixture weights satisfy wi � 0,
∑

wi = 1

Parameters of the model: (wi , µi , Σi )
k
i=1: Θ(kd

2) parameters
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What does it mean to learn/estimate a mixture of Gaussians

given data?
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First answer: maximum likelihood estimation

Given samples x1, . . . , xn , �nd parameters that maximize the

likelihood:
n∏
i=1

0@ k∑
j=1

wjNµj ,Σj (xi )

1A

X Non-convex optimization problem, NP-hard

X Widely used in practice: expectation-maximization (EM)

an iterative algorithm

X Convergence not well understood, very sensitive to

initialization
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Second answer: parameter estimation

Given samples from some unknown mixture of Gaussians∑k
i=1wiN (µi , Σi ), �nd each of the parameters within ε.

X Active area of research in theoretical computer science

[Dasgupta 1999]

X Computational complexity: polynomial in d and 1/ε

[Kalai, Moitra, Valiant 2010] [Belkin, Sinha 2010]

X Any algorithm has sample complexity exponential in k

[Moitra, Valiant 2010]
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Third answer: density estimation

Given samples from an unknown mixture of Gaussians f ,

output a density bf that is close to f with high probability, 99%.

Close in L1 distance:f − bf 
1
=
∫
Rd

���f (x ) − bf (x )���dx = 2 supA�Rd

���∫A f − ∫A bf ���
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Third answer: density estimation

Given samples from an unknown mixture of Gaussians f ,

output a density bf that is close to f with high probability, 99%.

Close in L1 distance:f − bf 
1
=
∫
Rd

���f (x ) − bf (x )���dx = 2 supA�Rd

���∫A f − ∫A bf ���
Bounds for parameter estimation do not translate to bounds for

density estimation: zero-mean 2-dimensional Gaussians with

Σ1 =

 
1 −0.99

−0.99 1

!
and Σ2 =

 
1 −1

−1 1

!

Close parameters, large L1 distance.
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Density estimation

Given samples from an unknown density f from some known

family C of densities, output a density bf that is close to f .
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Precise question we study today

Question

Let f be an unknown mixture of k Gaussians in Rd . How many

i.i.d. samples from f is needed to produce, with high

probability, a density bf satisfying kf − bf k1 � ε?
Remarks:

1. Algorithm knows k

2. Focus is on sample complexity

3. Equivalent formulation: given n samples from f 2 C, how

small can you make E
h
kf − bf k1i? Minimax risk

4. Unbounded for Lp>1 or KL
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Popular method in practice for density estimation

Kernel density estimation

Unfortunately, sample complexity is exponential in d .
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Question

Let f be an unknown mixture of k Gaussians in Rd . How many

i.i.d. samples from f is needed to produce, with high

probability, a density bf satisfying kf − bf k1 � ε?
k = 1: sample complexity � O(d2/ε2)

compute empirical mean and covariance, and use Gaussian

concentration

d = 1: sample complexity � O(k/ε2)

approximate by piecewise polynomials

[Chan, Diakonikolas, Servedio, Sun 2014]

Question: sample complexity � number of parameters divided by ε2?

Indeed we will show

sample complexity � kd2/ε2 � log2(d) log(k) = fO(kd2/ε2)
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Known results - 1

De�nition

Given an i.i.d. sample from an unknown density f 2 C, outputbf satisfying kf − bf k1 � ε with high probability.

mC(ε) = the smallest number of required samples.

k -mix(C) = class of distributions formed by taking k -mixtures

of elements of C

Theorem (Ashtiani, Ben-david, M2017)

For any class C, sample complexity for learning

k-mix(C) � O(mC(ε)� k log k/ε2)

Corollary

Sample complexity for learning mixtures of Gaussians

� O((d2/ε2)� k log k/ε2) = O(kd2 log(k)/ε4)
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Known results - 2

Y (C) =

{
{x 2 Rd : f1(x ) > f2(x )} : f1, f2 2 C

}
1. mC(ε) � O(VC-dim(Y (C))/ε2) [Devroye and Lugosi 2001]

2. When C = mixtures of Gaussians,

VC-dim(Y (C)) � O(k4d4) [Khovanskii 1991], [Karpinski and

Macintyre 1997], [Anthony and Bartlett 1999]

3. Gives an upper bound of O(k4d4/ε2) for the sample

complexity of mixtures of Gaussians.

We will improve this to kd2/ε2.
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Lower bounds
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Lower bounds?

Best known lower bound was Ω(kd/ε2).

[Suresh, Orlitsky, Acharya, and Jafarpour 2014]

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)

Any algorithm that learns mixtures of Gaussians has

sample complexity Ω(kd2/ε2).

Su�ces to show lower bound of Ω(d2/ε2) for a single Gaussian.
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Lower bound proof

Su�ces to show lower bound of Ω(d2/ε2) for a single Gaussian.

General idea: �nd lots of distributions that are hard to

distinguish but far in L1 distance.

[LeCam 1973], [Hasminskii 1976], [Assoud 1983]

Hasminskii+Fano's inequality: �nd 2Ω(d2) Gaussians with

pairwise KL-divergence � ε2 and pairwise L1 distance > ε.

KL(f1 k f2) :=

∫
f1(x ) log

f1(x )

f2(x )
dx [Kullback − Leibler ]
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Lower bound proof

Need to build 2Ω(d2) Gaussians with pairwise KL-divergence

� ε2 and pairwise L1 distance > ε.

We will use zero-mean Gaussians, so just need to specify the

covariance matrices.
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Lower bound proof

Need to build 2Ω(d2) Gaussians with pairwise KL-divergence

� ε2 and pairwise L1 distance > ε.

We will use zero-mean Gaussians, so just need to specify the

covariance matrices.

First construction [Ashtiani, Ben-David, Harvey, Liaw,M,

Plan'18]. Repeat 2d
2

times: start with an identity covariance

matrix, then choose a random subspace of dimension d/9 and

slightly increase the eigenvalues corresponding to this

eigenspace: Σ = I + εp
d
UUT, with U 2 Rd�d/9 orthonormal.

Then prove that with large probability, any two of these have

L1 distance > ε.
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Lower bound proof

Need to build 2Ω(d2) Gaussians with pairwise KL-divergence

� ε2 and pairwise L1 distance > ε.

We will use zero-mean Gaussians, so just need to specify the

covariance matrices.

Second construction (combinatorial) [Devroye,M,Reddad

2018]. For d = 3, consider the following inverse covariance

matrices:0B@ 0 −δ −δ

−δ 0 −δ

−δ −δ 0

1CA ,
0B@0 δ δ

δ 0 −δ

δ −δ 0

1CA ,
0B@ 0 δ −δ

δ 0 δ

−δ δ 0

1CA ,
0B@ 0 −δ δ

−δ 0 δ

δ δ 0

1CA
For general d , build 2d

2/10 inverse covariance matrices so that

any two of them are di�erent in at least d2/3 coordinates

(Gilbert-Varshamov bound in coding theory).
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Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)

Any algorithm that learns mixtures of Gaussians has

sample complexity Ω(kd2/ε2).

Next: upper bound

36



Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)

Any algorithm that learns mixtures of Gaussians has

sample complexity Ω(kd2/ε2).

Next: upper bound

37



Our upper bound

mC(ε) = sample complexity for learning a density from class C.

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)

If C = mixtures of k Gaussians in R
d , then

mC(ε) = fO(kd2/ε2).
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Covering number argument

Lemma (Yatracos 1985)

Suppose there exist f1, . . . , fM 2 C such that for any f 2 C,

there exists some i with kf − fik1 � ε. Then

mC(ε) = O(log(M )/ε2).

Proved by a clever combination of Hoe�ding's inequality and

the union bound.
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Covering number argument

Lemma (Yatracos 1985)

Suppose there exist f1, . . . , fM 2 C such that for any f 2 C,

there exists some i with kf − fik1 � ε. Then

mC(ε) = O(log(M )/ε2).

A bound on the covering number of a distribution class bounds

its sample complexity.

covering number= ε-net number= packing number=

ε-Kolmogorov entropy= metric entropy

[Devroye-Lugosi 2001], [Diakonikolas 2016]
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Gaussians are not bounded

Unfortunately, Gaussian distributions have in�nite covering

number, even if the mean is bounded.
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Gaussians are not bounded

Unfortunately, Gaussian distributions have in�nite covering

number, even if the mean is bounded.

Our novel idea to solve this: Use some of the data to reduce the

search space signi�cantly. To formalize this idea, we introduce

the notion of compression.
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x1 x2

µ̂ = x1+x2
2

σ̂ = |x1−x2|
2

N (bµ, bσ) −N (µ, σ)

1
� ε
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x1 x2

µ̂ = x1+x2
2

σ̂ = |x1−x2|
2

N (bµ, bσ) −N (µ, σ)

1
� ε

One-dimensional Gaussians admit (100/ε, 2)-compression.
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Compression implies learnability

De�nition (compression)

Class C admits (n(ε), τ(ε))-compression if, for any f 2 C, after n(ε)

i.i.d. samples from f are generated, with high probability there exist

τ(ε) of the samples from which bf can be constructed satisfying

kf − bf k1 � ε.
Lemma (compression implies learnability)

If C admits (n , τ)-compression, mC(ε) = O
�
n + τ log n

ε2

�
.

Algorithm: Exhaustive search + Yatracos' algorithm

Running time: nτ
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Proof of upper bound: compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit fO(d , d2)-compression.

2. Compressing mixtures

If C admits (n , τ)-compression, then k -mix(C) admitsfO(kn , kτ)-compression.

3. Compression implies learnability

If C admits (n , τ)-compression, mC(ε) = fO(n + τ/ε2).

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan'18)

If C is mixtures of k Gaussians in R
d then

mC(ε) = fO(kd2/ε2).
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Proof of upper bound: compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit fO(d , d2)-compression.

N (µ, Σ) = N (µ, v1v
T
1 + v2v

T
2 ).

µ

v1

v2
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Proof of upper bound: compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit fO(d , d2)-compression.

N (µ, Σ) = N (µ, v1v
T
1 + v2v

T
2 ).

µ

v1

v2

µ̂
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Proof of upper bound: compression

1. Compressing d-dimensional Gaussians

d-dimensional Gaussians admit fO(d , d2)-compression.

In general, use d log2(d/ε) data points to encode the mean, and

d log2(d/ε) data points for each eigenvector.

Lemma (Litvak, Pajor, Rudelson, Tomczak-Jaegermann

2005)

If we take O(d log d) samples from N (0, Id), their convex

hull with high probability contains 1
20
Bd
2

57



Main result

Theorem (Ashtiani, Ben-David, Harvey, Liaw, M, Plan,

NeurIPS 2018)

Given fO(kd2/ε2) samples from an unknown mixture of k

Gaussians in d dimensions, we can output a density that is

ε-close in L1 to the underlying density with high probability.

Moreover, any algorithm achieving this task requires at

least Ω(kd2/ε2) many samples.

improve previous upper bounds of fO(kd2/ε4) and O(k4d4/ε2),

and the lower bound of Ω(kd/ε2).

Upper bound. a novel technique for distribution learning

based on compressions, high-dimensional geometry + Yatracos'

algorithm.

Lower bound. a packing argument, Fano's inequality.
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Open questions
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Open questions

1. Polynomial time algorithm?

2. What if k is not known?

3. Sample complexity for general classes?
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Research direction 1

What is the sample complexity for learning a class C?

X Relate this to some notion of dimension of the class?

X Apply the compression idea to other classes?

X Probabilistic graphical models, e.g. the Ising model

[Devroye, M, Reddad'18]

X Distributions generated by neural networks

Picture taken from the work of Karras, Aila, Laine, and Lehtinen 2017
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Research direction 2: computational complexity

Which classes are learnable in polynomial time?

Polynomial time algorithm for mixtures of Gaussians?

Exists for mixtures of spherical Gaussians.

[Suresh, Orlitsky, Acharya, and Jafarpour 2014]

Research direction 3: robustness

Design learners that are robust against noisy data.

Our algorithm works in agnostic learning.

What if a small fraction of the data is corrupted in an

adversarial way?

63



Research direction 2: computational complexity

Which classes are learnable in polynomial time?

Polynomial time algorithm for mixtures of Gaussians?

Exists for mixtures of spherical Gaussians.

[Suresh, Orlitsky, Acharya, and Jafarpour 2014]

Research direction 3: robustness

Design learners that are robust against noisy data.

Our algorithm works in agnostic learning.

What if a small fraction of the data is corrupted in an

adversarial way?

64



Research direction 4: online learning

What if data is not revealed at once, but is received in an

online manner? Can we compete against a batch algorithm that

sees all the data at once?

Research direction 5: model selection

Can we learn the class C itself from data?

What if the number of Gaussian components, k , is not known?
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Popular method in practice for density estimation

Kernel density estimation�continued

Silverman 1998, Density estimation for Statistics and Data Analysis 66



VC-dimension

For a family Y of subsets of X , the VC-dimension of Y is the

size of the largest set A � X , such that for any B � A there

exists some Y 2 Y with Y \A = B .
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Interesting classes - 1

Probabilistic graphical models

X1 X2

X3
X4

X5

Example (The Ising model). Each Xi 2 {−1,+1} and

P [X1 = x1, . . . ,Xd = xd ] / exp

0@ ∑
ij2E(G)

wi ,j xixj

1A
Theorem (Devroye, M, Reddad'18)

Let IG = Ising models on G. Then, mIG (ε) = Θ(|E(G)|/ε2).
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Interesting classes - 2

g1

g2

g3

X1

X2

X3

X4

X5

X6

[Karras, Aila, Laine, and Lehtinen 2017] 69



Proof of mixture lemma

Compressing mixtures

If C admits (n , τ)-compression, then k -mix(C) admits

(nk log(k), kτ+ k log k)-compression.

Let P = 1
3
P1 +

1
3
P2 +

1
3
P3, where each Pi is 2-compressible.
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Proof of mixture lemma

Compressing mixtures

If C admits (n , τ)-compression, then k -mix(C) admits

(nk log(k), kτ+ k log k)-compression.

Let P = 1
3
P1 +

1
3
P2 +

1
3
P3, where each Pi is 2-compressible.

Let bP = 1
3
cP1 +

1
3
cP2 +

1
3
cP3
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Lemma (Yatracos 1985)

Suppose there exist f1, . . . , fM 2 C such that for any f 2 C, there

exists some i with kf − fik1 � ε/5. Then mC(ε) = O(log(M )/ε2).
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Lemma (Yatracos 1985)

Suppose there exist f1, . . . , fM 2 C such that for any f 2 C, there

exists some i with kf − fik1 � ε/5. Then mC(ε) = O(log(M )/ε2).

Let Y :=

{
{x : fi (x ) > fj (x )} for i , j = 1, . . . ,m

}
and let S be an i.i.d.

sample of size 50 log(M )/ε2 from f . For density f , let f (A) :=
∫
A
f .

|S \A| ∼ binomial(|S |, f (A)). By Hoe�ding [1963] and a union bound

over A 2 Y ,

err(f ) := sup
A2Y

����f (A) −
|S \A|

|S |

���� � ε/5
with probability 1− 2M 2 exp(−|S |ε2/25) � 99%.

Thus there exists some i with err(fi ) � 2ε/5.

So minj err(fj ) � 2ε/5, and it can be shown that the argmin here is

within L1 distance ε of f .
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Lemma (Yatracos 1985)

Suppose there exist f1, . . . , fM 2 C such that for any f 2 C, there

exists some i with kf − fik1 � ε/5. Then mC(ε) = O(log(M )/ε2).

Let Y :=

{
{x : fi (x ) > fj (x )} for i , j = 1, . . . ,m

}
and let S be an i.i.d.

sample of size 50 log(M )/ε2 from f . For density f , let f (A) :=
∫
A
f .

Output

min
j=1,...,M

sup
A2Y

����fj (A) −
|S \A|

|S |

����

78



An application of density estimation

detecting breast cancer

X Training data consists of normal (non-cancerous)

X-ray images.

X A probability density function f : Rd → R is learned

from the data.

X When a new input x is presented, a high value for

f (x ) indicates a normal image, while a low value

indicates a novel input, which might be characteristic

of an abnormality.

[Tarassenko, Hayton, Cerneaz, Brady 1995: Novelty

detection for the identi�cation of masses in mammograms]
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An example of density estimation

Generating random faces for computer games

X Training data consists of actual faces.

X A probability density function f : Rd → R is learned

from the data.

X New random faces are generated using the learned

distribution.

A popular approach: generative adversarial networks

(GANs), based on deep neural networks.
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Density estimation in action

Top: generated images using generative adversarial

networks

Bottom: a small part of the training data

Picture from Karras, Aila, Laine, and Lehtinen

(NVIDIA and Aalto University), October 2017
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