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A fundamental question

How long does it take for an element in a network to broadcast
a piece of information to everyone?

1. Flooding algorithm: diameter of the underlying graph

2. Rumour spreading/Gossip: each element communicates with one
neighbour in each time-step.

Interested in graphs that resemble real-world networks,
focus on random graphs with power-law degree distribution.
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Part I: DIAMETER
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Small-world phenomenon

In real-world graphs, average distance between two random vertices
is significantly smaller than number of vertices in the graph

, e.g.

X Acquaintance network of Americans: 6.2 [Travers,Milgram’69]

X The Webgraph, 200 million vertices: 6.83 [Broder et al.’99]

X Facebook graph, 721 million vertices: 4.74 [Backstrom et al.’11]

Small-world graph: A random graph model in which the diameter is
O(logn) a.a.s. as n grows.
Mathematical question: which random graphs are small-world?
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Our contribution

We developed a versatile technique for proving that
certain random graphs are small-world.

Theorem (M’14)
The following random graph models are small-world.

X The (edge) copying model [Kumar et al.’00]

X Aiello-Chung-Lu models [Aiello,Chung,Lu’01]

X The Cooper-Frieze model [Cooper,Frieze’01]

X The generalized linear preference model [Bu,Towsley’02]

X The PageRank-based selection model [Pandurangan et al.’02]

X Directed scale-free graphs [Bollobás et al.’03]

X The forest fire model [Leskovec,Kleinberg,Faloutsos’05]
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The Cooper-Frieze model

X In each step, either a new vertex is born and edges are added from
it to the existing graph, or edges are added between the existing
vertices.

X The number of added edges is a bounded random variable.

X One endpoint of each added edge is either the new vertex, or a
uniformly random vertex, or a vertex sampled according to the
degrees.

X The other endpoint is either a uniformly random vertex or a
vertex sampled according to the degrees.
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Random Apollonian Networks
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t = 0
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t = 2
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t = 2
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t = 3
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t = 3
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t = 4
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Old and new results

After t steps, a random triangulated plane graph with n = t + 3
vertices, called a Random Apollonian Network (RAN).
Zhou, Yan, Wang’05: planar graphs with power-law degree
distribution.

Theorem (Albenque and Marckert’08; Frieze and Tsourakakis’12)
A.a.s.

0.54 logn < diameter < 7.1 logn

Theorem (Ebrahimzadeh, Farczadi, Gao, M, Sato, Wormald, Zung’13)
A.a.s.

diameter
logn

→ c ≈ 1.668 in probability

A similar result was proved independently by
Cooper, Frieze, Uehara’13 and Kolossváry, Komjáty, Vágó’13.
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Length of a longest path

Ln := length of a longest path

Frieze and Tsourakakis’12 Is Ln = Ω(n) a.a.s.?

EFGMSWZ’13 No! A.a.s. we have Ln < ne−Ω(log log n)

Cooper and Frieze’Mar14 A.a.s. we have Ln < ne−
√

log n

Collevecchio, M, Wormald’Apr14 A.a.s. we have Ln < ne−Ω(log n)

Theorem (EFGMSWZ’13)
We have

Ln > n0.63

and
E [Ln ] = Ω

(
n0.88)
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Random-Surfer Webgraphs
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Model definition

X Parameters: p and d

X Consider a pool of independent Geo(p) random variables.

X Build a random graph with out-degree d : start with one vertex
with d loops, add a new vertex in each step.

Say p = 1/2 and d = 2
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Blum, Chan and Rwebangira’06.



Our result

Previous work focused on the degree distribution.

Theorem (M, Wormald’14)

A.a.s. the diameter of the underlying graph ≤ (8ep/p) logn

X The small-world phenomenon holds for this model.
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Random-surfer trees (d = 1)
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next geom.r.v. = 1
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next geom.r.v. = 0
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Our result

Theorem (M, Wormald’14)

A.a.s. the height is between (L(p) − o(1)) logn and
(U (p) + o(1)) logn, and the diameter is between twice these values.
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Part II: RUMOUR SPREADING
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Protocols definition

X Initially, one vertex knows a rumour.

X Vertex v performs an action means:
if v knows the rumour, sends it to a random neighbour;
else if v doesn’t know the rumour, queries a random neighbour
about it.

X In the synchronous push&pull protocol, each vertex performs an
action at times 1, 2, 3, . . . [Demers et al.’87]

X In the asynchronous push&pull protocol, each vertex performs an
action at times corresponding to an independent Poisson process
with rate 1. [Boyd et al.’06]

X s(G) and a(G): average time it takes to broadcast the rumour.
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Applications and known results

Replicated databases and distributed computing; news propagation in
social networks and spread of viruses on the Internet.

Graph G s(G) a(G)

Path (4/3)n +O(1) n +O(1)
Star 2 logn +O(1)

Complete (1+ o(1)) log3 n logn + o(1)
[Karp et al.’01]

G(n , p) Θ(logn) (1+ o(1)) logn
1 < np fixed [Feige et al.’90] [Panagiotou,Speidel’13]
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Our results

Theorem (Acan, Collevecchio, M, Wormald’14)
For any connected G we have

1 ≤ s(G) ≤ 4.6n

log(n)/3 ≤ a(G) ≤ 4n
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Comparison of the two protocols on the same graph:
experiments

From Doerr, Fouz, and Friedrich. MedAlg 2012.
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Comparison of the two protocols on the same graph:
our results

Theorem (Acan, Collevecchio, M, Wormald’14)
We have

C1

log2 n
≤ s(G)

a(G)
≤ C2n2/3 logn

Moreover, there exist infinitely many graphs for which this ratio is
Ω

(
(n/ logn)1/3

)
.

... ... . . . ...

This graph has ≈ n1/3 diamonds, each consisting of ≈ n2/3 paths of
length 2. It satisfies a(G) = O(logn) and s(G) = Ω(n1/3(logn)2/3).
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Synchronous Push&Pull on RANs and random k -trees
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Synchronous Push&Pull on RANs

Theorem (M, Pourmiri’14)
If initially a random vertex of a RAN knows a rumour, a.a.s. after
O

(
log2 n

)
rounds, 99 percent of the vertices will get informed.
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Random 3-tree

t = 0
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Random 3-tree

t = 1
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Random 3-tree

t = 2
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Random 3-tree

t = 2
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Random 3-tree

t = 3
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Random 3-tree

t = 3
Abbas (Waterloo) Diameter and Gossip in Graphs 2 April 54 / 58



Random 3-tree

t = 4
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Synchronous push&pull on random k -trees

Random k -trees were defined in 2009 by Gao, who proved their degree
distribution is power-law.

Theorem (M, Pourmiri’14, upper bound)
If initially a random vertex knows the rumor,
a.a.s. after (logn)1+3/k rounds, 99 percent of vertices will know it.

Theorem (M, Pourmiri’14, lower bound)

The time required to inform all vertices is > n1/3k a.a.s.

Exponential blow up if informing each and every vertex is required.
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The picture

B
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...

Thanks for listening!
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APPENDIX
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Versatile technique

Theorem (M’14)

The following random graph models have diameter O(logn) a.a.s.

X The (edge) copying model [Kumar et al.’00]

X Aiello-Chung-Lu models [Aiello,Chung,Lu’01]

X The Cooper-Frieze model [Cooper,Frieze’01]

X The generalized linear preference model [Bu,Towsley’02]

X The PageRank-based selection model [Pandurangan et al.’02]

X Directed scale-free graphs [Bollobás et al.’03]

X The forest fire model [Leskovec,Kleinberg,Faloutsos’05]

Theorem (M’14, 3.24)

The PARID model of Deijfen et al.’09 has diameter O(log3 n)
a.a.s. if the initial degrees’ distribution has an exponential decay.
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Diameter of RANs

Theorem (EFGMSWZ’13, 4.1)

f (x ) :=
12x 3

1− 2x
−

6x 3

1− x
,

y := unique solution to

x (x − 1)f ′(x ) = f (x ) log f (x ), x ∈ (0, 1/2) ,

c := (1− y−1)/ log f (y) ≈ 1.668

Then for every fixed ε > 0,

P [(1− ε)c logn ≤ diameter of a RAN ≤ (1+ ε)c logn ] → 1
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Longest paths in RANs

Ln := length of a longest path in a RAN

Theorem (EFGMSWZ’13, 4.2)
We have

Ln > n0.63

and
E [Ln ] = Ω

(
n0.88)

Theorem (Collevecchio, M, Wormald’14, 4.4)

A.a.s. we have Ln < n0.99999996
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The random-surfer Webgraph model

Theorem (M, Wormald’14, 5.2)

A.a.s. the diameter of the underlying graph ≤ (8ep/p) logn
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The random-surfer tree model

Theorem (M, Wormald’14, 5.3 and 5.4)

Given p and ε > 0, a.a.s. the height is between (L(p) − ε) logn and
(U (p) + ε) logn, and the diameter is between twice these values. Let
p0 ≈ 0.206 be the unique solution in (0, 1/2) to

log
(
1− p
p

)
=

1− p
1− 2p

.

Let s be the solution in (0, 1) to

s log
(
(1− p)(2− s)

1− s

)
= 1 .

Then L(p) = e1/ss(2− s)p and

U (p) =

L(p) if p0 ≤ p < 1(
log

(
1−p
p

))−1
if 0 < p < p0 .
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The random-surfer tree model (cont’d)
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Extremal spread times

Theorem (Acan, Collevecchio, M, Wormald’14, 6.3)

For any connected G,

(1− 1/n)wasta(G) ≤ gsta(G) ≤ e wasta(G) logn , (1)

wasta(G) = Ω(logn) and wasta(G) = O(n) , (2)

gsta(G) = Ω(logn) and gsta(G) = O(n logn) . (3)

Theorem (Acan, Collevecchio, M, Wormald’14, 6.4)

For any connected G,

(1− 1/n)wasts(G) ≤ gsts(G) ≤ e wasts(G) logn , (4)

wasts(G) = O(n) , (5)

gsts(G) = O(n logn) . (6)
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Comparison of the two protocols on the same graph

Theorem (Acan, Collevecchio, M, Wormald’14, 6.9)
We have

C1

logn
≤ gsts(G)

gsta(G)
≤ C2n2/3 ,

and the left-hand bound is asymptotically best possible, up to the
constant factor. Moreover, there exist infinitely many graphs for
which this ratio is Ω

(
n1/3(logn)−4/3).
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Rumour spreading on random k -trees

Theorem (M,Pourmiri’14, 7.3)

Let k ≥ 2 be fixed and let f (n) = o(log logn) be any function going
to infinity with n. If initially a random vertex of a random k-tree
knows a rumour, then a.a.s. after O

(
(logn)1+

2
k · log logn · f (n)

)
rounds of the synchronous push&pull protocol, n − o(n) vertices
will know the rumour.

Theorem (M,Pourmiri’14, 7.5)

Let k ≥ 2 be fixed and let f (n) = o(log logn) be any function going
to infinity with n. Suppose that initially one vertex in the random
k-tree knows the rumour. Then, a.a.s. the synchronous push&pull
protocol needs at least n (k−1)/(k2+k−1)/f (n) rounds to inform all
vertices.
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Rumour spreading on random k -Apollonian networks

Theorem (M,Pourmiri’14, 7.6)

Let k ≥ 3 be fixed and let f (n) = o(log logn) be any function going
to infinity with n. Assume that initially a random vertex of a
random k-Apollonian network knows a rumour. Then, a.a.s. after

O
(
(logn)(k

2−3)/(k−1)2 · log logn · f (n)
)

rounds of the synchronous push&pull protocol, at least n − o(n)
vertices will know the rumour.
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Power-law degree distribution

Definition
A graph has power-law degree distribution with exponent β if the
fraction of vertices of degree k is proportional to k−β.

Examples:

X The Webgraph (in 2000) had β = 2.1

X Collaboration graph of mathematicians (MathSciNet 2000) had
β = 2.46.
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