Diameter and Rumour Spreading in Real-World Network Models

Abbas Mehrabian

amehrabi@uwaterloo.ca

University of Waterloo

2 April 2015

joint work with a few people

Nick Wormald

Abbas (Waterloo)

2 April 2 / 58

A fundamental question

How long does it take for an element in a network to broadcast a piece of information to everyone?

A fundamental question

How long does it take for an element in a network to broadcast a piece of information to everyone?

1. Flooding algorithm: diameter of the underlying graph

How long does it take for an element in a network to broadcast a piece of information to everyone?

- 1. Flooding algorithm: diameter of the underlying graph
- 2. Rumour spreading/Gossip: each element communicates with one neighbour in each time-step.

How long does it take for an element in a network to broadcast a piece of information to everyone?

- 1. Flooding algorithm: diameter of the underlying graph
- 2. Rumour spreading/Gossip: each element communicates with one neighbour in each time-step.

Interested in graphs that resemble real-world networks, focus on random graphs with power-law degree distribution.

Part I: DIAMETER

In real-world graphs, average distance between two random vertices is significantly smaller than number of vertices in the graph In real-world graphs, average distance between two random vertices is significantly smaller than number of vertices in the graph, e.g.

- \checkmark Acquaintance network of Americans: 6.2
- ✓ The Webgraph, 200 million vertices: 6.83
- ✓ Facebook graph, 721 million vertices: 4.74

[Travers,Milgram'69]

[Broder et al.'99]

[Backstrom et al.'11]

In real-world graphs, average distance between two random vertices is significantly smaller than number of vertices in the graph, e.g.

✓ Acquaintance network of Americans: 6.2 [Travers,Milgram'69] ✓ The Webgraph, 200 million vertices: 6.83 [Broder et al.'99] ✓ Facebook graph, 721 million vertices: 4.74 [Backstrom et al.'11] Small-world graph: A random graph model in which the diameter is $O(\log n)$ a.a.s. as n grows. In real-world graphs, average distance between two random vertices is significantly smaller than number of vertices in the graph, e.g.

✓ Acquaintance network of Americans: 6.2 [Travers,Milgram'69]

- ✓ The Webgraph, 200 million vertices: 6.83 [Broder et al.'99]
- ✓ Facebook graph, 721 million vertices: 4.74 [Backstrom et al.'11]

Small-world graph: A random graph model in which the diameter is $O(\log n)$ a.a.s. as n grows.

Mathematical question: which random graphs are small-world?

		Community			
	Diameter or	Bip. core		Clustering	
Generator	Avg path len.	vs size	C(k) vs k	coefficient	Remarks
Erdös–Rényi [1960]	$O(\log N)$		Indep.	Low, $CC \propto N^{-1}$	
PLRG [Aiello et al. 2000],	$O(\log N)$	Indep.		$CC \rightarrow 0$	
PLOD [Palmer and Steffan 2000]				for large N	
Exponential cutoff	$O(\log N)$			$CC \rightarrow 0$	
[Newman et al. 2001]	-			for large N	
BA [Barabási and Albert 1999]	$O(\log N)$ or			$CC \propto N^{-0.75}$	
	$O(\frac{\log N}{\log \log N})$				
Initial attractiveness					
[Dorogovtsev and Mendes 2003]					
AB [Albert and Barabási 2000]					
Edge copying [Kleinberg et al.		Power-law			
1999],					
[Kumar et al. 1999]					
GLP [Bu and Towsley 2002]				Higher than	Internet
				AB, BA, PLRG	only
Accelerated growth				Non-monotonic	
[Dorogovtsev et al. 2001],				with N	
[Barabási et al. 2002]					
Fitness model					
[Bianconi and Barabási 2001]					
Aiello et al. [2001]					
Pandurangan et al. [2002]					
Inet [Winick and Jamin 2002]					Specific to
					the AS graph
Forest Fire	"shrinks" as				
[Leskovec et al. 2005]	N grows				
Pennock et al. [2002]					
Small-world	O(N) for small N ,			$CC(p) \propto$	N = num nodes
[Watts and Strogatz 1998]	$O(\ln N)$ for large N ,			$(1-p)^3$,	p = rewiring prob
	depends on p			Indep of N	
Waxman [1988]					
BRITE [Medina et al. 2000]	Low (like in BA)			like in BA	BA + Waxman
					with additions
Yook et al. [2002]					
Fabrikant et al. [2002]					Tree, density 1
R-MAT [Chakrabarti et al. 2004]	Low (empirically)				

Chakrabarti & Faloutsos, ACM Computing Surveys 2006.

Our contribution

We developed a versatile technique for proving that certain random graphs are small-world.

Theorem (M'14)

The following random graph models are small-world.

✓ The (edge) copying model [Kumar et al.'00]
✓ Aiello-Chung-Lu models [Aiello, Chung, Lu'01]
✓ The Cooper-Frieze model [Cooper, Frieze'01]
✓ The generalized linear preference model [Bu, Towsley'02]
✓ The PageRank-based selection model [Pandurangan et al.'02]
✓ Directed scale-free graphs [Bollobás et al.'03]
✓ The forest fire model [Leskovec, Kleinberg, Faloutsos'05]

The Cooper-Frieze model

- ✓ In each step, either a new vertex is born and edges are added from it to the existing graph, or edges are added between the existing vertices.
- \checkmark The number of added edges is a bounded random variable.
- ✓ One endpoint of each added edge is either the new vertex, or a uniformly random vertex, or a vertex sampled according to the degrees.
- ✓ The other endpoint is either a uniformly random vertex or a vertex sampled according to the degrees.

		Community			
	Diameter or	Bip. core		Clustering	
Generator	Avg path len.	vs size	C(k) vs k	coefficient	Remarks
Erdös–Rényi [1960]	$O(\log N)$		Indep.	Low, $CC \propto N^{-1}$	
PLRG [Aiello et al. 2000],	$O(\log N)$	Indep.		$CC \rightarrow 0$	
PLOD [Palmer and Steffan 2000]				for large N	
Exponential cutoff	$O(\log N)$			$CC \rightarrow 0$	
[Newman et al. 2001]				for large N	
BA [Barabási and Albert 1999]	$O(\log N)$ or			$CC \propto N^{-0.75}$	
	$O(\frac{\log N}{\log \log N})$				
Initial attractiveness	No Contraction of Con				
[Dorogovtsev and Mendes 2003]					
AB [Albert and Barabási 2000]					
Edge copying [Kleinberg et al.		Power-law			
1999],	$O(\log N)$				
[Kumar et al. 1999]					
GLP [Bu and Towsley 2002]	O(log M)			Higher than	Internet
	O(togre)			AB, BA, PLRG	only
Accelerated growth				Non-monotonic	
[Dorogovtsev et al. 2001],				with N	
[Barabási et al. 2002]					
Fitness model					
[Bianconi and Barabási 2001]					
Aiello et al. [2001]	$O(\log N)$				
Pandurangan et al. [2002]	$O(\log N)$				
Inet [Winick and Jamin 2002]					Specific to
					the AS graph
Forest Fire	$O(\log N)$				
[Leskovec et al. 2005]	O GOBTON				
Pennock et al. [2002]					
Small-world	O(N) for small N ,			$CC(p) \propto$	N = num nodes
[Watts and Strogatz 1998]	$O(\ln N)$ for large N ,			$(1-p)^3$,	p = rewiring prob
	depends on p			Indep of N	
Waxman [1988]					
BRITE [Medina et al. 2000]	Low (like in BA)			like in BA	BA + Waxman
					with additions
Yook et al. [2002]					
Fabrikant et al. [2002]					Tree, density 1
R-MAT [Chakrabarti et al. 2004]	Low (empirically)				

Chakrabarti & Faloutsos, ACM Computing Surveys 2006.

Random Apollonian Networks

t=0

Abbas (Waterloo)

2 April 11 / 58

t=0

Abbas (Waterloo)

2 April 12 / 58

t = 1

Abbas (Waterloo)

2 April 13 / 58

t = 1

Abbas (Waterloo)

2 April 14 / 58

t=2

2 April 15 / 58

t=2

2 April 16 / 58

t = 3

2 April 17 / 58

t = 3

2 April 18 / 58

t=4

2 April 19 / 58

After t steps, a random triangulated plane graph with n = t + 3 vertices, called a Random Apollonian Network (RAN). Zhou, Yan, Wang'05: planar graphs with power-law degree distribution.

After t steps, a random triangulated plane graph with n = t + 3 vertices, called a Random Apollonian Network (RAN). Zhou, Yan, Wang'05: planar graphs with power-law degree distribution.

Theorem (Albenque and Marckert'08; Frieze and Tsourakakis'12) A.a.s.

 $0.54 \log n < ext{diameter} < 7.1 \log n$

After t steps, a random triangulated plane graph with n = t + 3vertices, called a Random Apollonian Network (RAN). Zhou, Yan, Wang'05: planar graphs with power-law degree distribution.

Theorem (Albenque and Marckert'08; Frieze and Tsourakakis'12) A_{a}

$$0.54 \log n < ext{diameter} < 7.1 \log n$$

Theorem (Ebrahimzadeh, Farczadi, Gao, M, Sato, Wormald, Zung'13) A_{a} $\frac{\text{diameter}}{-----} \rightarrow c \approx 1.668$ in probability

 $\log n$

After t steps, a random triangulated plane graph with n = t + 3 vertices, called a Random Apollonian Network (RAN). Zhou, Yan, Wang'05: planar graphs with power-law degree distribution.

Theorem (Albenque and Marckert'08; Frieze and Tsourakakis'12) A.a.s.

```
0.54 \log n < 	ext{diameter} < 7.1 \log n
```

Theorem (Ebrahimzadeh, Farczadi, Gao, M, Sato, Wormald, Zung'13) A.a.s. $\frac{\text{diameter}}{\log n} \rightarrow c \approx 1.668$ in probability

A similar result was proved independently by Cooper, Frieze, Uehara'13 and Kolossváry, Komjáty, Vágó'13.

Abbas (Waterloo)

Diameter and Gossip in Graphs

2 April 20 / 58

 $\mathcal{L}_n := \text{length of a longest path}$

Frieze and Tsourakakis'12 Is $\mathcal{L}_n = \Omega(n)$ a.a.s.?

 $\mathcal{L}_n :=$ length of a longest path

Frieze and Tsourakakis'12 Is $\mathcal{L}_n = \Omega(n)$ a.a.s.? EFGMSWZ'13 No! A.a.s. we have $\mathcal{L}_n < ne^{-\Omega(\log \log n)}$

 $\mathcal{L}_n :=$ length of a longest path

Frieze and Tsourakakis'12 Is $\mathcal{L}_n = \Omega(n)$ a.a.s.? EFGMSWZ'13 No! A.a.s. we have $\mathcal{L}_n < ne^{-\Omega(\log \log n)}$ Cooper and Frieze'Mar14 A.a.s. we have $\mathcal{L}_n < ne^{-\sqrt{\log n}}$

21 / 58

 $\mathcal{L}_n := \text{length of a longest path}$

Frieze and Tsourakakis'12 Is $\mathcal{L}_n = \Omega(n)$ a.a.s.? EFGMSWZ'13 No! A.a.s. we have $\mathcal{L}_n < ne^{-\Omega(\log \log n)}$ Cooper and Frieze'Mar14 A.a.s. we have $\mathcal{L}_n < ne^{-\sqrt{\log n}}$ Collevecchio, M, Wormald'Apr14 A.a.s. we have $\mathcal{L}_n < ne^{-\Omega(\log n)}$

 $\mathcal{L}_n := \text{length of a longest path}$

Frieze and Tsourakakis'12 Is $\mathcal{L}_n = \Omega(n)$ a.a.s.? EFGMSWZ'13 No! A.a.s. we have $\mathcal{L}_n < ne^{-\Omega(\log \log n)}$ Cooper and Frieze'Mar14 A.a.s. we have $\mathcal{L}_n < ne^{-\sqrt{\log n}}$ Collevecchio, M, Wormald'Apr14 A.a.s. we have $\mathcal{L}_n < ne^{-\Omega(\log n)}$

Theorem (EFGMSWZ'13)

We have

$$\mathcal{L}_n > n^{0.63}$$

and

$$\mathbb{E}\left[\mathcal{L}_n\right] = \Omega\left(n^{0.88}\right)$$

Random-Surfer Webgraphs
- \checkmark Parameters: p and d
- \checkmark Consider a pool of independent Geo(p) random variables.
- ✓ Build a random graph with out-degree d: start with one vertex with d loops, add a new vertex in each step.

- \checkmark Parameters: p and d
- \checkmark Consider a pool of independent $\operatorname{Geo}(p)$ random variables.
- ✓ Build a random graph with out-degree d: start with one vertex with d loops, add a new vertex in each step.

Say p = 1/2 and d = 2

C, 2

C, 2 E, 0

Blum, Chan and Rwebangira'06.

Previous work focused on the degree distribution.

Theorem (M, Wormald'14)

A.a.s. the diameter of the underlying graph $\leq (8e^p/p)\log n$

 \checkmark The small-world phenomenon holds for this model.

Random-surfer trees (d = 1)

Our result

Theorem (M, Wormald'14)

A.a.s. the height is between $(L(p) - o(1)) \log n$ and $(U(p) + o(1)) \log n$, and the diameter is between twice these values.

Abbas (Waterloo)

Part II: RUMOUR SPREADING

✓ Initially, one vertex knows a rumour.

- ✓ Initially, one vertex knows a rumour.
- Vertex v performs an action means:
 if v knows the rumour, sends it to a random neighbour;
 else if v doesn't know the rumour, queries a random neighbour about it.

- ✓ Initially, one vertex knows a rumour.
- ✓ Vertex v performs an action means:
 if v knows the rumour, sends it to a random neighbour;
 else if v doesn't know the rumour, queries a random neighbour about it.
- ✓ In the synchronous push&pull protocol, each vertex performs an action at times 1, 2, 3, ...
 [Demers et al.'87]

- ✓ Initially, one vertex knows a rumour.
- ✓ Vertex v performs an action means:
 if v knows the rumour, sends it to a random neighbour;
 else if v doesn't know the rumour, queries a random neighbour about it.
- ✓ In the synchronous push&pull protocol, each vertex performs an action at times 1, 2, 3, ...
 [Demers et al.'87]
- ✓ In the asynchronous push&pull protocol, each vertex performs an action at times corresponding to an independent Poisson process with rate 1.
 [Boyd et al.'06]

- ✓ Initially, one vertex knows a rumour.
- ✓ Vertex v performs an action means:
 if v knows the rumour, sends it to a random neighbour;
 else if v doesn't know the rumour, queries a random neighbour about it.
- ✓ In the synchronous push&pull protocol, each vertex performs an action at times 1, 2, 3, ...
 [Demers et al.'87]
- ✓ In the asynchronous push&pull protocol, each vertex performs an action at times corresponding to an independent Poisson process with rate 1.
 [Boyd et al.'06]
- \checkmark s(G) and a(G): average time it takes to broadcast the rumour.

Applications and known results

Replicated databases and distributed computing; news propagation in social networks and spread of viruses on the Internet.

Applications and known results

Replicated databases and distributed computing; news propagation in social networks and spread of viruses on the Internet.

Graph G	s(G)	a(G)
Path	(4/3)n + O(1)	n + O(1)
Star	2	$\log n + O(1)$
Complete	$(1+o(1))\log_3 n$	$\log n + o(1)$
	[Karp et al.'01]	
$\mathcal{G}(n,p)$	$\Theta(\log n)$	$(1+o(1))\log n$
1 < np fixed	[Feige et al.'90]	[Panagiotou,Speidel'13]

Theorem (Acan, Collevecchio, M, Wormald'14) For any connected G we have

 $1 \leq s(G) \leq 4.6n$ $\log(n)/3 \leq a(G) \leq 4n$

Abbas (Waterloo)

Diameter and Gossip in Graphs

2 April 41 / 58

Comparison of the two protocols on the same graph: experiments

From Doerr, Fouz, and Friedrich. MedAlg 2012.

Abbas (Waterloo)

Diameter and Gossip in Graphs

2 April 42 / 58

Comparison of the two protocols on the same graph: our results

Theorem (Acan, Collevecchio, M, Wormald'14) We have $C_{r} = c(C)$

$$rac{C_1}{\log^2 n} \leq rac{s(G)}{a(G)} \leq C_2 n^{2/3} \log n$$

Moreover, there exist infinitely many graphs for which this ratio is $\Omega\left((n/\log n)^{1/3}\right)$.

Comparison of the two protocols on the same graph: our results

Theorem (Acan, Collevecchio, M, Wormald'14) We have

$$rac{C_1}{\log^2 n} \leq rac{s(G)}{a(G)} \leq C_2 n^{2/3} \log n$$

Moreover, there exist infinitely many graphs for which this ratio is $\Omega((n/\log n)^{1/3})$.

This graph has $\approx n^{1/3}$ diamonds, each consisting of $\approx n^{2/3}$ paths of length 2. It satisfies $a(G) = O(\log n)$ and $s(G) = \Omega(n^{1/3}(\log n)^{2/3})$.

Abbas (Waterloo)

Diameter and Gossip in Graphs

2 April 43 / 58

Synchronous Push&Pull on RANs and random k-trees

Synchronous Push&Pull on RANs

Theorem (M, Pourmiri'14)

If initially a random vertex of a RAN knows a rumour, a.a.s. after $O(\log^2 n)$ rounds, 99 percent of the vertices will get informed.

t = 0

Abbas (Waterloo)

Diameter and Gossip in Graphs

t = 0

Abbas (Waterloo)

Diameter and Gossip in Graphs

2 April 48 / 58

t = 1

Abbas (Waterloo)

Diameter and Gossip in Graphs

t = 1

Abbas (Waterloo)

Diameter and Gossip in Graphs

2 April 50 / 58

t=2

Abbas (Waterloo)

Diameter and Gossip in Graphs

2 April 51 / 58

$$t=2$$

Abbas (Waterloo)

Diameter and Gossip in Graphs
Random 3-tree

t = 3

Abbas (Waterloo)

Random 3-tree

t = 3

Abbas (Waterloo)

Diameter and Gossip in Graphs

2 April 54 / 58

Random 3-tree

t = 4

Abbas (Waterloo)

Synchronous push&pull on random k-trees

Random k-trees were defined in 2009 by Gao, who proved their degree distribution is power-law.

Synchronous push&pull on random k-trees

Random k-trees were defined in 2009 by Gao, who proved their degree distribution is power-law.

Theorem (M, Pourmiri'14, upper bound)

If initially a random vertex knows the rumor, a.a.s. after $(\log n)^{1+3/k}$ rounds, 99 percent of vertices will know it.

56 / 58

Synchronous push&pull on random k-trees

Random k-trees were defined in 2009 by Gao, who proved their degree distribution is power-law.

Theorem (M, Pourmiri'14, upper bound)

If initially a random vertex knows the rumor, a.a.s. after $(\log n)^{1+3/k}$ rounds, 99 percent of vertices will know it.

Theorem (M, Pourmiri'14, lower bound)

The time required to inform all vertices is $> n^{1/3k}$ a.a.s.

Exponential blow up if informing each and every vertex is required.

The picture

2 April 57 / 58

. . .

2 April 58 / 58

APPENDIX

Versatile technique

Theorem (M'14)

The following random graph models have diameter $O(\log n)$ a.a.s.

✓ The (edge) copying model [Kumar et al.'00]
 ✓ Aiello-Chung-Lu models [Aiello, Chung, Lu'01]
 ✓ The Cooper-Frieze model [Cooper, Frieze'01]
 ✓ The generalized linear preference model [Bu, Towsley'02]
 ✓ The PageRank-based selection model [Pandurangan et al.'02]
 ✓ Directed scale-free graphs [Bollobás et al.'03]
 ✓ The forest fire model [Leskovec, Kleinberg, Faloutsos'05]

Theorem (M'14, 3.24)

The PARID model of Deijfen et al. '09 has diameter $O(\log^3 n)$ a.a.s. if the initial degrees' distribution has an exponential decay. Abbas (Waterloo) Diameter and Gossip in Graphs 2 April 2 / 12

Diameter of RANs

Theorem (EFGMSWZ'13, 4.1)

$$f(x) := rac{12x^3}{1-2x} - rac{6x^3}{1-x},$$

y := unique solution to

$$x(x-1)f'(x)=f(x)\log f(x), \ \ x\in (0,1/2) \ ,$$

 $c := (1 - y^{-1}) / \log f(y) \approx 1.668$

Then for every fixed $\varepsilon > 0$,

 $\mathbb{P}\left[(1-\varepsilon)c\log n \leq ext{diameter of a RAN} \leq (1+\varepsilon)c\log n
ight]
ightarrow 1$

Longest paths in RANs

 $\mathcal{L}_n := ext{length of a longest path in a RAN}$

```
Theorem (EFGMSWZ'13, 4.2)
```

We have

$$\mathcal{L}_n > n^{0.63}$$

and

$$\mathbb{E}\left[\mathcal{L}_{n}
ight]=\Omega\left(n^{0.88}
ight)$$

Theorem (Collevecchio, M, Wormald'14, 4.4)

A.a.s. we have $\mathcal{L}_n < n^{0.99999996}$

The random-surfer Webgraph model

Theorem (M, Wormald'14, 5.2)

A.a.s. the diameter of the underlying graph $\leq (8e^p/p)\log n$

5 / 12

The random-surfer tree model

Theorem (M, Wormald'14, 5.3 and 5.4)

Given p and $\varepsilon > 0$, a.a.s. the height is between $(L(p) - \varepsilon) \log n$ and $(U(p) + \varepsilon) \log n$, and the diameter is between twice these values. Let $p_0 \approx 0.206$ be the unique solution in (0, 1/2) to

$$\log\left(rac{1-p}{p}
ight) = rac{1-p}{1-2p}$$

Let s be the solution in (0,1) to

$$s\log\left(\frac{(1-p)(2-s)}{1-s}\right)=1\,.$$

Then $L(p) = e^{1/s}s(2-s)p$ and

$$U(p) = egin{cases} L(p) & ext{if} \ \ p_0 \leq p < 1 \ \left(\log\left(rac{1-p}{p}
ight)
ight)^{-1} & ext{if} \ \ 0 < p < p_0 \ . \end{cases}$$

Abbas (Waterloo)

The random-surfer tree model (cont'd)

Abbas (Waterloo)

Extremal spread times

Theorem (Acan, Collevecchio, M, Wormald'14, 6.3) For any connected G,

$$\begin{aligned} &(1-1/n)\operatorname{wast}_{\mathsf{a}}(G) \leq \operatorname{gst}_{\mathsf{a}}(G) \leq e\operatorname{wast}_{\mathsf{a}}(G)\log n, & (1)\\ &\operatorname{wast}_{\mathsf{a}}(G) = \Omega(\log n) \quad \text{and} \quad \operatorname{wast}_{\mathsf{a}}(G) = O(n), & (2)\\ &\operatorname{gst}_{\mathsf{a}}(G) = \Omega(\log n) \quad \text{and} \quad \operatorname{gst}_{\mathsf{a}}(G) = O(n\log n). & (3) \end{aligned}$$

Theorem (Acan, Collevecchio, M, Wormald'14, 6.4) For any connected G,

$$(1 - 1/n) \operatorname{wast}_{s}(G) \leq \operatorname{gst}_{s}(G) \leq e \operatorname{wast}_{s}(G) \log n, \qquad (4)$$
$$\operatorname{wast}_{s}(G) = O(n), \qquad (5)$$
$$\operatorname{gst}_{s}(G) = O(n \log n). \qquad (6)$$

Comparison of the two protocols on the same graph

Theorem (Acan, Collevecchio, M, Wormald'14, 6.9) We have

$$rac{C_1}{\log n} \leq rac{\operatorname{gst}_{\mathsf{s}}(G)}{\operatorname{gst}_{\mathsf{a}}(G)} \leq C_2 n^{2/3}\,,$$

and the left-hand bound is asymptotically best possible, up to the constant factor. Moreover, there exist infinitely many graphs for which this ratio is $\Omega\left(n^{1/3}(\log n)^{-4/3}\right)$.

Rumour spreading on random k-trees

Theorem (M,Pourmiri'14, 7.3)

Let $k \ge 2$ be fixed and let $f(n) = o(\log \log n)$ be any function going to infinity with n. If initially a random vertex of a random k-tree knows a rumour, then a.a.s. after $O\left((\log n)^{1+\frac{2}{k}} \cdot \log \log n \cdot f(n)\right)$ rounds of the synchronous push \mathfrak{Spull} protocol, n - o(n) vertices will know the rumour.

Theorem (M,Pourmiri'14, 7.5)

Let $k \ge 2$ be fixed and let $f(n) = o(\log \log n)$ be any function going to infinity with n. Suppose that initially one vertex in the random k-tree knows the rumour. Then, a.a.s. the synchronous push \mathfrak{Spull} protocol needs at least $n^{(k-1)/(k^2+k-1)}/f(n)$ rounds to inform all vertices.

Rumour spreading on random k-Apollonian networks

Theorem (M,Pourmiri'14, 7.6)

Let $k \ge 3$ be fixed and let $f(n) = o(\log \log n)$ be any function going to infinity with n. Assume that initially a random vertex of a random k-Apollonian network knows a rumour. Then, a.a.s. after

$$O\left((\log n)^{(k^2-3)/(k-1)^2}\cdot \log\log n\cdot f(n)
ight)$$

rounds of the synchronous push \mathfrak{G} pull protocol, at least n - o(n) vertices will know the rumour.

Power-law degree distribution

Definition

A graph has power-law degree distribution with exponent β if the fraction of vertices of degree k is proportional to $k^{-\beta}$.

Examples:

- \checkmark The Webgraph (in 2000) had $\beta=2.1$
- $\checkmark\,$ Collaboration graph of mathematicians (MathSciNet 2000) had $\beta=2.46.$